RESUMEN
The rapid advancement in intelligent bionics has elevated electronic skin to a pivotal component in bionic robots, enabling swift responses to diverse external stimuli. Combining wearable touch sensors with IoT technology lays the groundwork for achieving the versatile functionality of electronic skin. However, most current touch sensors rely on capacitive layer deformations induced by pressure, leading to changes in capacitance values. Unfortunately, sensors of this kind often face limitations in practical applications due to their uniform sensing capabilities. This study presents a novel approach by incorporating graphitic carbon nitride (GCN) into polydimethylsiloxane (PDMS) at a low concentration. Surprisingly, this blend of materials with higher dielectric constants yields composite films with lower dielectric constants, contrary to expectations. Unlike traditional capacitive sensors, our non-contact touch sensors exploit electric field interference between the object and the sensor's edge, with enhanced effects from the low dielectric constant GCN/PDMS film. Consequently, we have fabricated touch sensor grids using an array configuration of dispensing printing techniques, facilitating fast response and ultra-low-limit contact detection with finger-to-device distances ranging from 5 to 100 mm. These sensors exhibit excellent resolution in recognizing 3D object shapes and accurately detecting positional motion. Moreover, they enable real-time monitoring of array data with signal transmission over a 4G network. In summary, our proposed approach for fabricating low dielectric constant thin films, as employed in non-contact touch sensors, opens new avenues for advancing electronic skin technology.
We've created 3D recognition sensing arrays using a printed method, enabling remote data transmission. We've identified an intriguing interfacial effect in GCN/PDMS doping, opening new possibilities in smart skin technology.
RESUMEN
The rising prevalence of diabetes has led to an increased focus on real-time glucose monitoring. Wearable glucose sensor patches allow noninvasive, real-time monitoring, reducing patient discomfort compared to invasive sensors. However, most existing glucose sensor patches rely on complex and contaminating metal vapor deposition technologies, which pose limitations in practical production. In this study, we propose a novel approach for preparing graphite/multiwall carbon nanotubes (MWCNT)/reduced graphene oxide (rGO) using a high-viscosity ink, which can be easily obtained through simple mechanical stirring. To create intricate patterns and enable printing on curved substrates, we employed a 3D printer equipped with an infrared laser ranging system. The ink served as a working electrode, and we developed a three-electrode system patch with a concentric circle structure. Subsequently, the working electrode underwent enzymatic modification with glucose dehydrogenase with flavin adenine dinucleotide (GDH-FAD) using a polymer embedding method. The resulting wearable glucose sensor exhibited a sensitivity of 2.42 µA mM-1 and a linear detection range of 1-12 mM. In addition, the glucose sensor has excellent anti-interference capability and demonstrates good repeatability in simulated real human wear scenarios, which meets the requirements for accurate human detection. These findings provide valuable insights into the development of human health monitoring technologies.
Asunto(s)
Grafito , Nanotubos de Carbono , Humanos , Glucemia , Nanotubos de Carbono/química , Automonitorización de la Glucosa Sanguínea , Grafito/química , Electrodos , Glucosa 1-Deshidrogenasa , GlucosaRESUMEN
In recent years, significant advancements in printed electronics and flexible materials have catalyzed the development of electronic skins for wearable applications. However, the low glass transition temperature of flexible substrates poses a challenge as it is incompatible with the high-temperature annealing required for electrode fabrication, thereby limiting the performance of flexible electronic devices. In this study, we address these limitations by proposing a novel flexible device manufacturing process that combines adhesive printing patterning with a transfer printing technology. By employing poly(vinylidene fluoride) (PVDF)/graphene nitride (GCN) as the transfer substrate and dielectric layer, we successfully fabricated a high-performance dual-mode touch sensor on a large scale. The successful development of this dual-mode sensor can be attributed to two key factors: the construction of a robust hydrogen-bonding network between the PVDF/GCN dielectric layer and the carbon electrode and the ability of GCN to restrict the movement of PVDF molecular chains within the dielectric layer. This restriction reduces the overall polarization of the film, enabling the formation of a complete device structure with a highly sensitive edge electric field. The noncontact sensors developed in this study are fully printable into sensor arrays and can be seamlessly integrated with internet of things technology for wearable applications. These sensors exhibit exceptional tactile response and facilitate effective human-machine interactions over extended distances, underscoring their significant potential in fields such as healthcare and artificial intelligence.
RESUMEN
With rapid advancements in health and human-computer interaction, wearable electronic skins (e-skins) designed for application on the human body provide a platform for real-time detection of physiological signals. Wearable strain sensors, integral functional units within e-skins, can be integrated with Internet of Things (IoT) technology to broaden the applications for human body monitoring. A significant challenge lies in the reliance of most existing wearable strain sensors on rigid external power supplies, limiting their practical flexibility. In this study, we present an innovative strategy to fabricate glutaraldehyde (GA)-poly(vinyl alcohol) (PVA)/cellulose nanocrystals (CNC)/Poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS) conductive hydrogels through multiple hydrogen bonding systems. Combining the advantageous rheological properties of the precursor solution and the high specific surface area after freeze-thaw cycling, we have created a self-powered sensing system prepared by large-area printing using direct ink writing (DIW) printing. The resulting conductive hydrogel exhibits commendable mechanical properties (411 KPa), impressive stretchability (580 %), and robust self-healing capabilities (>98.3 %). The strain sensor, derived from the conductive hydrogel, demonstrates a gauge factor (GF) of 2.5 within a stretching range of 0-580 %. Additionally, the resultant supercapacitor displays a peak energy density of 0.131 mWh/cm3 at a power density of 3.6 mW/cm3. Benefiting from its elevated strain response and remarkable power density features, this self-powered strain sensing system enables the real-time monitoring of human joint motion. The incorporation of a 5G transmission module enhances its capabilities for remote data monitoring, thereby contributing to the progress of wireless tracking technologies for self-powered electronic skin.
Asunto(s)
Conductividad Eléctrica , Electrodos , Hidrogeles , Dispositivos Electrónicos Vestibles , Hidrogeles/química , Humanos , Tecnología Inalámbrica , Poliestirenos/química , Celulosa/química , Alcohol Polivinílico/química , Nanopartículas/química , Suministros de Energía Eléctrica , Propiedades de Superficie , Tamaño de la Partícula , ImpresiónRESUMEN
Two-dimensional metal-organic frameworks (2D MOFs) hold great promise as electrochemically active materials. However, their application in MOF nanocomposite electrodes in solution engineering is limited by structural self-stacking and imperfect conductive pathways. In this study, we used meso-tetra(4-carboxyphenyl) porphine (TCPP) with off-domain π-bonds to reconstitute Zn-TCPP (ZMOF) and poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) through an interfacial modulation strategy involving electrostatic coupling and hydrogen bonding, creating a conductive composite with a nanosheet structure. The negatively charged PSS and ZMOF formed a three-dimensional interconnected conductive network with excellent interfaces. The positively charged PEDOT, fine tuned with the lamellar structure, established strong π-π stacking interactions between the porphyrin and thiophene rings. ZMOF also induced changes in the PEDOT chain structure, weakening PSS entanglement and enhancing charge-transport properties. The specific capacitance of the prepared supercapacitor was as high as 967.8 F g-1. Flexible supercapacitors produced on a large scale using dispensing printing technology exhibited an energy density of 1.85 µWh cm-2 and a power density of 7.08⯵W cm-2. This interfacial modulation strategy also exhibited excellent wearable properties, with 96â¯% capacitance retention at a 180° bending angle and stable cycling performance. This study presented a significant advancement in the functionalization of 2D materials, highlighting their potential for device-grade capacitive architectures.