Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Circ Res ; 113(7): 891-901, 2013 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-23819990

RESUMEN

RATIONALE: Mitochondria, although required for cellular ATP production, are also known to have other important functions that may include modulating cellular responses to environmental stimuli. However, the mechanisms whereby mitochondria impact cellular phenotype are not yet clear. OBJECTIVE: To determine how mitochondria impact endothelial cell function. METHODS AND RESULTS: We report here that stimuli for endothelial cell proliferation evoke strong upregulation of mitochondrial uncoupling protein 2 (UCP2). Analysis in silico indicated increased UCP2 expression is common in highly proliferative cell types, including cancer cells. Upregulation of UCP2 was critical for controlling mitochondrial membrane potential (Δψ) and superoxide production. In the absence of UCP2, endothelial growth stimulation provoked mitochondrial network fragmentation and premature senescence via a mechanism involving superoxide-mediated p53 activation. Mitochondrial network fragmentation was both necessary and sufficient for the impact of UCP2 on endothelial cell phenotype. CONCLUSIONS: These data identify a novel mechanism whereby mitochondria preserve normal network integrity and impact cell phenotype via dynamic regulation of UCP2.


Asunto(s)
Células Endoteliales/metabolismo , Canales Iónicos/metabolismo , Dinámicas Mitocondriales , Proteínas Mitocondriales/metabolismo , Fenotipo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Aorta/citología , Bovinos , Proliferación Celular , Senescencia Celular , Células Endoteliales/citología , Canales Iónicos/genética , Pulmón/citología , Potencial de la Membrana Mitocondrial , Ratones , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Superóxidos/metabolismo , Proteína Desacopladora 2 , Regulación hacia Arriba
2.
PLoS Genet ; 8(6): e1002761, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22719268

RESUMEN

Hepatic gluconeogenesis is required for maintaining blood glucose homeostasis; yet, in diabetes mellitus, this process is unrestrained and is a major contributor to fasting hyperglycemia. To date, the impacts of chromatin modifying enzymes and chromatin landscape on gluconeogenesis are poorly understood. Through catalyzing the removal of methyl groups from specific lysine residues in the histone tail, histone demethylases modulate chromatin structure and, hence, gene expression. Here we perform an RNA interference screen against the known histone demethylases and identify a histone H3 lysine 36 (H3K36) demethylase, Jhdm1a, as a key negative regulator of gluconeogenic gene expression. In vivo, silencing of Jhdm1a promotes liver glucose synthesis, while its exogenous expression reduces blood glucose level. Importantly, the regulation of gluconeogenesis by Jhdm1a requires its demethylation activity. Mechanistically, we find that Jhdm1a regulates the expression of a major gluconeogenic regulator, C/EBPα. This is achieved, at least in part, by its USF1-dependent association with the C/EBPα promoter and its subsequent demethylation of dimethylated H3K36 on the C/EBPα locus. Our work provides compelling evidence that links histone demethylation to transcriptional regulation of gluconeogenesis and has important implications for the treatment of diabetes.


Asunto(s)
Glucemia , Gluconeogénesis , Histona Demetilasas con Dominio de Jumonji , Hígado/metabolismo , Animales , Glucemia/metabolismo , Proteínas Potenciadoras de Unión a CCAAT/genética , Proteínas Potenciadoras de Unión a CCAAT/metabolismo , Células Cultivadas , Regulación de la Expresión Génica , Gluconeogénesis/genética , Glucosa-6-Fosfatasa/metabolismo , Hepatocitos/metabolismo , Humanos , Histona Demetilasas con Dominio de Jumonji/genética , Histona Demetilasas con Dominio de Jumonji/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Interferente Pequeño/genética , Ratas , Factores Estimuladores hacia 5'/metabolismo
3.
J Biol Chem ; 286(48): 41253-41264, 2011 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-21971050

RESUMEN

Impaired oxidative phosphorylation (OXPHOS) is implicated in several metabolic disorders. Even though mitochondrial DNA encodes several subunits critical for OXPHOS, the metabolic consequence of activating mitochondrial transcription remains unclear. We show here that LRP130, a protein involved in Leigh syndrome, increases hepatic ß-fatty acid oxidation. Using convergent genetic and biochemical approaches, we demonstrate LRP130 complexes with the mitochondrial RNA polymerase to activate mitochondrial transcription. Activation of mitochondrial transcription is associated with increased OXPHOS activity, increased supercomplexes, and denser cristae, independent of mitochondrial biogenesis. Consistent with increased oxidative phosphorylation, ATP levels are increased in both cells and mouse liver, whereas coupled respiration is increased in cells. We propose activation of mitochondrial transcription remodels mitochondria and enhances oxidative metabolism.


Asunto(s)
Ácidos Grasos/metabolismo , Mitocondrias Hepáticas/metabolismo , Proteínas Mitocondriales/metabolismo , Proteínas de Neoplasias/metabolismo , Fosforilación Oxidativa , Animales , ARN Polimerasas Dirigidas por ADN/genética , ARN Polimerasas Dirigidas por ADN/metabolismo , Ácidos Grasos/genética , Células Hep G2 , Humanos , Enfermedad de Leigh/genética , Enfermedad de Leigh/metabolismo , Ratones , Mitocondrias Hepáticas/genética , Proteínas Mitocondriales/genética , Complejos Multiproteicos/genética , Complejos Multiproteicos/metabolismo , Proteínas de Neoplasias/genética , Oxidación-Reducción , Consumo de Oxígeno/fisiología , Transcripción Genética/fisiología
4.
Am J Physiol Endocrinol Metab ; 302(7): E807-16, 2012 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-22275755

RESUMEN

TRPM2 Ca(2+)-permeable cation channel is widely expressed and activated by markers of cellular stress. Since inflammation and stress play a major role in insulin resistance, we examined the role of TRPM2 Ca(2+) channel in glucose metabolism. A 2-h hyperinsulinemic euglycemic clamp was performed in TRPM2-deficient (KO) and wild-type mice to assess insulin sensitivity. To examine the effects of diet-induced obesity, mice were fed a high-fat diet for 4-10 mo, and metabolic cage and clamp studies were conducted in conscious mice. TRPM2-KO mice were more insulin sensitive partly because of increased glucose metabolism in peripheral organs. After 4 mo of high-fat feeding, TRPM2-KO mice were resistant to diet-induced obesity, and this was associated with increased energy expenditure and elevated expressions of PGC-1α, PGC-1ß, PPARα, ERRα, TFAM, and MCAD in white adipose tissue. Hyperinsulinemic euglycemic clamps showed that TRPM2-KO mice were more insulin sensitive, with increased Akt and GSK-3ß phosphorylation in heart. Obesity-mediated inflammation in adipose tissue and liver was attenuated in TRPM2-KO mice. Overall, TRPM2 deletion protected mice from developing diet-induced obesity and insulin resistance. Our findings identify a novel role of TRPM2 Ca(2+) channel in the regulation of energy expenditure, inflammation, and insulin resistance.


Asunto(s)
Metabolismo Energético/fisiología , Glucosa/metabolismo , Canales Catiónicos TRPM/fisiología , Animales , Western Blotting , Composición Corporal/fisiología , Peso Corporal/fisiología , Calmodulina/metabolismo , Calorimetría Indirecta , Grasas de la Dieta/farmacología , Técnica de Clampeo de la Glucosa , Prueba de Tolerancia a la Glucosa , Inmunoprecipitación , Inflamación/metabolismo , Proteínas Sustrato del Receptor de Insulina/metabolismo , Resistencia a la Insulina/fisiología , Ratones , Ratones Noqueados , Miocardio/enzimología , Miocardio/metabolismo , Consumo de Oxígeno/fisiología , Fosforilación , ARN/biosíntesis , ARN/genética , Superóxido Dismutasa/metabolismo
5.
J Hepatol ; 55(3): 673-682, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21256905

RESUMEN

BACKGROUND & AIMS: Mechanisms underlying synergistic liver injury caused by alcohol and obesity are not clear. We have produced a mouse model of synergistic steatohepatitis by recapitulating the natural history of the synergism seen in patients for mechanistic studies. METHODS: Moderate obesity was induced in mice by 170% overnutrition in calories using intragastric overfeeding of high fat diet. Alcohol (low or high dose) was then co-administrated to determine its effects. RESULTS: Moderate obesity plus alcohol intake causes synergistic steatohepatitis in an alcohol dose-dependent manner. A heightened synergism is observed when a high alcohol dose (32g/kg/d) is used, resulting in plasma ALT reaching 392±28U/L, severe steatohepatitis with pericellular fibrosis, marked M1 macrophage activation, a 40-fold induction of iNos, and intensified nitrosative stress in the liver. Hepatic expression of genes for mitochondrial biogenesis and metabolism are significantly downregulated, and hepatic ATP level is decreased. Synergistic ER stress evident by elevated XBP-1, GRP78 and CHOP is accompanied by hyperhomocysteinemia. Despite increased caspase 3/7 cleavage, their activities are decreased in a redox-dependent manner. Neither increased PARP cleavage nor TUNEL positive hepatocytes are found, suggesting a shift of apoptosis to necrosis. Surprisingly, the synergism mice have increased plasma adiponectin and hepatic p-AMPK, but adiponectin resistance is shown downstream of p-AMPK. CONCLUSIONS: Nitrosative stress mediated by M1 macrophage activation, adiponectin resistance, and accentuated ER and mitochondrial stress underlie potential mechanisms for synergistic steatohepatitis caused by moderate obesity and alcohol.


Asunto(s)
Etanol/farmacología , Hígado Graso/metabolismo , Expresión Génica/efectos de los fármacos , Hígado/metabolismo , Mitocondrias/genética , Obesidad/complicaciones , Transducción de Señal , Proteínas Quinasas Activadas por AMP/metabolismo , Adenosina Trifosfato/metabolismo , Adiponectina/metabolismo , Tejido Adiposo Blanco/metabolismo , Alanina Transaminasa/sangre , Animales , Antígenos CD/metabolismo , Antígenos de Diferenciación Mielomonocítica/metabolismo , Arginasa/genética , Arginasa/metabolismo , Modelos Animales de Enfermedad , Regulación hacia Abajo/genética , Chaperón BiP del Retículo Endoplásmico , Estrés del Retículo Endoplásmico/efectos de los fármacos , Hígado Graso/etiología , Hígado Graso/genética , Hígado Graso/patología , Interleucina-10/genética , Interleucina-10/metabolismo , Activación de Macrófagos/efectos de los fármacos , Activación de Macrófagos/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Mitocondrias/metabolismo , Óxido Nítrico Sintasa de Tipo I/genética , Óxido Nítrico Sintasa de Tipo I/metabolismo , Obesidad/genética , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
8.
Sci Rep ; 7(1): 2013, 2017 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-28515438

RESUMEN

Mitochondrial respiration plays a crucial role in determining the metabolic state of brown adipose tissue (BAT), due to its direct roles in thermogenesis, as well as through additional mechanisms. Here, we show that respiration-dependent retrograde signaling from mitochondria to nucleus contributes to genetic and metabolic reprogramming of BAT. In mouse BAT, ablation of LRPPRC (LRP130), a potent regulator of mitochondrial transcription and respiratory capacity, triggers down-regulation of thermogenic genes, promoting a storage phenotype in BAT. This retrograde regulation functions by inhibiting the recruitment of PPARγ to the regulatory elements of thermogenic genes. Reducing cytosolic Ca2+ reverses the attenuation of thermogenic genes in brown adipocytes with impaired respiratory capacity, while induction of cytosolic Ca2+ is sufficient to attenuate thermogenic gene expression, indicating that cytosolic Ca2+ mediates mitochondria-nucleus crosstalk. Our findings suggest respiratory capacity governs thermogenic gene expression and BAT function via mitochondria-nucleus communication, which in turn leads to either a thermogenic or storage mode.


Asunto(s)
Respiración de la Célula , Regulación de la Expresión Génica , Mitocondrias/genética , Mitocondrias/metabolismo , Transducción de Señal , Termogénesis/genética , Tejido Adiposo Pardo/metabolismo , Animales , Calcio/metabolismo , Ratones , Ratones Noqueados , Mitocondrias/ultraestructura , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , PPAR gamma/genética , PPAR gamma/metabolismo , Regiones Promotoras Genéticas
9.
Nat Med ; 22(3): 312-8, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26808348

RESUMEN

Uncoupling protein 1 (UCP1) is highly expressed in brown adipose tissue, where it generates heat by uncoupling electron transport from ATP production. UCP1 is also found outside classical brown adipose tissue depots, in adipocytes that are termed 'brite' (brown-in-white) or 'beige'. In humans, the presence of brite or beige (brite/beige) adipocytes is correlated with a lean, metabolically healthy phenotype, but whether a causal relationship exists is not clear. Here we report that human brite/beige adipocyte progenitors proliferate in response to pro-angiogenic factors, in association with expanding capillary networks. Adipocytes formed from these progenitors transform in response to adenylate cyclase activation from being UCP1 negative to being UCP1 positive, which is a defining feature of the beige/brite phenotype, while displaying uncoupled respiration. When implanted into normal chow-fed, or into high-fat diet (HFD)-fed, glucose-intolerant NOD-scid IL2rg(null) (NSG) mice, brite/beige adipocytes activated in vitro enhance systemic glucose tolerance. These adipocytes express neuroendocrine and secreted factors, including the pro-protein convertase PCSK1, which is strongly associated with human obesity. Pro-angiogenic conditions therefore drive the proliferation of human beige/brite adipocyte progenitors, and activated beige/brite adipocytes can affect systemic glucose homeostasis, potentially through a neuroendocrine mechanism.


Asunto(s)
Adipocitos/metabolismo , Glucemia/metabolismo , Intolerancia a la Glucosa/metabolismo , Neovascularización Fisiológica , Consumo de Oxígeno , ARN Mensajero/metabolismo , Adipocitos/trasplante , Adipocitos Marrones/metabolismo , Adipocitos Marrones/trasplante , Adipocitos Blancos/metabolismo , Adipocitos Blancos/trasplante , Adulto , Anciano , Animales , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Capilares , Trasplante de Células , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Dieta Alta en Grasa , Encefalinas/genética , Encefalinas/metabolismo , Femenino , Técnica del Anticuerpo Fluorescente , Técnica de Clampeo de la Glucosa , Prueba de Tolerancia a la Glucosa , Homeostasis , Humanos , Integrina beta1/genética , Integrina beta1/metabolismo , Interleucina-33/genética , Interleucina-33/metabolismo , Yoduro Peroxidasa/genética , Yoduro Peroxidasa/metabolismo , Canales Iónicos/genética , Canales Iónicos/metabolismo , Masculino , Ratones , Persona de Mediana Edad , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Obesidad/metabolismo , Reacción en Cadena de la Polimerasa , Proproteína Convertasa 1/genética , Proproteína Convertasa 1/metabolismo , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Proteínas , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/genética , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Proteína Desacopladora 1 , Yodotironina Deyodinasa Tipo II
10.
J Vis Exp ; (102): e52982, 2015 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-26382148

RESUMEN

Lipid metabolism in liver is complex. In addition to importing and exporting lipid via lipoproteins, hepatocytes can oxidize lipid via fatty acid oxidation, or alternatively, synthesize new lipid via de novo lipogenesis. The net sum of these pathways is dictated by a number of factors, which in certain disease states leads to fatty liver disease. Excess hepatic lipid accumulation is associated with whole body insulin resistance and coronary heart disease. Tools to study lipid metabolism in hepatocytes are useful to understand the role of hepatic lipid metabolism in certain metabolic disorders. In the liver, hepatocytes regulate the breakdown and synthesis of fatty acids via ß-fatty oxidation and de novo lipogenesis, respectively. Quantifying metabolism in these pathways provides insight into hepatic lipid handling. Unlike in vitro quantification, using primary hepatocytes, making measurements in vivo is technically challenging and resource intensive. Hence, quantifying ß-fatty acid oxidation and de novo lipogenesis in cultured mouse hepatocytes provides a straight forward method to assess hepatocyte lipid handling. Here we describe a method for the isolation of primary mouse hepatocytes, and we demonstrate quantification of ß-fatty acid oxidation and de novo lipogenesis, using radiolabeled substrates.


Asunto(s)
Ácidos Grasos/metabolismo , Hepatocitos/metabolismo , Animales , Técnicas de Cultivo de Célula/métodos , Separación Celular/métodos , Hepatocitos/citología , Metabolismo de los Lípidos , Lipogénesis , Hígado/citología , Hígado/metabolismo , Ratones , Oxidación-Reducción , Palmitatos/metabolismo , Radiofármacos/química , Radiofármacos/metabolismo , Tritio/química
11.
Artículo en Inglés | MEDLINE | ID: mdl-26175716

RESUMEN

In murine and human brown adipose tissue (BAT), mitochondria are powerful generators of heat that safely metabolize fat, a feature that has great promise in the fight against obesity and diabetes. Recent studies suggest that the actions of mitochondria extend beyond their conventional role as generators of heat. There is mounting evidence that impaired mitochondrial respiratory capacity is accompanied by attenuated expression of Ucp1 and other BAT-selective genes, implying that mitochondria exert transcriptional control over the brown fat gene program. In this review, we discuss the current understanding of brown fat mitochondria, their potential role in transcriptional control of the brown fat gene program, and potential strategies to treat obesity in humans by leveraging thermogenesis in brown adipocytes.

12.
PLoS One ; 10(5): e0125617, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25933096

RESUMEN

OXPHOS is believed to play an important role in non-alcoholic fatty liver disease (NAFLD), however, precise mechanisms whereby OXPHOS influences lipid homeostasis are incompletely understood. We previously reported that ectopic expression of LRPPRC, a protein that increases cristae density and OXPHOS, promoted fatty acid oxidation in cultured primary hepatocytes. To determine the biological significance of that observation and define underlying mechanisms, we have ectopically expressed LRPPRC in mouse liver in the setting of NAFLD. Interestingly, ectopic expression of LRPPRC in mouse liver completely interdicted NAFLD, including inflammation. Consistent with mitigation of NAFLD, two markers of hepatic insulin resistance--ROS and PKCε activity--were both modestly reduced. As reported by others, improvement of NAFLD was associated with improved whole-body insulin sensitivity. Regarding hepatic lipid homeostasis, the ratio of NAD+ to NADH was dramatically increased in mouse liver replete with LRPPRC. Pharmacological activators and inhibitors of the cellular respiration respectively increased and decreased the [NAD+]/[NADH] ratio, indicating respiration-mediated control of the [NAD+]/[NADH] ratio. Supporting a prominent role for NAD+, increasing the concentration of NAD+ stimulated complete oxidation of fatty acids. Importantly, NAD+ rescued impaired fatty acid oxidation in hepatocytes deficient for either OXPHOS or SIRT3. These data are consistent with a model whereby augmented hepatic OXPHOS increases NAD+, which in turn promotes complete oxidation of fatty acids and protects against NAFLD.


Asunto(s)
Ácidos Grasos/metabolismo , Hepatocitos/metabolismo , Hígado/metabolismo , Mitocondrias/metabolismo , Proteínas de Neoplasias/genética , Enfermedad del Hígado Graso no Alcohólico/genética , Animales , Dieta Alta en Grasa , Regulación de la Expresión Génica , Hepatocitos/patología , Humanos , Resistencia a la Insulina , Metabolismo de los Lípidos/genética , Hígado/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias/genética , Mitocondrias/patología , NAD/metabolismo , Proteínas de Neoplasias/metabolismo , Enfermedad del Hígado Graso no Alcohólico/etiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Enfermedad del Hígado Graso no Alcohólico/patología , Oxidación-Reducción , Fosforilación Oxidativa , Cultivo Primario de Células , Proteína Quinasa C-epsilon/genética , Proteína Quinasa C-epsilon/metabolismo , Transducción de Señal , Sirtuina 3/deficiencia , Sirtuina 3/genética
13.
Nat Commun ; 6: 8995, 2015 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-26688060

RESUMEN

Signalling pathways that control endothelial cell (EC) permeability, leukocyte adhesion and inflammation are pivotal for atherosclerosis initiation and progression. Here we demonstrate that the Sterile-20-like mitogen-activated protein kinase kinase kinase kinase 4 (MAP4K4), which has been implicated in inflammation, is abundantly expressed in ECs and in atherosclerotic plaques from mice and humans. On the basis of endothelial-specific MAP4K4 gene silencing and gene ablation experiments in Apoe(-/-) mice, we show that MAP4K4 in ECs markedly promotes Western diet-induced aortic macrophage accumulation and atherosclerotic plaque development. Treatment of Apoe(-/-) and Ldlr(-/-) mice with a selective small-molecule MAP4K4 inhibitor also markedly reduces atherosclerotic lesion area. MAP4K4 silencing in cultured ECs attenuates cell surface adhesion molecule expression while reducing nuclear localization and activity of NFκB, which is critical for promoting EC activation and atherosclerosis. Taken together, these results reveal that MAP4K4 is a key signalling node that promotes immune cell recruitment in atherosclerosis.


Asunto(s)
Aterosclerosis/metabolismo , Células Endoteliales/metabolismo , Inflamación/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Enfermedades Vasculares/metabolismo , Aminopiridinas/farmacología , Animales , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Aterosclerosis/genética , Regulación de la Expresión Génica/fisiología , Inflamación/genética , Macrófagos , Masculino , Ratones , Ratones Noqueados , FN-kappa B/genética , FN-kappa B/metabolismo , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/genética , Receptores de LDL/genética , Receptores de LDL/metabolismo , Enfermedades Vasculares/genética , Quinasa de Factor Nuclear kappa B
14.
J Clin Invest ; 124(2): 768-84, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24430182

RESUMEN

Sirtuin 3 (SIRT3), an important regulator of energy metabolism and lipid oxidation, is induced in fasted liver mitochondria and implicated in metabolic syndrome. In fasted liver, SIRT3-mediated increases in substrate flux depend on oxidative phosphorylation (OXPHOS), but precisely how OXPHOS meets the challenge of increased substrate oxidation in fasted liver remains unclear. Here, we show that liver mitochondria in fasting mice adapt to the demand of increased substrate oxidation by increasing their OXPHOS efficiency. In response to cAMP signaling, SIRT3 deacetylated and activated leucine-rich protein 130 (LRP130; official symbol, LRPPRC), promoting a mitochondrial transcriptional program that enhanced hepatic OXPHOS. Using mass spectrometry, we identified SIRT3-regulated lysine residues in LRP130 that generated a lysine-to-arginine (KR) mutant of LRP130 that mimics deacetylated protein. Compared with wild-type LRP130 protein, expression of the KR mutant increased mitochondrial transcription and OXPHOS in vitro. Indeed, even when SIRT3 activity was abolished, activation of mitochondrial transcription and OXPHOS by the KR mutant remained robust, further highlighting the contribution of LRP130 deacetylation to increased OXPHOS in fasted liver. These data establish a link between nutrient sensing and mitochondrial transcription that regulates OXPHOS in fasted liver and may explain how fasted liver adapts to increased substrate oxidation.


Asunto(s)
Mitocondrias Hepáticas/metabolismo , Fosforilación Oxidativa , Sirtuina 3/metabolismo , Alelos , Secuencia de Aminoácidos , Animales , Arginina/metabolismo , Citrato (si)-Sintasa/metabolismo , AMP Cíclico/metabolismo , Metabolismo Energético/genética , Alimentos , Glucagón/metabolismo , Hepatocitos/citología , Hígado/metabolismo , Lisina/metabolismo , Masculino , Espectrometría de Masas , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mitocondrias/metabolismo , Datos de Secuencia Molecular , Proteínas de Neoplasias/metabolismo , Transcripción Genética
15.
PLoS One ; 8(10): e77851, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24167585

RESUMEN

Obesity places major demands on the protein folding capacity of the endoplasmic reticulum (ER), resulting in ER stress, a condition that promotes hepatic insulin resistance and steatosis. Here we identify the transcription factor, Kruppel-like factor 15 (KLF15), as an essential mediator of ER stress-induced insulin resistance in the liver. Mice with a targeted deletion of KLF15 exhibit increased hepatic ER stress, inflammation, and JNK activation compared to WT mice; however, KLF15 (-/-) mice are protected against hepatic insulin resistance and fatty liver under high-fat feeding conditions and in response to pharmacological induction of ER stress. The mammalian target of rapamycin complex 1 (mTORC1), a key regulator of cellular energy homeostasis, has been shown to cooperate with ER stress signaling pathways to promote hepatic insulin resistance and lipid accumulation. We find that the uncoupling of ER stress and insulin resistance in KLF15 (-/-) liver is associated with the maintenance of a low energy state characterized by decreased mTORC1 activity, increased AMPK phosphorylation and PGC-1α expression and activation of autophagy, an intracellular degradation process that enhances hepatic insulin sensitivity. Furthermore, in primary hepatocytes, KLF15 deficiency markedly inhibits activation of mTORC1 by amino acids and insulin, suggesting a mechanism by which KLF15 controls mTORC1-mediated insulin resistance. This study establishes KLF15 as an important molecular link between ER stress and insulin action.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Estrés del Retículo Endoplásmico , Resistencia a la Insulina , Hígado/metabolismo , Factores de Transcripción/metabolismo , Proteínas Quinasas Activadas por AMP/genética , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Proteínas de Unión al ADN/genética , Grasas de la Dieta/efectos adversos , Grasas de la Dieta/farmacología , Hígado Graso/inducido químicamente , Hígado Graso/genética , Hígado Graso/metabolismo , Hígado Graso/patología , Humanos , Factores de Transcripción de Tipo Kruppel , Hígado/patología , Diana Mecanicista del Complejo 1 de la Rapamicina , Ratones , Ratones Noqueados , Complejos Multiproteicos , Obesidad/inducido químicamente , Obesidad/genética , Obesidad/metabolismo , Obesidad/patología , Fosforilación , Serina-Treonina Quinasas TOR , Factores de Transcripción/genética
16.
Diabetes ; 58(7): 1499-508, 2009 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-19366863

RESUMEN

OBJECTIVE: The peroxisome proliferator-activated receptor-gamma coactivator (PGC)-1 family of transcriptional coactivators controls hepatic function by modulating the expression of key metabolic enzymes. Hepatic gain of function and complete genetic ablation of PGC-1alpha show that this coactivator is important for activating the programs of gluconeogenesis, fatty acid oxidation, oxidative phosphorylation, and lipid secretion during times of nutrient deprivation. However, how moderate changes in PGC-1alpha activity affect metabolism and energy homeostasis has yet to be determined. RESEARCH DESIGN AND METHODS: To identify key metabolic pathways that may be physiologically relevant in the context of reduced hepatic PGC-1alpha levels, we used the Cre/Lox system to create mice heterozygous for PGC-1alpha specifically within the liver (LH mice). RESULTS: These mice showed fasting hepatic steatosis and diminished ketogenesis associated with decreased expression of genes involved in mitochondrial beta-oxidation. LH mice also exhibited high circulating levels of triglyceride that correlated with increased expression of genes involved in triglyceride-rich lipoprotein assembly. Concomitant with defects in lipid metabolism, hepatic insulin resistance was observed both in LH mice fed a high-fat diet as well as in primary hepatocytes. CONCLUSIONS: These data highlight both the dose-dependent and long-term effects of reducing hepatic PGC-1alpha levels, underlining the importance of tightly regulated PGC-1alpha expression in the maintenance of lipid homeostasis and glucose metabolism.


Asunto(s)
Regulación de la Expresión Génica , Hepatocitos/fisiología , Resistencia a la Insulina , Hígado/fisiología , Transactivadores/genética , Triglicéridos/sangre , Tejido Adiposo/anatomía & histología , Animales , Glucemia/metabolismo , Composición Corporal , Técnicas de Cultivo de Célula , Cruzamientos Genéticos , Hígado Graso/genética , Femenino , Hepatocitos/citología , Homeostasis , Insulina/sangre , Integrasas/genética , Cetonas/sangre , Lípidos/sangre , Lípidos/fisiología , Hígado/anatomía & histología , Ratones , Ratones Transgénicos , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , ARN Interferente Pequeño/genética , Factores de Transcripción
17.
J Biol Chem ; 283(46): 31960-7, 2008 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-18728005

RESUMEN

The PGC-1 coactivators are important regulators of oxidative metabolism. We previously demonstrated that LRP130 is a binding partner of PGC-1alpha, required for hepatic gluconeogenesis. LRP130 is the gene mutated in Leigh syndrome French Canadian variant, a rare neurodegenerative disease. The importance of LRP130 in other, non-hepatocyte biology remains obscure. To better understand PGC-1 coactivator function in brown fat development, we explored the metabolic role of LRP130 in brown adipocyte differentiation. We show that LRP130 is preferentially enriched in brown fat compared with white, and induced in a PGC-1-dependent manner during differentiation. Despite intact PGC-1 coactivator expression, brown fat cells deficient for LRP130 exhibit attenuated expression of several genes characteristic of brown fat, including uncoupling protein 1. Oxygen consumption studies support a specific defect in proton leak due to attenuated uncoupling protein 1 expression. Notably, brown fat cell development common to both PGC-1 coactivators is governed by LRP130. Conversely, the cAMP response controlled by PGC-1alpha is not regulated by LRP130. These data implicate LRP130 in brown fat cell development and differentiation.


Asunto(s)
Tejido Adiposo Pardo/citología , Tejido Adiposo Pardo/metabolismo , Diferenciación Celular , Proteínas de Neoplasias/metabolismo , Transducción de Señal , Factores de Transcripción/metabolismo , Animales , Células Cultivadas , Regulación de la Expresión Génica , Canales Iónicos/genética , Canales Iónicos/metabolismo , Ratones , Ratones Noqueados , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Proteínas de Neoplasias/genética , Regiones Promotoras Genéticas/genética , Protones , ARN Interferente Pequeño , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Proteína Desacopladora 1
18.
Genes Dev ; 22(10): 1397-409, 2008 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-18483224

RESUMEN

Brown fat is a specialized tissue that can dissipate energy and counteract obesity through a pattern of gene expression that greatly increases mitochondrial content and uncoupled respiration. PRDM16 is a zinc-finger protein that controls brown fat determination by stimulating brown fat-selective gene expression, while suppressing the expression of genes selective for white fat cells. To determine the mechanisms regulating this switching of gene programs, we purified native PRDM16 protein complexes from fat cells. We show here that the PRDM16 transcriptional holocompex contains C-terminal-binding protein-1 (CtBP-1) and CtBP-2, and this direct interaction selectively mediates the repression of white fat genes. This repression occurs through recruiting a PRDM16/CtBP complex onto the promoters of white fat-specific genes such as resistin, and is abolished in the genetic absence of CtBP-1 and CtBP-2. In turn, recruitment of PPAR-gamma-coactivator-1alpha (PGC-1alpha) and PGC-1beta to the PRDM16 complex displaces CtBP, allowing this complex to powerfully activate brown fat genes, such as PGC-1alpha itself. These data show that the regulated docking of the CtBP proteins on PRDM16 controls the brown and white fat-selective gene programs.


Asunto(s)
Tejido Adiposo Pardo/fisiología , Tejido Adiposo Blanco/fisiología , Oxidorreductasas de Alcohol/fisiología , Diferenciación Celular/genética , Proteínas de Unión al ADN/fisiología , Factores de Transcripción/fisiología , Transcripción Genética , Células 3T3 , Células 3T3-L1 , Tejido Adiposo Pardo/metabolismo , Tejido Adiposo Blanco/metabolismo , Oxidorreductasas de Alcohol/metabolismo , Animales , Células COS , Chlorocebus aethiops , Proteínas Co-Represoras , Proteínas de Unión al ADN/metabolismo , Regulación de la Expresión Génica , Genes Reguladores , Ratones , Modelos Biológicos , Complejos Multiproteicos/fisiología , Fosfoproteínas/metabolismo , Unión Proteica , Factores de Transcripción/metabolismo
19.
Genes Dev ; 20(21): 2996-3009, 2006 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-17050673

RESUMEN

Leigh syndrome French Canadian variant (LSFC) is an autosomal recessive neurodegenerative disorder due to mutation in the LRP130 (leucine-rich protein 130 kDa) gene. Unlike classic Leigh syndrome, the French Canadian variant spares the heart, skeletal muscle, and kidneys, but severely affects the liver. The precise role of LRP130 in cytochrome c oxidase deficiency and hepatic lactic acidosis that accompanies this disorder is unknown. We show here that LRP130 is a component of the PGC-1alpha (peroxisome proliferator-activated receptor coactivator 1-alpha) transcriptional coactivator holocomplex and regulates expression of PEPCK (phosphoenolpyruvate carboxykinase), G6P (glucose-6-phosphatase), and certain mitochondrial genes through PGC-1alpha. Reduction of LRP130 in fasted mice via adenoviral RNA interference (RNAi) vector blocks the induction of PEPCK and G6P, and blunts hepatic glucose output. LRP130 is also necessary for PGC-1alpha-dependent transcription of several mitochondrial genes in vivo. These data link LRP130 and PGC-1alpha to defective hepatic energy homeostasis in LSFC, and reveal a novel regulatory mechanism of glucose homeostasis.


Asunto(s)
Regulación de la Expresión Génica , Gluconeogénesis/genética , Glucosa/metabolismo , Enfermedad de Leigh/metabolismo , Proteínas de Neoplasias/metabolismo , Transactivadores/metabolismo , Animales , Sitios de Unión , Inmunoprecipitación de Cromatina , Metabolismo Energético/genética , Proteína Forkhead Box O1 , Factores de Transcripción Forkhead/metabolismo , Genes Mitocondriales/genética , Glucosa-6-Fosfatasa/genética , Homeostasis/genética , Enfermedad de Leigh/genética , Hígado/metabolismo , Ratones , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Fosfoenolpiruvato Carboxiquinasa (ATP)/genética , Factores de Transcripción
20.
Cell ; 119(1): 121-35, 2004 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-15454086

RESUMEN

PGC-1alpha is a coactivator of nuclear receptors and other transcription factors that regulates several metabolic processes, including mitochondrial biogenesis and respiration, hepatic gluconeogenesis, and muscle fiber-type switching. We show here that, while hepatocytes lacking PGC-1alpha are defective in the program of hormone-stimulated gluconeogenesis, the mice have constitutively activated gluconeogenic gene expression that is completely insensitive to normal feeding controls. C/EBPbeta is elevated in the livers of these mice and activates the gluconeogenic genes in a PGC-1alpha-independent manner. Despite having reduced mitochondrial function, PGC-1alpha null mice are paradoxically lean and resistant to diet-induced obesity. This is largely due to a profound hyperactivity displayed by the null animals and is associated with lesions in the striatal region of the brain that controls movement. These data illustrate a central role for PGC-1alpha in the control of energy metabolism but also reveal novel systemic compensatory mechanisms and pathogenic effects of impaired energy homeostasis.


Asunto(s)
Encéfalo/metabolismo , Metabolismo Energético/genética , Gluconeogénesis/genética , Hipercinesia/genética , Mitocondrias/metabolismo , Transactivadores/genética , Adaptación Fisiológica/genética , Animales , Regulación del Apetito/genética , Enfermedades de los Ganglios Basales/genética , Enfermedades de los Ganglios Basales/metabolismo , Enfermedades de los Ganglios Basales/patología , Encéfalo/fisiopatología , Proteína beta Potenciadora de Unión a CCAAT/genética , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Cuerpo Estriado/metabolismo , Cuerpo Estriado/patología , Cuerpo Estriado/fisiopatología , Regulación de la Expresión Génica/genética , Glucosa/metabolismo , Hepatocitos/metabolismo , Homeostasis/genética , Hipercinesia/patología , Hipercinesia/fisiopatología , Hígado/metabolismo , Hígado/fisiopatología , Ratones , Ratones Noqueados , Mitocondrias/genética , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Neuronas/metabolismo , Obesidad/genética , Obesidad/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Transactivadores/deficiencia , Factores de Transcripción , Regulación hacia Arriba/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda