Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Conserv Biol ; 38(2): e14167, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37551773

RESUMEN

When invasive and endangered native taxa hybridize, the resulting admixture introduces novel conservation challenges. Across a large region of central California, a hybrid swarm consisting of admixed endangered California tiger salamanders (CTS) (Ambystoma californiense) and introduced barred tiger salamanders (BTS) (Ambystoma mavortium) has replaced native populations, threatening the genetic integrity of CTS and the vernal pool systems they inhabit. We employed a large-scale, genomically informed field experiment to test whether shortening breeding pond hydroperiod would favor native CTS genotypes. We constructed 14 large, seminatural ponds to evaluate the effect of hydroperiod duration on larval survival and mass at metamorphosis. We tracked changes in non-native allele frequencies with a 5237-gene exon capture array and employed a combination of custom Bayesian and generalized linear models to quantify the effect of pond duration on salamander fitness. Earlier work on this system showed hybrid superiority under many conditions and suggested that hybrids are favored in human-modified ponds with artificially long hydroperiods. Consistent with these earlier studies, we found overwhelming evidence for hybrid superiority. Very short hydroperiods substantially reduced the mass (1.1-1.5 fold) and survival probability (10-13 fold) of both native and hybrid larvae, confirming that hydroperiod likely exerts a strong selective pressure in the wild. We identified 86 genes, representing 1.8% of 4723 screened loci, that significantly responded to this hydroperiod-driven selection. In contrast to earlier work, under our more natural experimental conditions, native CTS survival and size at metamorphosis were always less than hybrids, suggesting that hydroperiod management alone will not shift selection to favor native larval genotypes. However, shortening pond hydroperiod may limit productivity of hybrid ponds, complementing other strategies to remove hybrids while maintaining vernal pool ecosystems. This study confirms and expands on previous work that highlights the importance of hydroperiod management to control invasive aquatic species.


Manejo de híbridos invasores mediante la manipulación del hidroperiodo de los estanques en el sistema de una salamandra en peligro de extinción Resumen La hibridación entre un taxón nativo en peligro y uno invasor introduce nuevos retos para la conservación. Una plaga híbrida de salamandras tigre de California (STC) (Ambystoma californiense), especie en peligro, y salamandras tigre barradas (STB) (Ambystoma mavortium) introducidas ha reemplazado a las poblaciones nativas en una región amplia del centro de California, lo que amenaza la integridad genética de las STC y el sistema de estanques vernales que habitan. Realizamos un experimento de campo a gran escala y con información genética para probar si la reducción del hidroperiodo reproductivo del estanque favorecería al genotipo de las STC nativas. Construimos 14 estanques seminaturales grandes para analizar el efecto de la duración del hidroperiodo sobre la supervivencia y masa larval durante la metamorfosis. Monitoreamos los cambios en la frecuencia de alelos no nativos con una matriz de captura de exones de 5,237 genes y utilizamos una combinación de modelos lineales generalizados y bayesianos a medida para cuantificar los efectos de la duración del estanque sobre la adaptabilidad de las salamandras. Los primeros trabajos en este sistema mostraron la superioridad híbrida bajo varias condiciones y sugirieron que los híbridos están favorecidos en los estanques con modificaciones antropogénicas e hidroperiodos de larga duración artificial. En coherencia con estos primeros resultados, encontramos evidencia abrumadora de la superioridad híbrida. Los hidroperiodos muy cortos redujeron sustancialmente la masa (1.1­1.5 más veces) y la probabilidad de supervivencia (10­13 más veces) de las larvas nativas e híbridas, lo que confirma que el hidroperiodo probablemente ejerce una fuerte presión selectiva en vida silvestre. Identificamos 86 genes, que representan el 1.8% de los 4,723 loci examinados, que respondieron significativamente a la selección basada en el hidroperiodo. Con las condiciones más naturales de nuestro experimento, y en contraste a nuestros primeros trabajos, la supervivencia y el tamaño de las STC nativas durante la metamorfosis siempre fueron menores a las de los híbridos, lo que sugiere que el manejo del hidroperiodo por sí solo no cambiará la selección a favor de los genotipos larvales nativos. Sin embargo, la reducción del hidroperiodo del estanque puede limitar la productividad de los estanques híbridos y complementar otras estrategias para extirpar a los híbridos mientras que mantiene el ecosistema del estanque vernal. Este estudio confirma y amplía los trabajos anteriores que resaltan la importancia del manejo del hidroperiodo para controlar las especies acuáticas invasoras.


Asunto(s)
Estanques , Urodelos , Animales , Humanos , Urodelos/genética , Ecosistema , Teorema de Bayes , Conservación de los Recursos Naturales , Ambystoma/genética , Larva/genética
2.
Malar J ; 22(1): 85, 2023 Mar 08.
Artículo en Inglés | MEDLINE | ID: mdl-36890552

RESUMEN

BACKGROUND: Anopheles farauti is one of the major vectors of malaria in the Southwest Pacific region and is responsible for past outbreaks in Australia. With an adaptable biting profile conducive to behavioural resistance to indoor residual spraying (IRS) and insecticide-treated nets (ITNs), its all-night biting behaviour can switch to biting mostly in the early evening. With limited insight into the biting profile of An. farauti populations in areas that have not encountered IRS or ITNs, the aim of this study was to develop insights on the biting behaviour of a malaria control naive population of An. farauti. METHODS: Biting profiles of An. farauti were conducted at Cowley Beach Training Area, in north Queensland, Australia. Initially, encephalitis virus surveillance (EVS) traps were used to document the 24-h biting profile of An. farauti and then human landing collections (HLC) were used to follow the 18.00-06.00 h biting profile. The human landing catches (HLC) were performed at both the end of the wet (April) and dry (October) seasons. RESULTS: Data exploration using a Random Forest Model shows that time of night is the most important variable for predicting An. farauti biting activity. Temperature was found to be the next important predictor, followed by humidity, trip, collector, and season. The significant effect of time of night and peak in time of night biting, between 19.00 and 20.00 h was also observed in a generalized linear model. The main effect of temperature was significant and non-linear and appears to have a positive effect on biting activity. The effect of humidity is also significant but its relationship with biting activity is more complex. This population's biting profile is similar to populations found in other parts of its range prior to insecticide intervention. A tight timing for the onset of biting was identified with more variation with the end of biting, which is likely underpinned by an endogenous circadian clock rather than any light intensity. CONCLUSION: This study sees the first record of a relationship between biting activity and the decreasing temperature during the night for the malaria vector, Anopheles farauti.


Asunto(s)
Anopheles , Insecticidas , Malaria , Animales , Humanos , Queensland/epidemiología , Estaciones del Año , Mosquitos Vectores , Humedad , Temperatura , Malaria/epidemiología , Malaria/prevención & control , Australia , Control de Mosquitos
3.
Mol Ecol ; 30(4): 987-1004, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33338297

RESUMEN

Hybridization between native and non-native species is an ongoing global conservation threat. Hybrids that exhibit traits and tolerances that surpass parental values are of particular concern, given their potential to outperform native species. Effective management of hybrid populations requires an understanding of both physiological performance and the underlying mechanisms that drive transgressive hybrid traits. Here, we explore several aspects of the hybridization between the endangered California tiger salamander (Ambystoma californiense; CTS) and the introduced barred tiger salamander (Ambystoma mavortium; BTS). We assayed critical thermal maximum (CTMax) to compare the ability of CTS, BTS and F1 hybrids to tolerate acute thermal stress, and found that hybrids exhibit a wide range of CTMax values, with 33% (4/12) able to tolerate temperatures greater than either parent. We then quantified the genomic response, measured at the RNA transcript level, of each salamander, to explore the mechanisms underlying thermal tolerance strategies. We found that CTS and BTS have strikingly different values and tissue-specific patterns of overall gene expression, with hybrids expressing intermediate values. F1 hybrids display abundant and variable degrees of allele-specific expression (ASE), likely arising from extensive compensatory evolution in gene regulatory mechanisms between CTS and BTS. We found evidence that the proportion of genes with allelic imbalance in individual hybrids correlates with their CTMax, suggesting a link between ASE and expanded thermal tolerance that may contribute to the success of hybrid salamanders in California. Future climate change may further complicate management of CTS if hybrid salamanders are better equipped to deal with rising temperatures.


Asunto(s)
Ambystoma , Urodelos , Alelos , Ambystoma/genética , Animales , California , Hibridación Genética , Urodelos/genética
4.
Malar J ; 18(1): 208, 2019 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-31234876

RESUMEN

BACKGROUND: Malaria transmission varies in intensity amongst Solomon Island villages where Anopheles farauti is the only vector. This variation in transmission intensity might be explained by density-dependent processes during An. farauti larval development, as density dependence can impact adult size with associated fitness costs and daily survivorship. METHODS: Adult anophelines were sampled from six villages in Western and Central Provinces, Solomon Islands between March 2014 and February 2017. The size of females was estimated by measuring wing lengths, and then analysed for associations with biting densities and rainfall. RESULTS: In the Solomon Islands, three anopheline species, An. farauti, Anopheles hinesorum and Anopheles lungae, differed in size. The primary malaria vector, An. farauti, varied significantly in size among villages. Greater rainfall was directly associated with higher densities of An. farauti biting rates, but inversely associated with body size with the smallest mean sized mosquitoes present during the peak transmission period. A measurable association between body size and survivorship was not found. CONCLUSIONS: Density dependent effects are likely impacting the size of adult An. farauti emerging from a range of larval habitats. The data suggest that rainfall increases An. farauti numbers and that these more abundant mosquitoes are significantly smaller in size, but without any reduced survivorship being associated with smaller size. The higher malaria transmission rate in a high malaria focus village appears to be determined more by vector numbers than size or survivorship of the vectors.


Asunto(s)
Anopheles/anatomía & histología , Anopheles/fisiología , Tamaño Corporal , Malaria/transmisión , Mosquitos Vectores/anatomía & histología , Mosquitos Vectores/fisiología , Estaciones del Año , Animales , Mordeduras y Picaduras , Femenino , Humanos , Melanesia , Lluvia
5.
Malar J ; 15: 151, 2016 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-26960327

RESUMEN

BACKGROUND: In the 1970s, Anopheles farauti in the Solomon Island responded to indoor residual spraying with DDT by increasingly feeding more outdoors and earlier in the evening. Although long-lasting insecticidal nets (LLINs) are now the primary malaria vector control intervention in the Solomon Islands, only a small proportion of An. farauti still seek blood meals indoors and late at night where they are vulnerable to being killed by contract with the insecticides in LLINs. The effectiveness of LLINs and indoor residual spraying (IRS) in controlling malaria transmission where the vectors are exophagic and early biting will depend on whether the predominant outdoor or early biting phenotypes are associated with a subpopulation of the vectors present. METHODS: Mark-release-recapture experiments were conducted in the Solomon Islands to determine if individual An. farauti repeat the same behaviours over successive feeding cycles. The two behavioural phenotypes examined were those on which the WHO recommended malaria vector control strategies, LLINs and IRS, depend: indoor and late night biting. RESULTS: Evidence was found for An. farauti being a single population regarding time (early evening or late night) and location (indoor or outdoor) of blood feeding. Individual An. farauti did not consistently repeat behavioural phenotypes expressed for blood feeding (e.g., while most mosquitoes that fed early and outdoors, and would repeat those behaviours, some fed late at night or indoors in the next feeding cycle). CONCLUSIONS: The finding that An. farauti is a homogeneous population is significant, because during the multiple feeding cycles required to complete the extrinsic incubation period, many individual female anophelines will enter houses late at night and be exposed to the insecticides used in LLINs or IRS. This explains, in part, the control that LLINs and IRS have exerted against a predominantly outdoor feeding vector, such as An. farauti. These findings may be relevant to many of the outdoor feeding vectors that dominate transmission in much of the malaria endemic world and justifies continued use of LLINs. However, the population-level tendency of mosquitoes to feed outdoors and early in the evening does require complementary interventions to accelerate malaria control towards elimination.


Asunto(s)
Anopheles/fisiología , Animales , Anopheles/crecimiento & desarrollo , Bioensayo , Conducta Alimentaria , Femenino , Humanos , Melanesia
6.
Malar J ; 15: 152, 2016 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-26964528

RESUMEN

BACKGROUND: The proportion of blood meals that mosquitoes take from a host species is a function of the interplay of extrinsic (abundance and location of potential hosts) and intrinsic (innate preference) factors. A mark-release-recapture experiment addressed whether host preference in a population of Anopheles farauti was uniform or if there were anthropophilic and zoophilic subpopulations. The corresponding fitness associated with selecting different hosts for blood meals was compared by measuring fecundity. METHODS: The attractiveness of humans for blood meals by An. farauti in the Solomon Islands was compared to pigs using tent traps. Host fidelity was assessed by mark-release-recapture experiments in which different colour dusts were linked to the host to which the mosquito was first attracted. Outdoor resting An. farauti were captured on barrier screens and the human blood index (HBI) as well as the feeding index were calculated. The fecundity of individual An. farauti after feeding on either humans or pigs was assessed from blood-fed mosquitoes held in individual oviposition chambers. RESULTS: Anopheles farauti were more attracted to humans than pigs at a ratio of 1.31:1.00. The mark-release-recapture experiment found evidence for An. farauti being a single population regarding host preference. The HBI of outdoor resting An. farauti was 0.93 and the feeding index was 1.29. Anopheles farauti that fed on a human host laid more eggs but had a longer oviposition time compared to An. farauti that had blood fed on a pig. CONCLUSIONS: One of the strongest drivers for host species preference was the relative abundance of the different host species. Here, An. farauti have a slight preference for humans over pigs as blood meal sources. However, the limited availability of alternative hosts relative to humans in the Solomon Islands ensures a very high proportion of blood meals are obtained from humans, and thus, the transmission potential of malaria by An. farauti is high.


Asunto(s)
Anopheles/fisiología , Especificidad del Huésped , Animales , Anopheles/crecimiento & desarrollo , Bioensayo , Conducta Alimentaria , Femenino , Fertilidad , Humanos , Melanesia , Porcinos
7.
Malar J ; 15: 156, 2016 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-26969430

RESUMEN

BACKGROUND: The effectiveness of vector control on malaria transmission by long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS) depends on the vectors entering houses to blood feed and rest when people are inside houses. In the Solomon Islands, significant reductions in malaria have been achieved in the past 20 years with insecticide-treated bed nets, IRS, improved diagnosis and treatment with artemisinin combination therapies; despite the preference of the primary vector, Anopheles farauti, to feed outdoors and early in the evening and thereby avoid potential exposure to insecticides. Rational development of tools to complement LLINs and IRS by attacking vectors outdoor requires detailed knowledge of the biology and behaviours of the target species. METHODS: Malaria transmission in Central Province, Solomon Islands was estimated by measuring the components comprising the entomological inoculation rate (EIR) as well as the vectorial capacity of An. farauti. In addition, the daily and seasonal biting behaviour of An. farauti, was examined and the duration of the feeding cycle was estimated with a mark-release-recapture experiment. RESULTS: Anopheles farauti was highly exophagic with 72% captured by human landing catches (HLC) outside of houses. Three-quarters (76%) of blood feeding on humans was estimated to occur before 21.00 h. When the hourly location of humans was considered, the proportion of exposure to mosquito bites on humans occurring indoors (πi) was only 0.130 ± 0.129. Peak densities of host seeking An. farauti occurred between October and January. The annual EIR was estimated to be 2.5 for 2012 and 33.2 for 2013. The length of the feeding cycle was 2.1 days. CONCLUSIONS: The short duration of the feeding cycle by this species offers an explanation for the substantial control of malaria that has been achieved in the Solomon Islands by LLINs and IRS. Anopheles farauti is primarily exophagic and early biting, with 13% of mosquitoes entering houses to feed late at night during each feeding cycle. The two-day feeding cycle of An. farauti requires females to take 5-6 blood meals before the extrinsic incubation period (EIP) is completed; and this could translate into substantial population-level mortality by LLINs or IRS before females would be infectious to humans with Plasmodium falciparum and Plasmodium vivax. Although An. farauti is primarily exophagic, the indoor vector control tools recommended by the World Health Organization (LLINs and IRS) can still provide an important level of control. Nonetheless, elimination will likely require vector control tools that target other bionomic vulnerabilities to suppress transmission outdoors and that complement the control provided by LLINs and IRS.


Asunto(s)
Anopheles/fisiología , Anopheles/parasitología , Transmisión de Enfermedad Infecciosa/prevención & control , Conducta Alimentaria , Mosquiteros Tratados con Insecticida , Malaria/prevención & control , Malaria/transmisión , Adulto , Animales , Femenino , Humanos , Melanesia , Control de Mosquitos/métodos , Plasmodium falciparum , Plasmodium vivax
8.
Malar J ; 15: 164, 2016 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-26980326

RESUMEN

BACKGROUND: There is an urgent need for vector control tools to supplement long-lasting insecticidal nets (LLINs) and indoor residual spraying; particularly in the Solomon Islands where the primary vector, Anopheles farauti, is highly anthropophagic and feeds mainly outdoors and early in the evening. Currently, the only supplementary tool recommended by the World Health Organization is larval source management (LSM). The feasibility and potential effectiveness of LSM requires information on the distribution of anophelines, the productivity of larval habitats and the potential impacts of larval control on adult fitness. METHODS: The distribution of anophelines in Central and Western Provinces in the Solomon Islands was mapped from cross-sectional larval habitat surveys. The composition and micro-distribution of larval instars within a large permanent river-mouth lagoon was examined with a longitudinal survey. Density-dependent regulation of An. farauti larvae was investigated by longitudinally following the development and survival of different densities of first instars in floating cages in a river-mouth lagoon. RESULTS: Five anopheline species were molecularly identified from a range of fresh and brackish water habitats: An. farauti s.s., An. hinesorum, An. lungae, An. nataliae and An. solomonis. The most common habitats used by the primary malaria vector, An. farauti, were coastal lagoons and swamps. In the detailed study of lagoon micro-productivity, An. farauti was non-uniformly distributed with highest densities found at collections sites most proximal and distal to the mouth of the lagoon. The survival of An. farauti larvae was more than twofold lower when larvae were held at the highest experimental density (1 larva per 3.8 cm(2)) when compared with the lowest density (1 larva per 38 cm(2)). CONCLUSIONS: The only documented major malaria vector collected in larval surveys in both Central and Western Provinces was An. farauti. Lagoons and swamps, the most common, largest and (potentially) most productive larval sites of this malaria vector, were "few, fixed and findable" and theoretically, therefore, amenable to successful LSM. However, the immense scale and complexity of these ecosystems in which An. farauti larvae are found raises questions regarding the ability to effectively control the larvae, as incomplete larviciding could trigger density dependent effects resulting in increased larval survivorship. While LSM has the potential to significantly contribute to malaria control of this early and outdoor biting vector, more information on the distribution of larvae within these extensive habitats is required to maximize the effectiveness of LSM.


Asunto(s)
Anopheles/crecimiento & desarrollo , Ecosistema , Animales , Estudios Transversales , Femenino , Larva/crecimiento & desarrollo , Estudios Longitudinales , Melanesia , Filogeografía , Densidad de Población
9.
Annu Rev Entomol ; 60: 335-50, 2015 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-25341094

RESUMEN

The major malaria vectors of the Southwest Pacific belong to a group of closely related mosquitoes known as the Anopheles punctulatus group. The group comprises 13 co-occurring species that either are isomorphic or carry overlapping morphological features, and today several species remain informally named. The advent of species-diagnostic molecular tools in the 1990s permitted a new raft of studies into the newly differentiated mosquitoes of this group, and these have revealed five species as the region's primary malaria vectors: An. farauti, An. hinesorum, An. farauti 4, An. koliensis, and An. punctulatus. Species' distributions are now well established across Papua New Guinea, northern Australia, and the Solomon Archipelago, but little has been documented thus far in eastern Indonesia. As each species reveals significant differences in distribution and biology, the relative paucity of knowledge of their biology or ecology in relation to malaria transmission is brought into clearer focus. Only three of the species have undergone some form of spatial or population genetics analyses, and this has revealed striking differences in their genetic signatures throughout the region. This review compiles and dissects the key findings for this important mosquito group and points to where future research should focus to maximize the output of field studies in developing relevant knowledge on these malaria vectors.


Asunto(s)
Anopheles/fisiología , Evolución Biológica , Insectos Vectores/fisiología , Malaria/prevención & control , Distribución Animal , Animales , Anopheles/clasificación , Anopheles/genética , Australia , Indonesia , Insectos Vectores/clasificación , Insectos Vectores/genética , Melanesia
10.
Malar J ; 13: 56, 2014 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-24528850

RESUMEN

BACKGROUND: The north coast of Guadalcanal has some of the most intense malaria transmission in the Solomon Islands. And, there is a push for intensified vector control in Guadalcanal, to improve the livelihood of residents and to minimize the number of cases, which are regularly exported to the rest of the country. Therefore, the bionomics of the target vector, Anopheles farauti, was profiled in 2007-08; which was after 20 years of limited surveillance during which time treated bed nets (ITNs) were distributed in the area. METHODS: In three villages on northern Guadalcanal, blood-seeking female mosquitoes were caught using hourly human landing catches by four collectors, two working indoors and two outdoors, from 18.00-06.00 for at least two nights per month from July 2007 to June 2008. The mosquitoes were counted, identified using morphological and molecular markers and dissected to determine parity. RESULTS: Seasonality in vector densities was similar in the three villages, with a peak at the end of the drier months (October to December) and a trough at the end of the wetter months (March to May). There was some variability in endophagy (indoor biting) and nocturnal biting (activity during sleeping hours) both spatially and temporally across the longitudinal dataset. The general biting pattern was consistent throughout all sample collections, with the majority of biting occurring outdoors (64%) and outside of sleeping hours (65%). Peak biting was 19.00-20.00. The proportion parous across each village ranged between 0.54-0.58. Parity showed little seasonal trend despite fluctuations in vector densities over the year. CONCLUSION: The early, outdoor biting behaviour of An. farauti documented 20 years previously on north Guadalcanal was still exhibited. It is possible that bed net use may have maintained this biting profile though this could not be determined unequivocally. The longevity of these populations has not changed despite long-term ITN use. This early, outdoor biting behaviour led to the failure of the eradication programme and is likely responsible for the continued transmission in Guadalcanal following the introduction of ITNs. Other vector control strategies which do not rely on the vector entering houses are needed if elimination or intensified control is to be achieved.


Asunto(s)
Anopheles/crecimiento & desarrollo , Ecosistema , Insectos Vectores , Control de Mosquitos/métodos , Animales , Anopheles/anatomía & histología , Anopheles/clasificación , Anopheles/genética , Conducta Alimentaria , Femenino , Humanos , Longevidad , Malaria/prevención & control , Melanesia , Estaciones del Año
11.
J Med Entomol ; 51(1): 164-9, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24605466

RESUMEN

The long-term efficacy of long-lasting insecticidal nets (LLINs) depends on both the physical condition of the net and the residual activity of the insecticide. This study focused on monitoring these parameters in Olyset nets (Sumitomo Chemical Co., Osaka, Japan) (n = 101) that had been used for 1-3 yr in Tafea Province, Vanuatu. Net usage and frequency of washing was ascertained by questionnaire; the nets were assessed with regards to cleanliness and damage owing to holes. Insecticide efficacy was determined with cone bioassays using Anophelesfarauti Laveran. Net usage was high and 86.1% (87 of 101) of villages stated that they used the net every night. Washing of nets was low (11.9%, 12 of 101), and most nets (79.2%, 80 of 101) were considered dirty. Most nets were damaged (73.4% had holes), and 22.8% (23 of 101) had large holes (>200 cm2). The 24-h mortality of An. farauti exposed to nets aged 1-2 yr was 79.4%, while the mortality for nets 3 yr of age was significantly lower at 73.7%. There was no difference in the insecticidal activity of clean compared with dirty nets (mean 24-h mortality: Clean = 76.7%, Dirty = 77.1%). Although the majority of nets had holes, the physical condition of 8.9-22.8% of nets was altered so severely to potentially affect efficacy. Although the 3-yr-old nets would still be providing significant levels of insecticidal and personal protection, consideration should be given to replacing nets >3 yr old.


Asunto(s)
Insecticidas/análisis , Mosquiteros/normas , Residuos de Plaguicidas/análisis , Animales , Anopheles , Humanos , Malaria/prevención & control
12.
Curr Zool ; 70(1): 59-69, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38476133

RESUMEN

Male competition conforms to a cost-benefit model, because while aggression may increase reproductive prospects, it can also increase the risk of injury. We hypothesize that an additional cost in aggressive males would be an increase in parasite load associated with a high energy investment into sexual competition. Some of these infections, in turn, may downmodulate the level of host aggression via energetic trade-offs. We staged dyadic male contests in the lab to investigate the relationships of multiple parasites with the agonistic behavior of lizard hosts, Sceloporus occidentalis. We also included both color and behavioral traits from opponents in the analyses because (1) color patches of lizards may serve as intraspecific signals used by conspecifics to assess the quality of opponents, and (2) contests between male lizards fit classical models of escalated aggression, where lizards increase aggression displays in response to an opponent's behavior. The results conform to our hypothesis because male lizards displayed more pushups when they had more ticks. Moreover, some parasites may modulate the levels of aggression because lizards infected by hematic coccidians performed fewer pushups. Interestingly, lizards also displayed fewer pushups when both the chroma and size of the opponent's blue patch were greater. The results thus also supported the role of the blue patch of S. occidentalis as a sexual armament, because it contributed to the deterrence of aggression from opponent lizards. We revealed that natural parasitic infections in lizard hosts can contribute to their agonistic behavior. We encourage future studies to account for parasites in behavioral tests with lizards.

13.
J Med Entomol ; 61(2): 491-497, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38236068

RESUMEN

During preliminary mosquito surveys at Cowley Beach Training Area in north Queensland, Australia, it was found that the utility of the standard encephalitis virus surveillance (EVS) trap for collecting the malaria vector Anopheles farauti (Laveran) adults was compromised by the harsh tropical conditions. With the aim of increasing the survival rate of mosquitoes, we designed a downdraft fan box trap (FBT) that incorporated a screened fan at the bottom of the trap, so mosquitoes did not have to pass through a fan. The FBT was tested against the EVS and Centers for Disease Control (CDC) light traps, where mosquitoes do pass through a fan, and a nonpowered passive box trap (PBT). We conducted 4 trials to compare the quantity and survival of An. farauti and culicine mosquitoes were collected in these traps. Although not significant, the FBT collected more An. farauti than the EVS trap and PBT and significantly less An. farauti than the CDC light trap. However, the FBT improved on the CDC light trap in terms of the survival of An. farauti adults collected, with a significantly higher percentage alive in the FBT (74.6%) than in the CDC light trap (27.5%). Thus, although the FBT did not collect as many anophelines as the CDC, it proved to be superior to current trap systems for collecting large numbers of live and relatively undamaged mosquitoes. Therefore, it is recommended that FBTs be used for collecting An. farauti adults in northern Australia, especially when high survival and sample quality are important.


Asunto(s)
Anopheles , Malaria , Animales , Queensland , Mosquitos Vectores , Control de Mosquitos , Australia
14.
Malar J ; 12: 56, 2013 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-23388506

RESUMEN

BACKGROUND: The ultimate long-term goal of malaria eradication was recently placed back onto the global health agenda. When planning for this goal, it is important to remember why the original Global Malaria Eradication Programme (GMEP), conducted with DDT-based indoor residual spraying (IRS), did not achieve its goals. One of the technical reasons for the failure to eliminate malaria was over reliance on a single intervention and subsequently the mosquito vectors developed behavioural resistance so that they did not come into physical contact with the insecticide. HYPOTHESIS AND HOW TO TEST IT: Currently, there remains a monolithic reliance on indoor vector control. It is hypothesized that an outcome of long-term, widespread control is that vector populations will change over time, either in the form of physiological resistance, changes in the relative species composition or behavioural resistance. The potential for, and consequences of, behavioural resistance was explored by reviewing the literature regarding vector behaviour in the southwest Pacific. DISCUSSION: Here, two of the primary vectors that were highly endophagic, Anopheles punctulatus and Anopheles koliensis, virtually disappeared from large areas where DDT was sprayed. However, high levels of transmission have been maintained by Anopheles farauti, which altered its behaviour to blood-feed early in the evening and outdoors and, thereby, avoiding exposure to the insecticides used in IRS. This example indicates that the efficacy of programmes relying on indoor vector control (IRS and long-lasting, insecticide-treated nets [LLINs]) will be significantly reduced if the vectors change their behaviour to avoid entering houses. CONCLUSIONS: Behavioural resistance is less frequently seen compared with physiological resistance (where the mosquito contacts the insecticide but is not killed), but is potentially more challenging to control programmes because the intervention effectiveness cannot be restored by rotating the insecticide to one with a different mode of action. The scientific community needs to urgently develop systematic methods for monitoring behavioural resistance and then to work in collaboration with vector control programmes to implement monitoring in sentinel sites. In situations where behavioural resistance is detected, there will be a need to target other bionomic vulnerabilities that may exist in the larval stages, during mating, sugar feeding or another aspect of the life cycle of the vector to continue the drive towards elimination.


Asunto(s)
Anopheles/fisiología , Vectores de Enfermedades , Malaria/prevención & control , Control de Mosquitos/métodos , Animales , Conducta Animal , Humanos
15.
Malar J ; 12: 49, 2013 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-23379959

RESUMEN

BACKGROUND: Determining the proportion of blood meals on humans by outdoor-feeding and resting mosquitoes is challenging. This is largely due to the difficulty of finding an adequate and unbiased sample of resting, engorged mosquitoes to enable the identification of host blood meal sources. This is particularly difficult in the south-west Pacific countries of Indonesia, the Solomon Islands and Papua New Guinea where thick vegetation constitutes the primary resting sites for the exophilic mosquitoes that are the primary malaria and filariasis vectors. METHODS: Barrier screens of shade-cloth netting attached to bamboo poles were constructed between villages and likely areas where mosquitoes might seek blood meals or rest. Flying mosquitoes, obstructed by the barrier screens, would temporarily stop and could then be captured by aspiration at hourly intervals throughout the night. RESULTS: In the three countries where this method was evaluated, blood-fed females of Anopheles farauti, Anopheles bancroftii, Anopheles longirostris, Anopheles sundaicus, Anopheles vagus, Anopheles kochi, Anopheles annularis, Anopheles tessellatus, Culex vishnui, Culex quinquefasciatus and Mansonia spp were collected while resting on the barrier screens. In addition, female Anopheles punctulatus and Armigeres spp as well as male An. farauti, Cx. vishnui, Cx. quinquefasciatus and Aedes species were similarly captured. CONCLUSIONS: Building barrier screens as temporary resting sites in areas where mosquitoes were likely to fly was an extremely time-effective method for collecting an unbiased representative sample of engorged mosquitoes for determining the human blood index.


Asunto(s)
Culicidae/clasificación , Culicidae/fisiología , Entomología/métodos , Animales , Conducta Alimentaria , Femenino , Experimentación Humana , Humanos , Indonesia , Masculino , Melanesia , Papúa Nueva Guinea
16.
Malar J ; 10: 133, 2011 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-21592366

RESUMEN

BACKGROUND: In the Solomon Islands, the Malaria Eradication Programmes of the 1970s virtually eliminated the malaria vectors: Anopheles punctulatus and Anopheles koliensis, both late night biting, endophagic species. However, the vector, Anopheles farauti, changed its behaviour to bite early in the evening outdoors. Thus, An. farauti mosquitoes were able to avoid insecticide exposure and still maintain transmission. Thirty years on and the Solomon Islands are planning for intensified malaria control and localized elimination; but little is currently known about the behaviour of the vectors and how they will respond to intensified control. METHODS: In the elimination area, Temotu Province, standard entomological collection methods were conducted in typical coastal villages to determine the vector, its ecology, biting density, behaviour, longevity, and vector efficacy. These vector surveys were conducted pre-intervention and post-intervention following indoor residual spraying and distribution of long-lasting insecticidal nets. RESULTS: Anopheles farauti was the only anopheline in Temotu Province. In 2008 (pre-intervention), this species occurred in moderate to high densities (19.5-78.5 bites/person/night) and expressed a tendency to bite outdoors, early in the night (peak biting time 6-8 pm). Surveys post intervention showed that there was little, if any, reduction in biting densities and no reduction in the longevity of the vector population. After adjusting for human behaviour, indoor biting was reduced from 57% pre-intervention to 40% post-intervention. CONCLUSION: In an effort to learn from historical mistakes and develop successful elimination programmes, there is a need for implementing complimentary vector control tools that can target exophagic and early biting vectors. Intensified indoor residual spraying and long-lasting insecticide net use has further promoted the early, outdoor feeding behaviour of An. farauti in the Solomon Islands. Consequently, the effectiveness of IRS and the personal protection provided by bed nets is compromised. To achieve elimination, any residual transmission should be targeted using integrated vector control incorporating complementary tools such as larviciding and/or zooprophylaxis.


Asunto(s)
Anopheles/crecimiento & desarrollo , Ecología , Malaria/epidemiología , Malaria/prevención & control , Animales , Conducta Animal/fisiología , Entomología/métodos , Humanos , Melanesia/epidemiología
17.
Malar J ; 10: 262, 2011 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-21910907

RESUMEN

BACKGROUND: The main vector of malaria in Solomon Islands is Anopheles farauti, which has a mainly coastal distribution. In Northern Guadalcanal, Solomon Islands, high densities of An. farauti are supported by large brackish streams, which in the dry season are dammed by localized sand migration. The factors controlling the high larval productivity of these breeding sites have not been identified. Accordingly the influence of environmental factors on the presence and density of An. farauti larvae was assessed in three large naturally dammed streams. METHODS: Larval sites were mapped and anopheline larvae were collected monthly for 12 months (July 2007 to June 2008) from three streams using standard dippers. Larval collections were made from 10 locations spaced at 50 m intervals along the edge of each stream starting from the coast. At each collection point, floating filamentous algae, aquatic emergent plants, sun exposure, and salinity were measured. These environmental parameters along with rainfall were correlated with larval presence and density. RESULTS: The presence and abundance of An. farauti larvae varied between streams and was influenced by the month of collection, and distance from the ocean (p <0.001). Larvae were more frequently present and more abundant within 50 m of the ocean during the dry season when the streams were dammed. The presence and density of larvae were positively associated with aquatic emergent plants (presence: p = 0.049; density: p = 0.001). Although filamentous algae did not influence the presence of larvae, this factor did significantly influence the density of larvae (p < 0.001). Rainfall for the month prior to sampling was negatively associated with both larval presence and abundance (p < 0.001), as high rainfall flushed larvae from the streams. Salinity significantly influenced both the presence (p = 0.002) and density (p = 0.014) of larvae, with larvae being most present and abundant in brackish water at < 10‰ seawater. CONCLUSION: This study has demonstrated that the presence and abundance An. farauti larvae are influenced by environmental factors within the large streams. Understanding these parameters will allow for targeted cost effective implementation of source reduction and larviciding to support the frontline malaria control measures i.e. indoor residual spraying (IRS) and distribution of long-lasting insecticidal nets (LLINs).


Asunto(s)
Anopheles/crecimiento & desarrollo , Vectores de Enfermedades , Ecosistema , Animales , Larva/crecimiento & desarrollo , Melanesia , Desarrollo de la Planta , Ríos , Salinidad , Luz Solar , Agua
18.
Malar J ; 10: 287, 2011 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-21961990

RESUMEN

BACKGROUND: In 2009, Santa Isabel Province in the Solomon Islands embarked on a malaria elimination programme. However, very little is known in the Province about the anopheline fauna, which species are vectors, their bionomics and how they may respond to intensified intervention measures. The purpose of this study was to provide baseline data on the malaria vectors and to ascertain the possibility of successfully eliminating malaria using the existing conventional vector control measures, such as indoor residual spraying (IRS) and long-lasting insecticidal nets (LLIN). METHODS: Entomological surveys were undertaken during October 2009. To determine species composition and distribution larval surveys were conducted across on the whole island. For malaria transmission studies, adult anophelines were sampled using human landing catches from two villages - one coastal and one inland. RESULTS: Five Anopheles species were found on Santa Isabel: Anopheles farauti, Anopheles hinesorum, Anopheles lungae, Anopheles solomonis, and Anopheles nataliae. Anopheles hinesorum was the most widespread species. Anopheles farauti was abundant, but found only on the coast. Anopheles punctulatus and Anopheles koliensis were not found. Anopheles farauti was the only species found biting in the coastal village, it was incriminated as a vector in this study; it fed early in the night but equally so indoors and outdoors, and had a low survival rate. Anopheles solomonis was the main species biting humans in the inland village, it was extremely exophagic, with low survival rates, and readily fed on pigs. CONCLUSION: The disappearance of the two major vectors, An. punctulatus and An. koliensis, from Santa Isabel and the predominance of An. hinesorum, a non-vector species may facilitate malaria elimination measures. Anopheles farauti was identified as the main coastal vector with An. solomonis as a possible inland vector. The behaviour of An. solomonis is novel as it has not been previously found biting humans in any numbers. Both species appear to be short-lived, a characteristic that will limit their transmission potential. The early night feeding behaviour and a degree of outdoor biting seen in An. farauti and particularly in An. solomonis will require that their response to IRS and LLIN be closely monitored. In coastal villages, where large, favourable breeding sites allow for high numbers of An. farauti may require the addition of larval control to achieve elimination.


Asunto(s)
Anopheles/clasificación , Anopheles/fisiología , Vectores de Enfermedades , Malaria/epidemiología , Malaria/prevención & control , Adulto , Animales , Anopheles/crecimiento & desarrollo , Conducta Alimentaria , Humanos , Melanesia/epidemiología , Porcinos
19.
Fam Med ; 53(2): 129-132, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33566348

RESUMEN

BACKGROUND AND OBJECTIVES: Medical student-run free clinics (SRFC) provide underserved patients access to health care. Few studies have examined the effects of specific care models implemented by these clinics. We looked at the impact of a continuity of care delivery model on chronic care outcomes at an SRFC sponsored by Ohio State University College of Medicine. METHODS: Using the SRFC electronic medical records, we abstracted health records of patients at risk for atherosclerotic cardiovascular disease (ASCVD). We formed three study groups matched on age and gender. Group 1 were the patients enrolled in a continuity of care program, Group 2 were patients who visit the SRFC at 3-month intervals, and Group 3 were sporadic visitors. Authors compared groups' ASCVD risk score change over 12 months using a Group x Time Analysis of Variance. RESULTS: We identified 81 subjects that met the qualifications for this study and assigned them to one of the three study groups. A Group x Time interaction showed that mean ASCVD risk scores improved significantly for continuity of care patients and regular visitor controls, but not for sporadic controls (F=3.82; df=2/1.72; P=.035; es=1.28). CONCLUSIONS: This SRFCs continuity of care delivery had no appreciable impact on lowering ASCVD Risk scores over and above frequent regular visits to the clinic. This finding suggests that SRFCs should focus on getting their chronic patient population to maintain a schedule of frequent check-ups, without investing in continuity of care. Longer-term studies are needed to detect a continuity of care delivery model effect.


Asunto(s)
Enfermedades Cardiovasculares , Clínica Administrada por Estudiantes , Estudiantes de Medicina , Instituciones de Atención Ambulatoria , Continuidad de la Atención al Paciente , Humanos
20.
Evol Appl ; 14(9): 2244-2257, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34603496

RESUMEN

Anopheles hinesorum is a mosquito species with variable host preference. Throughout New Guinea and northern Australia, An. hinesorum feeds on humans (it is opportunistically anthropophagic) while in the south-west Pacific's Solomon Archipelago, the species is abundant but has rarely been found biting humans (it is exclusively zoophagic in most populations). There are at least two divergent zoophagic (nonhuman biting) mitochondrial lineages of An. hinesorum in the Solomon Archipelago representing two independent dispersals. Since zoophagy is a derived (nonancestral) trait in this species, this leads to the question: has zoophagy evolved independently in these two populations? Or conversely: has nuclear gene flow or connectivity resulted in the transfer of zoophagy? Although we cannot conclusively answer this, we find close nuclear relationships between Solomon Archipelago populations indicating that recent nuclear gene flow has occurred between zoophagic populations from the divergent mitochondrial lineages. Recent work on isolated islands of the Western Province (Solomon Archipelago) has also revealed an anomalous, anthropophagic island population of An. hinesorum. We find a common shared mitochondrial haplotype between this Solomon Island population and another anthropophagic population from New Guinea. This finding suggests that there has been recent migration from New Guinea into the only known anthropophagic population from the Solomon Islands. Although currently localized to a few islands in the Western Province of the Solomon Archipelago, if anthropophagy presents a selective advantage, we may see An. hinesorum emerge as a new malaria vector in a region that is now working on malaria elimination.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda