Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 149
Filtrar
1.
Cell ; 166(3): 755-765, 2016 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-27372738

RESUMEN

To provide a detailed analysis of the molecular components and underlying mechanisms associated with ovarian cancer, we performed a comprehensive mass-spectrometry-based proteomic characterization of 174 ovarian tumors previously analyzed by The Cancer Genome Atlas (TCGA), of which 169 were high-grade serous carcinomas (HGSCs). Integrating our proteomic measurements with the genomic data yielded a number of insights into disease, such as how different copy-number alternations influence the proteome, the proteins associated with chromosomal instability, the sets of signaling pathways that diverse genome rearrangements converge on, and the ones most associated with short overall survival. Specific protein acetylations associated with homologous recombination deficiency suggest a potential means for stratifying patients for therapy. In addition to providing a valuable resource, these findings provide a view of how the somatic genome drives the cancer proteome and associations between protein and post-translational modification levels and clinical outcomes in HGSC. VIDEO ABSTRACT.


Asunto(s)
Proteínas de Neoplasias/genética , Neoplasias Quísticas, Mucinosas y Serosas/genética , Neoplasias Ováricas/genética , Proteoma , Acetilación , Inestabilidad Cromosómica , Reparación del ADN , ADN de Neoplasias , Femenino , Dosificación de Gen , Humanos , Espectrometría de Masas , Fosfoproteínas/genética , Procesamiento Proteico-Postraduccional , Análisis de Supervivencia
2.
Cell ; 162(5): 974-86, 2015 Aug 27.
Artículo en Inglés | MEDLINE | ID: mdl-26317466

RESUMEN

We show that DNA methyltransferase inhibitors (DNMTis) upregulate immune signaling in cancer through the viral defense pathway. In ovarian cancer (OC), DNMTis trigger cytosolic sensing of double-stranded RNA (dsRNA) causing a type I interferon response and apoptosis. Knocking down dsRNA sensors TLR3 and MAVS reduces this response 2-fold and blocking interferon beta or its receptor abrogates it. Upregulation of hypermethylated endogenous retrovirus (ERV) genes accompanies the response and ERV overexpression activates the response. Basal levels of ERV and viral defense gene expression significantly correlate in primary OC and the latter signature separates primary samples for multiple tumor types from The Cancer Genome Atlas into low versus high expression groups. In melanoma patients treated with an immune checkpoint therapy, high viral defense signature expression in tumors significantly associates with durable clinical response and DNMTi treatment sensitizes to anti-CTLA4 therapy in a pre-clinical melanoma model.


Asunto(s)
Metilación de ADN/efectos de los fármacos , Interferón Tipo I/inmunología , Melanoma/inmunología , Melanoma/terapia , Animales , Azacitidina/farmacología , Línea Celular Tumoral , Metilasas de Modificación del ADN/antagonistas & inhibidores , Retrovirus Endógenos/genética , Femenino , Humanos , Inmunoterapia , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/inmunología , Ratones , Ratones Endogámicos C57BL , Neoplasias Ováricas/inmunología , Neoplasias Ováricas/terapia , ARN Bicatenario/metabolismo
5.
Int J Cancer ; 154(10): 1794-1801, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38312102

RESUMEN

DNA methyltransferase inhibitors (DNMTi) have demonstrated benefit in reversing resistance to systemic therapies for several cancer types. In a phase II trial of guadecitabine and irinotecan compared to regorafenib or TAS-102 in pts with advanced mCRC refractory to irinotecan. Patients with mCRC refractory to irinotecan were randomized 2:1 to guadecitabine and irinotecan (Arm A) vs standard of care regorafenib or TAS-102 (Arm B) on a 28-day cycle. Between January 15, 2016 and October 24, 2018, 104 pts were randomized at four international sites, with 96 pts undergoing treatment, 62 in Arm A and 34 in Arm B. Median overall survival was 7.15 months for Arm A and 7.66 months for Arm B (HR 0.93, 95% CI: 0.58-1.47, P = .75). The Kaplan-Meier rates of progression free survival at 4 months were 32% in Arm A and 26% in Arm B. Common ≥Grade 3 treatment related adverse events in Arm A were neutropenia (42%), anemia (18%), diarrhea (11%), compared to Arm B pts with neutropenia (12%), anemia (12%). Guadecitabine and irinotecan had similar OS compared to standard of care TAS-102 or regorafenib, with evidence of target modulation. Clinical trial information: NCT01896856.


Asunto(s)
Anemia , Azacitidina/análogos & derivados , Neoplasias del Colon , Neoplasias Colorrectales , Neutropenia , Compuestos de Fenilurea , Piridinas , Pirrolidinas , Neoplasias del Recto , Timina , Trifluridina , Humanos , Irinotecán/uso terapéutico , Neoplasias Colorrectales/patología , Resultado del Tratamiento , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Recto/tratamiento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Anemia/tratamiento farmacológico , Combinación de Medicamentos
6.
Artículo en Inglés | MEDLINE | ID: mdl-38851660

RESUMEN

PURPOSE: Surgical excision is often performed to exclude phyllodes tumor (PT) when Core Needle Biopsy (CNB) of the breast returns fibroepithelial lesion-not further characterized (FEL-NFC). If imaging or CNB pathology features can be identified that predict a very low probability of borderline/malignant PT, thousands of women could be spared the expense and morbidity of surgical excisions. METHODS: This retrospective cohort study includes 180 FEL-NFC from 164 patients who underwent surgical excisional biopsy. RESULTS: The upgrade rate from FEL-NFC to benign PT was 15%, and to borderline/malignant PT 7%. Imaging features predicting upgrade to borderline/malignant PT included greater size (p = 0.0002) and heterogeneous echo pattern on sonography (p = 0.117). Histologic features of CNB predicting upgrade to borderline/malignant PT included "pathologist favors PT" (p = 0.012), mitoses (p = 0.014), stromal overgrowth (p = 0.006), increased cellularity (p = 0.0001) and leaf-like architecture (p = 0.077). A three-component score including size > 4.5 cm (Size), heterogeneous echo pattern on sonography (Heterogeneity), and stromal overgrowth on CNB (Overgrowth) maximized the product of sensitivity x specificity for the prediction of borderline/malignant PT. When the SHO score was 0 (72% of FEL-NFC) the probability of borderline/malignant PT on excision was only 1%. CONCLUSION: The combination of size ≤ 4.5 cm, homogeneous echo pattern, and absence of stromal overgrowth is highly predictive of a benign excision potentially sparing most patients diagnosed with FEL-NFC the expense and morbidity of a surgical excision.

7.
Blood ; 139(18): 2797-2815, 2022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35286385

RESUMEN

Myeloproliferative neoplasms (MPNs) transform to myelofibrosis (MF) and highly lethal acute myeloid leukemia (AML), although the actionable mechanisms driving progression remain elusive. Here, we elucidate the role of the high mobility group A1 (HMGA1) chromatin regulator as a novel driver of MPN progression. HMGA1 is upregulated in MPN, with highest levels after transformation to MF or AML. To define HMGA1 function, we disrupted gene expression via CRISPR/Cas9, short hairpin RNA, or genetic deletion in MPN models. HMGA1 depletion in JAK2V617F AML cell lines disrupts proliferation, clonogenicity, and leukemic engraftment. Surprisingly, loss of just a single Hmga1 allele prevents progression to MF in JAK2V617F mice, decreasing erythrocytosis, thrombocytosis, megakaryocyte hyperplasia, and expansion of stem and progenitors, while preventing splenomegaly and fibrosis within the spleen and BM. RNA-sequencing and chromatin immunoprecipitation sequencing revealed HMGA1 transcriptional networks and chromatin occupancy at genes that govern proliferation (E2F, G2M, mitotic spindle) and cell fate, including the GATA2 master regulatory gene. Silencing GATA2 recapitulates most phenotypes observed with HMGA1 depletion, whereas GATA2 re-expression partially rescues leukemogenesis. HMGA1 transactivates GATA2 through sequences near the developmental enhancer (+9.5), increasing chromatin accessibility and recruiting active histone marks. Further, HMGA1 transcriptional networks, including proliferation pathways and GATA2, are activated in human MF and MPN leukemic transformation. Importantly, HMGA1 depletion enhances responses to the JAK2 inhibitor, ruxolitinib, preventing MF and prolonging survival in murine models of JAK2V617F AML. These findings illuminate HMGA1 as a key epigenetic switch involved in MPN transformation and a promising therapeutic target to treat or prevent disease progression.


Asunto(s)
Factor de Transcripción GATA2 , Proteína HMGA1a , Leucemia Mieloide Aguda , Trastornos Mieloproliferativos , Mielofibrosis Primaria , Animales , Proliferación Celular , Cromatina/genética , Factor de Transcripción GATA2/genética , Redes Reguladoras de Genes , Proteína HMGA1a/genética , Proteína HMGA1a/metabolismo , Janus Quinasa 2/genética , Janus Quinasa 2/metabolismo , Leucemia Mieloide Aguda/genética , Ratones , Trastornos Mieloproliferativos/genética , Trastornos Mieloproliferativos/metabolismo , Mielofibrosis Primaria/genética
8.
Langmuir ; 39(9): 3225-3234, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36811956

RESUMEN

A limiting factor in using blood-based liquid biopsies for cancer detection is the volume of extracted blood required to capture a measurable number of circulating tumor DNA (ctDNA). To overcome this limitation, we developed a technology named the dCas9 capture system to capture ctDNA from unaltered flowing plasma, removing the need to extract the plasma from the body. This technology has provided the first opportunity to investigate whether microfluidic flow cell design can affect the capture of ctDNA in unaltered plasma. With inspiration from microfluidic mixer flow cells designed to capture circulating tumor cells and exosomes, we constructed four microfluidic mixer flow cells. Next, we investigated the effects of these flow cell designs and the flow rate on the rate of captured spiked-in BRAF T1799A (BRAFMut) ctDNA in unaltered flowing plasma using surface-immobilized dCas9. Once the optimal mass transfer rate of ctDNA, identified by the optimal ctDNA capture rate, was determined, we investigated whether the design of the microfluidic device, flow rate, flow time, and the number of spiked-in mutant DNA copies affected the rate of capture by the dCas9 capture system. We found that size modifications to the flow channel had no effect on the flow rate required to achieve the optimal capture rate of ctDNA. However, decreasing the size of the capture chamber decreased the flow rate required to achieve the optimal capture rate. Finally, we showed that, at the optimal capture rate, different microfluidic designs using different flow rates could capture DNA copies at a similar rate over time. In this study, the optimal capture rate of ctDNA in unaltered plasma was identified by adjusting the flow rate in each of the passive microfluidic mixer flow cells. However, further validation and optimization of the dCas9 capture system are required before it is ready to be used clinically.


Asunto(s)
ADN Tumoral Circulante , Células Neoplásicas Circulantes , Humanos , ADN Tumoral Circulante/genética , Microfluídica , Proteínas Proto-Oncogénicas B-raf/genética , Células Neoplásicas Circulantes/patología , ADN , Mutación
9.
Bioinformatics ; 37(22): 4272-4274, 2021 11 18.
Artículo en Inglés | MEDLINE | ID: mdl-34021745

RESUMEN

MOTIVATION: Gene alternative splicing plays an important role in development, tissue specialization and disease and differences in splicing patterns can reveal important factors for phenotypic differentiation. While multiple computational methods exist to determine splicing differences, there is a need for user-friendly visualizations that present an intuitive view of the data and work across methods. RESULTS: We developed a toolkit, Jutils, for visualizing differential splicing events at the intron (splice junction) level. Jutils is method-agnostic, converting individual tools' output into a unified representation and using it to create visualizations. Jutils creates three types of visualizations, namely heatmaps of absolute and Z-score normalized splice ratios, sashimi plots and Venn diagrams of results from multiple comparisons. Jutils is lightweight, relying solely on the unified data file for visualizations. AVAILABILITY AND IMPLEMENTATION: Jutils is implemented in Python and is available from https://github.com/Splicebox/Jutils.


Asunto(s)
Empalme Alternativo , Programas Informáticos , Análisis de Secuencia de ARN/métodos , Empalme del ARN , Intrones
10.
Biometrics ; 78(4): 1464-1474, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-34492116

RESUMEN

In this paper, we propose a semiparametric regression model that is built upon an isotonic regression model with the assumption that the random error follows a skewed distribution. We develop an expectation-maximization algorithm for obtaining the maximum likelihood estimates of the model parameters, examine the asymptotic properties of the estimators, conduct simulation studies to explore the performance of the proposed model, and apply the method to evaluate the DNA-RNA-protein relationship and identify genes that are key factors in tumor progression.


Asunto(s)
Algoritmos , Modelos Estadísticos , Funciones de Verosimilitud , Simulación por Computador , ADN
11.
J Pathol ; 255(4): 387-398, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34396532

RESUMEN

Adenomyosis and peritoneal endometriosis are common gynecologic lesions; they are characterized by aberrant locations of normal-appearing endometrium in myometrium and peritoneal surface, respectively. Both ectopic lesions are speculated to originate from uterine eutopic endometrium, which is composed of epithelium and stroma, but how these two different tissue types co-evolve in ectopic locations remains unclear. Here, we analyzed exome-wide mutations and global methylation in microdissected epithelium and stroma separately in paired adenomyosis, peritoneal endometriosis, and endometrium to investigate their relationship. Analyses of somatic mutations and their allele frequencies indicate monoclonal development not only in epithelium but also in the stroma of adenomyosis and peritoneal endometriosis. Our preliminary phylogenetic study suggests a plausible clonal derivation in epithelium and stroma of both ectopic and eutopic endometrium from the same founder epithelium-stroma progenitor cells. While a patient-specific methylation landscape is evident, adenomyosis epithelium and stroma can be distinguished from normal-appearing eutopic endometrium epigenetically. In summary, endometrial stroma, like its epithelial counterpart, could be clonal and both ectopic and eutopic endometrium following divergent evolutionary trajectories. Our data also warrant future investigations into the role of endometrial stroma in the pathobiology of endometrium-related disorders. © 2021 The Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Adenomiosis/genética , Metilación de ADN , Endometriosis/genética , Mutación , Adenomiosis/patología , Adulto , Análisis Mutacional de ADN , Endometriosis/patología , Femenino , Humanos , Persona de Mediana Edad , Filogenia , Estudios Retrospectivos
12.
Breast Cancer Res Treat ; 179(1): 25-35, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31531802

RESUMEN

PURPOSE: The high mobility group A1 (HMGA1) chromatin remodeling protein is required for metastatic progression and cancer stem cell properties in preclinical breast cancer models, although its role in breast carcinogenesis has remained unclear. To investigate HMGA1 in primary breast cancer, we evaluated immunoreactivity score (IRS) in tumors from a large cohort of Asian women; HMGA1 gene expression was queried from two independent Western cohorts. METHODS: HMGA1 IRS was generated from breast tumors in Korean women as the product of staining intensity (weak = 1, moderate = 2, strong = 3) and percent positive cells (< 5% = 0, 5-30% = 1, 30-60% = 2, > 60% = 3), and stratified into three groups: low (< 3), intermediate (3-6), high (> 6). We assessed HMGA1 and estrogen receptor (ESR1) gene expression from two large databases (TCGA, METABRIC). Overall survival was ascertained from the METABRIC cohort. RESULTS: Among 540 primary tumors from Korean women (181 ER-negative, 359 ER-positive), HMGA1 IRS was < 3 in 89 (16.5%), 3-6 in 215 (39.8%), and > 6 in 236 (43.7%). High HMGA1 IRS was associated with estrogen receptor (ER)-negativity (χ2 = 12.07; P = 0.002) and advanced nuclear grade (χ2 = 12.83; P = 0.012). In two large Western cohorts, the HMGA1 gene was overexpressed in breast cancers compared to non-malignant breast tissue (P < 0.0001), including Asian, African American, and Caucasian subgroups. HMGA1 was highest in ER-negative tumors and there was a strong inverse correlation between HMGA1 and ESR1 gene expression (Pearson r = - 0.60, P < 0.0001). Most importantly, high HMGA1 predicted decreased overall survival (P < 0.0001) for all women with breast cancer and further stratified ER-positive tumors into those with inferior outcomes. CONCLUSIONS: Together, our results suggest that HMGA1 contributes to estrogen-independence, tumor progression, and poor outcomes. Moreover, further studies are warranted to determine whether HMGA1 could serve as a prognostic marker and therapeutic target for women with breast cancer.


Asunto(s)
Neoplasias de la Mama/metabolismo , Proteína HMGA1a/genética , Proteína HMGA1a/metabolismo , Receptores de Estrógenos/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias de la Mama/genética , Progresión de la Enfermedad , Femenino , Humanos , Persona de Mediana Edad , Pronóstico , República de Corea , Análisis de Supervivencia , Regulación hacia Arriba , Adulto Joven
13.
Int J Cancer ; 145(12): 3425-3435, 2019 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-31373686

RESUMEN

DNA methylation has long been recognized as a tumor-promoting factor when aberrantly regulated in the promoter region of genes. However, the effect of intragenic DNA methylation remains poorly understood on the clinical aspects of cancer. Here, we first evaluated the significance of intragenic DNA methylation for survival outcomes of cancer patients in a genome-wide manner. Glioblastoma patients with hypermethylated intragenic regions exhibited better survival than hypomethylated patients. Enrichment analyses of intragenic DNA methylation profiles with epigenetic signatures prioritized the intragenic DNA methylation of ZMIZ1 as a possible glioblastoma prognostic marker that is independent of MGMT methylation in IDH1 wild-type patients. This intragenic region harbored molecular signatures of alternative transcription across many cell types. Furthermore, we found that the intragenic region of ZMIZ1 can serve as a molecular marker in multiple cancers including astrocytomas, bladder cancer and renal cell carcinoma according to DNA methylation status. Finally, in vitro and in vivo experiments uncovered the role of ZMIZ1 as a driver of tumor cell migration. Altogether, our results identify ZMIZ1 as a prognostic marker in cancer and highlight the clinical significance of intragenic methylation in cancer.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patología , Metilación de ADN/genética , Glioblastoma/genética , Glioblastoma/patología , Factores de Transcripción/genética , Animales , Línea Celular Tumoral , Movimiento Celular/genética , Epigénesis Genética/genética , Femenino , Regulación Neoplásica de la Expresión Génica/genética , Estudio de Asociación del Genoma Completo/métodos , Ratones Desnudos , Pronóstico , Regiones Promotoras Genéticas/genética , Transcripción Genética/genética
14.
Development ; 143(23): 4368-4380, 2016 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-27660325

RESUMEN

The derivation and maintenance of human pluripotent stem cells (hPSCs) in stable naïve pluripotent states has a wide impact in human developmental biology. However, hPSCs are unstable in classical naïve mouse embryonic stem cell (ESC) WNT and MEK/ERK signal inhibition (2i) culture. We show that a broad repertoire of conventional hESC and transgene-independent human induced pluripotent stem cell (hiPSC) lines could be reverted to stable human preimplantation inner cell mass (ICM)-like naïve states with only WNT, MEK/ERK, and tankyrase inhibition (LIF-3i). LIF-3i-reverted hPSCs retained normal karyotypes and genomic imprints, and attained defining mouse ESC-like functional features, including high clonal self-renewal, independence from MEK/ERK signaling, dependence on JAK/STAT3 and BMP4 signaling, and naïve-specific transcriptional and epigenetic configurations. Tankyrase inhibition promoted a stable acquisition of a human preimplantation ICM-like ground state via modulation of WNT signaling, and was most efficacious in efficiently reprogrammed conventional hiPSCs. Importantly, naïve reversion of a broad repertoire of conventional hiPSCs reduced lineage-primed gene expression and significantly improved their multilineage differentiation capacities. Stable naïve hPSCs with reduced genetic variability and improved functional pluripotency will have great utility in regenerative medicine and human disease modeling.


Asunto(s)
Diferenciación Celular/fisiología , Autorrenovación de las Células/fisiología , Células Madre Embrionarias/citología , Células Madre Pluripotentes Inducidas/citología , Tanquirasas/antagonistas & inhibidores , Vía de Señalización Wnt/fisiología , Animales , Proteína Morfogenética Ósea 4/metabolismo , Células Cultivadas , Reprogramación Celular/fisiología , Estratos Germinativos/embriología , Glucógeno Sintasa Quinasa 3 beta/antagonistas & inhibidores , Humanos , Quinasas Janus/metabolismo , Factor Inhibidor de Leucemia/metabolismo , Ratones , Factor de Transcripción STAT3/metabolismo
15.
Gastric Cancer ; 22(6): 1109-1120, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-30863929

RESUMEN

BACKGROUND: Although primary (PGC) and remnant gastric cancers (RGC) both originate from the same gastrointestinal organ, they have very distinct clinicopathological behaviors. We hypothesized that there would be distinct differences in DNA methylation patterns that would occur during carcinogenesis of RGC and PGC, and that the differences in methylation patterns may help identify the primary factor contributing to chronic inflammation in patients with RGC. METHODS: We investigated the genome-wide DNA methylation patterns of PGC and RGC tissues from 48 patients using the Infinium HumanMethylation450 Beadchip assay. The results were validated by quantitative methylation-specific PCR (qMSP) in separate, independent cohorts. RESULTS: We found that in our training cohort of 48 patients, the most variable genes from the gastric cancer tissues identified by the Infinium HumanMethylation450 Beadchip clustered the resultant heatmap into high and low methylation groups. On multivariate analysis, PGCs contributed significantly to the high methylation group (p = 0.004, OR 12.33), which suggested that the promoter methylation status in PGC is higher than that in RGC. Supporting this conclusion was the finding that in a separate qMSP analysis in a test cohort, the EPB41L3 gene, chosen because of its high ß value on microarray analysis in the gastric cancer tissues, had significantly higher DNA promoter methylation in cancer tissues in the validation PGC tissues than in RGC. CONCLUSIONS: This study demonstrated that promoter methylation status in PGC is higher than in RGC. This result may reflect the effects of the absence of Helicobacter pylori on the reduced DNA methylation in the remnant stomach.


Asunto(s)
Metilación de ADN , Muñón Gástrico/patología , Helicobacter pylori/aislamiento & purificación , Neoplasias Gástricas/patología , Anciano , Anciano de 80 o más Años , Femenino , Estudio de Asociación del Genoma Completo , Infecciones por Helicobacter/epidemiología , Humanos , Masculino , Persona de Mediana Edad , Análisis de Secuencia por Matrices de Oligonucleótidos , Regiones Promotoras Genéticas , Neoplasias Gástricas/genética
16.
Proc Natl Acad Sci U S A ; 113(48): E7769-E7777, 2016 11 29.
Artículo en Inglés | MEDLINE | ID: mdl-27837027

RESUMEN

Programmed cell death protein-1 (PD-1)/programmed death ligand-1 (PD-L1) checkpoint blockade has led to remarkable and durable objective responses in a number of different tumor types. A better understanding of factors associated with the PD-1/PD-L axis expression is desirable, as it informs their potential role as prognostic and predictive biomarkers and may suggest rational treatment combinations. In the current study, we analyzed PD-L1, PD-L2, PD-1, and cytolytic activity (CYT) expression, as well as mutational density from melanoma and eight other solid tumor types using The Cancer Genome Atlas database. We found that in some tumor types, PD-L2 expression is more closely linked to Th1/IFNG expression and PD-1 and CD8 signaling than PD-L1 In contrast, mutational load was not correlated with a Th1/IFNG gene signature in any tumor type. PD-L1, PD-L2, PD-1, CYT expression, and mutational density are all positive prognostic features in melanoma, and conditional inference modeling revealed PD-1/CYT expression (i.e., an inflamed tumor microenvironment) as the most impactful feature, followed by mutational density. This study elucidates the highly interdependent nature of these parameters, and also indicates that future biomarkers for anti-PD-1/PD-L1 will benefit from tumor-type-specific, integrated, mRNA, protein, and genomic approaches.


Asunto(s)
Antígeno B7-H1/genética , Melanoma/genética , Proteína 2 Ligando de Muerte Celular Programada 1/genética , Receptor de Muerte Celular Programada 1/genética , Neoplasias Cutáneas/genética , Adenocarcinoma/genética , Adenocarcinoma/metabolismo , Adenocarcinoma/mortalidad , Antígeno B7-H1/metabolismo , Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo , Neoplasias del Colon/mortalidad , Análisis Mutacional de ADN , Expresión Génica , Humanos , Estimación de Kaplan-Meier , Melanoma/metabolismo , Melanoma/mortalidad , Mutación , Tasa de Mutación , Pronóstico , Proteína 2 Ligando de Muerte Celular Programada 1/metabolismo , Receptor de Muerte Celular Programada 1/metabolismo , Modelos de Riesgos Proporcionales , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/mortalidad
17.
Breast Cancer Res ; 20(1): 145, 2018 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-30486871

RESUMEN

BACKGROUND: A combination of entinostat, all-trans retinoic acid, and doxorubicin (EAD) induces cell death and differentiation and causes significant regression of xenografts of triple-negative breast cancer (TNBC). METHODS: We investigated the mechanisms underlying the antitumor effects of each component of the EAD combination therapy by high-throughput gene expression profiling of drug-treated cells. RESULTS: Microarray analysis showed that entinostat and doxorubicin (ED) altered expression of genes related to growth arrest, inflammation, and differentiation. ED downregulated MYC, E2F, and G2M cell cycle genes. Accordingly, entinostat sensitized the cells to doxorubicin-induced growth arrest at G2. ED induced interferon genes, which correlated with breast tumors containing a higher proportion of tumor-infiltrating lymphocytes. ED also increased the expression of immune checkpoint agonists and cancer testis antigens. Analysis of TNBC xenografts showed that EAD enhanced the inflammation score in nude mice. Among the genes differentially regulated between the EAD and ED groups, an all-trans retinoic acid (ATRA)-regulated gene, DHRS3, was induced in EAD-treated xenografts. DHRS3 was expressed at lower levels in human TNBC metastases compared to normal breast or primary tumors. High expression of ED-induced growth arrest and inflammatory genes was associated with better prognosis in TNBC patients. CONCLUSIONS: Entinostat potentiated doxorubicin-mediated cell death and the combination induced inflammatory signatures. The ED-induced immunomodulation may improve immunotherapy. Addition of ATRA to ED may potentiate inflammation and contribute to TNBC regression.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Diferenciación Celular/efectos de los fármacos , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Neoplasias de la Mama Triple Negativas/tratamiento farmacológico , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Apoptosis/efectos de los fármacos , Benzamidas/farmacología , Benzamidas/uso terapéutico , Mama/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Conjuntos de Datos como Asunto , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Sinergismo Farmacológico , Epigénesis Genética/efectos de los fármacos , Femenino , Perfilación de la Expresión Génica/métodos , Humanos , Ratones , Ratones Desnudos , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Piridinas/farmacología , Piridinas/uso terapéutico , Análisis de Supervivencia , Tretinoina/farmacología , Tretinoina/uso terapéutico , Neoplasias de la Mama Triple Negativas/genética , Neoplasias de la Mama Triple Negativas/mortalidad , Neoplasias de la Mama Triple Negativas/patología , Ensayos Antitumor por Modelo de Xenoinjerto
18.
Breast Cancer Res Treat ; 172(3): 689-702, 2018 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-30225619

RESUMEN

PURPOSE: Although age is a recognized independent prognostic risk factor, its relative importance among molecular subtypes of Breast cancer (BCA) is not well documented. The aim of this study was to evaluate the prognostic role of age at diagnosis among different immunohistochemical subtypes of BCA. METHODS: We conducted a retrospective study of women with invasive BCA undergoing surgery at the Johns Hopkins Hospital, excluding patients presenting with stage IV breast cancer. Patients were stratified into three age groups: ≤ 40, 41-60, and > 60 years, and multivariable analysis was performed using Cox regression. We also identified differentially expressed genes (DEG) between age groups among BCA subtypes in the public TCGA dataset. Finally, we identified key driver genes within the DEGs using a weighted gene co-expression network analysis. RESULTS: Luminal A breast cancer patients had significantly lower 5 year disease-free survival (DFS) and distant metastasis-free survival (DMFS) in the ≤ 40 year age group compared to the 41-60 year age group, while the other molecular subtypes showed no significant association of DFS or DMFS with age. Age was a stronger outcome predictor than tumor grade or proliferative index in Luminal A BCA patients, but not other subtypes. BCA TCGA gene expression data were divided into two groups (≤ 40 years, > 40 years). We identified 374 DEGs in the Luminal A BCA subset, which were enriched in seven pathways and two modules of co-expressed genes. No age group-specific DEGs were identified in non-Luminal A subtypes. CONCLUSIONS: Age at diagnosis may be an important prognostic factor in Luminal A BCA.


Asunto(s)
Neoplasias de la Mama/mortalidad , Adulto , Factores de Edad , Anciano , Neoplasias de la Mama/química , Neoplasias de la Mama/clasificación , Supervivencia sin Enfermedad , Femenino , Humanos , Inmunohistoquímica , Antígeno Ki-67/análisis , Persona de Mediana Edad , Pronóstico , Receptor ErbB-2/análisis , Receptores de Estrógenos/análisis , Receptores de Progesterona/análisis , Estudios Retrospectivos
19.
J Proteome Res ; 15(12): 4176-4187, 2016 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-27696867

RESUMEN

Because colorectal cancer (CRC) remains a leading cause of cancer mortality worldwide, more accessible screening tests are urgently needed to identify early stage lesions. We hypothesized that highly sensitive, metabolic profile analysis of stool samples will identify metabolites associated with early stage lesions and could serve as a noninvasive screening test. We therefore applied traveling wave ion mobility mass spectrometry (TWIMMS) coupled with ultraperformance liquid chromatography (UPLC) to investigate metabolic aberrations in stool samples in a transgenic model of premalignant polyposis aberrantly expressing the gene encoding the high mobility group A (Hmga1) chromatin remodeling protein. Here, we report for the first time that the fecal metabolome of Hmga1 mice is distinct from that of control mice and includes metabolites previously identified in human CRC. Significant alterations were observed in fatty acid metabolites and metabolites associated with bile acids (hypoxanthine xanthine, taurine) in Hmga1 mice compared to controls. Surprisingly, a marked increase in the levels of distinctive short, arginine-enriched, tetra-peptide fragments was observed in the transgenic mice. Together these findings suggest that specific metabolites are associated with Hmga1-induced polyposis and abnormal proliferation in intestinal epithelium. Although further studies are needed, these data provide a compelling rationale to develop fecal metabolomic analysis as a noninvasive screening tool to detect early precursor lesions to CRC in humans.


Asunto(s)
Neoplasias Colorrectales/diagnóstico , Neoplasias Colorrectales/metabolismo , Detección Precoz del Cáncer/métodos , Heces/química , Proteínas HMGA/genética , Metaboloma , Poliposis Adenomatosa del Colon/genética , Animales , Ácidos y Sales Biliares/metabolismo , Cromatografía Líquida de Alta Presión , Neoplasias Colorrectales/patología , Modelos Animales de Enfermedad , Ácidos Grasos/metabolismo , Espectrometría de Masas , Ratones , Ratones Transgénicos , Fragmentos de Péptidos/metabolismo
20.
Gynecol Oncol ; 141(3): 580-587, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27001612

RESUMEN

OBJECTIVES: Although uterine cancer is the fourth most common cause for cancer death in women worldwide, the molecular underpinnings of tumor progression remain poorly understood. The High Mobility Group A1 (HMGA1) gene is overexpressed in aggressive cancers and high levels portend adverse outcomes in diverse tumors. We previously reported that Hmga1a transgenic mice develop uterine tumors with complete penetrance. Because HMGA1 drives tumor progression by inducing MatrixMetalloproteinase (MMP) and other genes involved in invasion, we explored the HMGA1-MMP-2 pathway in uterine cancer. METHODS: To investigate MMP-2 in uterine tumors driven by HMGA1, we used a genetic approach with mouse models. Next, we assessed HMGA1 and MMP-2 expression in primary human uterine tumors, including low-grade carcinomas (endometrial endometrioid) and more aggressive tumors (endometrial serous carcinomas, uterine carcinosarcomas/malignant mesodermal mixed tumors). RESULTS: Here, we report for the first time that uterine tumor growth is impaired in Hmga1a transgenic mice crossed on to an Mmp-2 deficient background. In human tumors, we discovered that HMGA1 is highest in aggressive carcinosarcomas and serous carcinomas, with lower levels in the more indolent endometrioid carcinomas. Moreover, HMGA1 and MMP-2 were positively correlated, but only in a subset of carcinosarcomas. HMGA1 also occupies the MMP-2 promoter in human carcinosarcoma cells. CONCLUSIONS: Together, our studies define a novel HMGA1-MMP-2 pathway involved in a subset of human carcinosarcomas and tumor progression in murine models. Our work also suggests that targeting HMGA1 could be effective adjuvant therapy for more aggressive uterine cancers and provides compelling data for further preclinical studies.


Asunto(s)
Carcinosarcoma/genética , Cistadenocarcinoma Seroso/genética , Proteína HMGA1a/genética , Metaloproteinasa 2 de la Matriz/genética , Neoplasias Uterinas/genética , Animales , Carcinosarcoma/metabolismo , Inmunoprecipitación de Cromatina , Cistadenocarcinoma Seroso/metabolismo , Femenino , Silenciador del Gen , Proteína HMGA1a/biosíntesis , Humanos , Masculino , Metaloproteinasa 2 de la Matriz/biosíntesis , Ratones Transgénicos , Regiones Promotoras Genéticas , Regulación hacia Arriba , Neoplasias Uterinas/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda