Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Appl Environ Microbiol ; 85(14)2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-31076433

RESUMEN

Ehrlichia muris subsp. eauclairensis is recognized as the etiological agent of human ehrlichiosis in Minnesota and Wisconsin. We describe the culture isolation of this organism from a field-collected tick and detail its relationship to other species of Ehrlichia The isolate could be grown in a variety of cultured cell lines and was effectively transmitted between Ixodes scapularis ticks and rodents, with PCR and microscopy demonstrating a broad pattern of dissemination in arthropod and mammalian tissues. Conversely, Amblyomma americanum ticks were not susceptible to infection by the Ehrlichia Histologic sections further revealed that the wild-type isolate was highly virulent for mice and hamsters, causing severe systemic disease that was frequently lethal. A Himar1 transposase system was used to create mCherry- and mKate-expressing EmCRT mutants, which retained the ability to infect rodents and ticks.IMPORTANCE Ehrlichioses are zoonotic diseases caused by intracellular bacteria that are transmitted by ixodid ticks. Here we report the culture isolation of bacteria which are closely related to, or the same as the Ehrlichia muris subsp. eauclairensis, a recently recognized human pathogen. EmCRT, obtained from a tick removed from deer at Camp Ripley, MN, is the second isolate of this subspecies described and is distinctive in that it was cultured directly from a field-collected tick. The isolate's cellular tropism, pathogenic changes caused in rodent tissues, and tick transmission to and from rodents are detailed in this study. We also describe the genetic mutants created from the EmCRT isolate, which are valuable tools for the further study of this intracellular pathogen.


Asunto(s)
Ehrlichia/aislamiento & purificación , Ixodes/microbiología , Transformación Genética , Animales , Cricetinae/microbiología , Ciervos/microbiología , Ehrlichia/genética , Ehrlichia/fisiología , Ehrlichia/ultraestructura , Femenino , Masculino , Ratones/microbiología , Ratones Endogámicos C57BL , Microscopía Electrónica de Transmisión/veterinaria , Minnesota
2.
J Biol Chem ; 290(47): 28070-28083, 2015 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-26378234

RESUMEN

We previously identified two distinct molecular subtypes of osteosarcoma through gene expression profiling. These subtypes are associated with distinct tumor behavior and clinical outcomes. Here, we describe mechanisms that give rise to these molecular subtypes. Using bioinformatic analyses, we identified a significant association between deregulation of the retinoblastoma (RB)-E2F pathway and the molecular subtype with worse clinical outcomes. Xenotransplantation models recapitulated the corresponding behavior for each osteosarcoma subtype; thus, we used cell lines to validate the role of the RB-E2F pathway in regulating the prognostic gene signature. Ectopic RB resets the patterns of E2F regulated gene expression in cells derived from tumors with worse clinical outcomes (molecular phenotype 2) to those comparable with those observed in cells derived from tumors with less aggressive outcomes (molecular phenotype 1), providing a functional association between RB-E2F dysfunction and altered gene expression in osteosarcoma. DNA methyltransferase and histone deacetylase inhibitors similarly reset the transcriptional state of the molecular phenotype 2 cells from a state associated with RB deficiency to one seen with RB sufficiency. Our data indicate that deregulation of RB-E2F pathway alters the epigenetic landscape and biological behavior of osteosarcoma.


Asunto(s)
Factores de Transcripción E2F/fisiología , Regulación de la Expresión Génica/fisiología , Osteosarcoma/genética , Proteína de Retinoblastoma/fisiología , Transcripción Genética/fisiología , Animales , Línea Celular Tumoral , Perros , Humanos , Células Jurkat , Osteosarcoma/patología , Pronóstico
3.
bioRxiv ; 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38370726

RESUMEN

Urinary neutrophils are a hallmark of urinary tract infection (UTI), yet the mechanisms governing their activation, function, and efficacy in controlling infection remain incompletely understood. Tamm-Horsfall glycoprotein (THP), the most abundant protein in urine, uses terminal sialic acids to bind an inhibitory receptor and dampen neutrophil inflammatory responses. We hypothesized that neutrophil modulation is an integral part of THP-mediated host protection. In a UTI model, THP-deficient mice showed elevated urinary tract bacterial burdens, increased neutrophil recruitment, and more severe tissue histopathological changes compared to WT mice. Furthermore, THP-deficient mice displayed impaired urinary NETosis during UTI. To investigate the impact of THP on NETosis, we coupled in vitro fluorescence-based NET assays, proteomic analyses, and standard and imaging flow cytometry with peripheral human neutrophils. We found that THP increases proteins involved in respiratory chain, neutrophil granules, and chromatin remodeling pathways, enhances NETosis in an ROS-dependent manner, and drives NET-associated morphologic features including nuclear decondensation. These effects were observed only in the presence of a NETosis stimulus and could not be solely replicated with equivalent levels of sialic acid alone. We conclude that THP is a critical regulator of NETosis in the urinary tract, playing a key role in host defense against UTI.

4.
Blood Cancer J ; 14(1): 24, 2024 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-38307865

RESUMEN

Multiple myeloma is a genetically complex and heterogenous malignancy with a 5-year survival rate of approximately 60%. Despite advances in therapy, patients experience cycles of remission and relapse, with each successive line of therapy associated with poorer outcomes; therefore, therapies with different mechanisms of action against new myeloma antigens are needed. G protein-coupled receptor class C group 5 member D (GPRC5D) has emerged as a novel therapeutic target for the treatment of multiple myeloma. We review the biology and target validation of GPRC5D, and clinical data from early phase trials of GPRC5D-targeting bispecific antibodies, talquetamab and forimtamig, and chimeric antigen receptor T cell (CAR-T) therapies, MCARH109, OriCAR-017, and BMS-986393. In addition to adverse events (AEs) associated with T-cell-redirection therapies irrespective of target, a consistent pattern of dermatologic and oral AEs has been reported across several trials of GPRC5D-targeting bispecific antibodies, as well as rare cerebellar events with CAR-T therapy. Additional studies are needed to understand the underlying mechanisms involved in the development of skin- and oral-related toxicities. We review the strategies that have been used to manage these GPRC5D-related toxicities. Preliminary efficacy data showed overall response rates for GPRC5D-targeting T-cell-redirecting therapies were ≥64%; most responders achieved a very good partial response or better. Pharmacokinetics/pharmacodynamics showed that these therapies led to cytokine release and T-cell activation. In conclusion, results from early phase trials of GPRC5D-targeting T-cell-redirecting agents have shown promising efficacy and manageable safety profiles, including lower infection rates compared with B-cell maturation antigen- and Fc receptor-like protein 5-targeting bispecific antibodies. Further clinical trials, including those investigating GPRC5D-targeting T-cell-redirecting agents in combination with other anti-myeloma therapies and with different treatment modalities, may help to elucidate the future optimal treatment regimen and sequence for patients with multiple myeloma and improve survival outcomes. Video Summary.


Asunto(s)
Anticuerpos Biespecíficos , Mieloma Múltiple , Receptores Quiméricos de Antígenos , Humanos , Mieloma Múltiple/tratamiento farmacológico , Anticuerpos Biespecíficos/uso terapéutico , Recurrencia Local de Neoplasia/tratamiento farmacológico , Inmunoterapia Adoptiva/métodos , Receptores Acoplados a Proteínas G
5.
bioRxiv ; 2024 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-38979250

RESUMEN

Tobacco usage is linked to multiple cancer types and accounts for a quarter of all cancer-related deaths. Tobacco smoke contains various carcinogenic compounds, including polycyclic aromatic hydrocarbons (PAH), though the mutagenic potential of many tobacco-related chemicals remains largely unexplored. In particular, the highly carcinogenic tobacco-specific nitrosamines NNN and NNK form pre-mutagenic pyridyloxobutyl (POB) DNA adducts. In the study presented here, we identified genome-scale POB-induced mutational signatures in cell lines and rat tumors, while also investigating their role in human cancer. These signatures are characterized by T>N and C>T mutations forming from specific POB adducts damaging dT and dC residues. Analysis of 2,780 cancer genomes uncovered POB signatures in ∼180 tumors; from cancer types distinct from the ones linked to smoking-related signatures SBS4 and SBS92. This suggests that, unlike PAH compounds, the POB pathway may contribute uniquely to the mutational landscapes of certain hematological malignancies and cancers of the kidney, breast, prostate and pancreas.

6.
Cancer Res Commun ; 4(6): 1467-1480, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38757809

RESUMEN

Hemangiosarcoma and angiosarcoma are soft-tissue sarcomas of blood vessel-forming cells in dogs and humans, respectively. These vasoformative sarcomas are aggressive and highly metastatic, with disorganized, irregular blood-filled vascular spaces. Our objective was to define molecular programs which support the niche that enables progression of canine hemangiosarcoma and human angiosarcoma. Dog-in-mouse hemangiosarcoma xenografts recapitulated the vasoformative and highly angiogenic morphology and molecular characteristics of primary tumors. Blood vessels in the tumors were complex and disorganized, and they were lined by both donor and host cells. In a series of xenografts, we observed that the transplanted hemangiosarcoma cells created exuberant myeloid hyperplasia and gave rise to lymphoproliferative tumors of mouse origin. Our functional analyses indicate that hemangiosarcoma cells generate a microenvironment that supports expansion and differentiation of hematopoietic progenitor populations. Furthermore, gene expression profiling data revealed hemangiosarcoma cells expressed a repertoire of hematopoietic cytokines capable of regulating the surrounding stromal cells. We conclude that canine hemangiosarcomas, and possibly human angiosarcomas, maintain molecular properties that provide hematopoietic support and facilitate stromal reactions, suggesting their potential involvement in promoting the growth of hematopoietic tumors. SIGNIFICANCE: We demonstrate that hemangiosarcomas regulate molecular programs supporting hematopoietic expansion and differentiation, providing insights into their potential roles in creating a permissive stromal-immune environment for tumor progression.


Asunto(s)
Hemangiosarcoma , Hemangiosarcoma/patología , Hemangiosarcoma/veterinaria , Hemangiosarcoma/genética , Perros , Animales , Humanos , Ratones , Microambiente Tumoral , Células Madre Hematopoyéticas/patología , Hematopoyesis , Diferenciación Celular
7.
J Gen Virol ; 94(Pt 6): 1189-1194, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23426356

RESUMEN

The fusion (F) and haemagglutinin-neuraminidase (HN) proteins of Newcastle disease virus (NDV) are multifunctional proteins that play critical roles during infection. Here, we assessed the ability of NDV to replicate in macrophages and investigated the contribution of the F and HN proteins to NDV infection/replication in these cells. Results of our study revealed that, while presenting similar replication kinetics in a fibroblast cell line (DF1) or in primary non-adherent splenocytes, the NDV strain CA02 replicates better in macrophages (HD11 and primary adherent splenocytes) than the NDV strain Anhinga/93. Notably, exchange of the HN or both F and HN genes of NDV Anhinga/93 by the corresponding genes from NDV CA02 markedly improved the ability of the chimeric viruses to replicate in macrophages. These results indicate that the F and HN proteins are determinants of NDV macrophage host range. This represents the first description of productive NDV infection in macrophages.


Asunto(s)
Proteína HN/inmunología , Especificidad del Huésped , Macrófagos/virología , Enfermedad de Newcastle/virología , Virus de la Enfermedad de Newcastle/fisiología , Enfermedades de las Aves de Corral/virología , Proteínas Virales de Fusión/inmunología , Animales , Células Cultivadas , Pollos , Proteína HN/genética , Macrófagos/inmunología , Datos de Secuencia Molecular , Enfermedad de Newcastle/inmunología , Virus de la Enfermedad de Newcastle/genética , Virus de la Enfermedad de Newcastle/inmunología , Proteínas Virales de Fusión/genética , Replicación Viral
8.
Microb Pathog ; 61-62: 73-83, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23711962

RESUMEN

The role of interferon gamma (IFN-γ) expression during Newcastle disease virus (NDV) infection in chickens is unknown. Infection of chickens with highly virulent NDV results in rapid death, which is preceded by increased expression of IFN-γ in target tissues. IFN-γ is a cytokine that has pleiotropic biological effects including intrinsic antiviral activity and immunomodulatory effects that may increase morbidity and mortality during infections. To better understand how IFN-γ contributes to NDV pathogenesis, the coding sequence of the chicken IFN-γ gene was inserted in the genome of the virulent NDV strain ZJ1 (rZJ1-IFNγ), and the effects of high levels of IFN-γ expression during infection were determined in vivo and in vitro. IFN-γ expression did not significantly affect NDV replication in fibroblast or in macrophage cell lines. However, it affected the pathogenesis of rZJ1-IFNγ in vivo. Relative to the virus expressing the green fluorescent protein (rZJ1-GFP) or lacking the IFN-γ insert (rZJ1-rev), expression of IFN-γ by rZJ1-IFNγ produced a marked decrease of pathogenicity in 4-week-old chickens, as evidenced by lack of mortality, decreased disease severity, virus shedding, and antigen distribution. These results suggest that early expression of IFN-γ had a significant protective role against the effects of highly virulent NDV infection in chickens, and further suggests that the level and timing of expression of this cytokine may be critical for the disease outcome. This is the first description of an in vivo attenuation of a highly virulent NDV by avian cytokines, and shows the feasibility to use NDV for cytokine delivery in chicken organs. This approach may facilitate the study of the role of other avian cytokines on the pathogenesis of NDV.


Asunto(s)
Pollos/virología , Interferón gamma/metabolismo , Enfermedad de Newcastle/inmunología , Virus de la Enfermedad de Newcastle/patogenicidad , Animales , Línea Celular , Pollos/inmunología , Fibroblastos/virología , Interferón gamma/genética , Interferón gamma/inmunología , Macrófagos/virología , Enfermedad de Newcastle/mortalidad , Enfermedad de Newcastle/patología , Enfermedad de Newcastle/virología , Virus de la Enfermedad de Newcastle/inmunología , Virulencia , Replicación Viral
9.
J Exp Biol ; 216(Pt 10): 1949-58, 2013 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-23348941

RESUMEN

In many oviparous animals, bursting type atresia of ovarian follicles occurs during the reproductive cycle, resulting in the escape of yolk into the extracellular compartment. In birds, this ectopic yolk is rapidly cleared by an unknown process that involves the appearance of yolk-engorged macrophage-like cells. To study this unique type of lipid transport, we injected young male chickens intra-abdominally with egg yolk. Absorption of egg yolk from the body cavity markedly increased the triacylglyceride-rich fraction (TRL) of plasma lipoproteins and was coincident with increased levels of plasma triacylglycerides (TAGs) but not non-esterified fatty acids (NEFAs). Thus, the transport of yolk lipids from the abdominal cavity appears to occur in lipoproteins and be more similar to the transport of hepatic TAGs to the periphery via lipoproteins than to transport of adipose TAGs to the periphery via NEFAs released by the action of lipases. When macrophages were exposed to yolk in vitro, they quickly phagocytized yolk; however, it is unclear whether this level of phagocytosis contributes significantly to total yolk clearance. Instead, the chicken macrophage may function more as a facilitator of yolk clearance through the modification of yolk lipoproteins and the regulation of the local and systemic immune response to ectopic yolk. Yolk appears to be anti-inflammatory in nature. Yolk did not increase levels of the inflammatory cytokines IL-1, IL-6 and IFNγ either in vivo or in vitro; in fact, yolk dampened many inflammatory changes caused by lipopolysaccharide (LPS). Conversely, LPS-induced inflammation retarded yolk clearance from the abdominal cavity and plasma TAG levels.


Asunto(s)
Pollos/metabolismo , Yema de Huevo/metabolismo , Animales , Apolipoproteína A-I/genética , Apolipoproteína A-I/metabolismo , Transporte Biológico/efectos de los fármacos , Transporte Biológico/genética , Colesterol/metabolismo , Yema de Huevo/efectos de los fármacos , Inflamación/sangre , Inflamación/genética , Inflamación/patología , Metabolismo de los Lípidos/efectos de los fármacos , Metabolismo de los Lípidos/genética , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Monocitos/efectos de los fármacos , Monocitos/metabolismo , Monocitos/patología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteína Amiloide A Sérica/genética , Proteína Amiloide A Sérica/metabolismo , Triglicéridos/sangre
10.
Mol Ther Oncolytics ; 31: 100736, 2023 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-37965295

RESUMEN

Osteosarcoma is a devastating bone cancer that disproportionally afflicts children, adolescents, and young adults. Standard therapy includes surgical tumor resection combined with multiagent chemotherapy, but many patients still suffer from metastatic disease progression. Neoadjuvant systemic oncolytic virus (OV) therapy has the potential to improve clinical outcomes by targeting primary and metastatic tumor sites and inducing durable antitumor immune responses. Here we describe the first evaluation of neoadjuvant systemic therapy with a clinical-stage recombinant oncolytic vesicular stomatitis virus (VSV), VSV-IFNß-NIS, in naturally occurring cancer, specifically appendicular osteosarcoma in companion dogs. Canine osteosarcoma has a similar natural disease history as its human counterpart. VSV-IFNß-NIS was administered prior to standard of care surgical resection, permitting microscopic and genomic analysis of tumors. Treatment was well-tolerated and a "tail" of long-term survivors (∼35%) was apparent in the VSV-treated group, a greater proportion than observed in two contemporary control cohorts. An increase in tumor inflammation was observed in VSV-treated tumors and RNA-seq analysis showed that all the long-term responders had increased expression of a T cell anchored immune gene cluster. We conclude that neoadjuvant VSV-IFNß-NIS is safe and may increase long-term survivorship in dogs with naturally occurring osteosarcoma, particularly those that exhibit pre-existing antitumor immunity.

11.
bioRxiv ; 2023 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-37131624

RESUMEN

Osteosarcoma is a devastating bone cancer that disproportionally afflicts children, adolescents, and young adults. Standard therapy includes surgical tumor resection combined with multiagent chemotherapy, but many patients still suffer from metastatic disease progression. Neoadjuvant systemic oncolytic virus (OV) therapy has the potential to improve clinical outcomes by targeting primary and metastatic tumor sites and inducing durable antitumor immune responses. Here we described the first evaluation of neoadjuvant systemic therapy with a clinical-stage recombinant oncolytic Vesicular stomatitis virus (VSV), VSV-IFNß-NIS, in naturally occurring cancer, specifically appendicular osteosarcoma in companion dogs. Canine osteosarcoma has a similar natural disease history as its human counterpart. VSV-IFNß-NIS was administered prior to standard of care surgical resection, permitting microscopic and genomic analysis of tumors. Treatment was well-tolerated and a 'tail' of long-term survivors (~35%) was apparent in the VSV-treated group, a greater proportion than observed in two contemporary control cohorts. An increase in tumor inflammation was observed in VSV-treated tumors and RNAseq analysis showed that all the long-term responders had increased expression of a T-cell anchored immune gene cluster. We conclude that neoadjuvant VSV-IFNß-NIS is safe and may increase long-term survivorship in dogs with naturally occurring osteosarcoma, particularly those that exhibit pre-existing antitumor immunity.

12.
Avian Dis ; 56(3): 464-70, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23050461

RESUMEN

Newcastle disease (ND) is a major threat to the international poultry industry, causing bird mortality, reduction in growth and egg production, and trade restrictions. The primary strategy available to the poultry industry to control virulent Newcastle disease virus (NDV), the causative agent of ND, is vaccination. LaSota and other commonly used live-virus NDV vaccine strains were developed in the 1950s and 1960s and show a great degree of genetic divergence from currently circulating NDV strains. In order to characterize protective immunity induced by LaSota against a heterologous NDV strain, we vaccinated groups of specific-pathogen-free (SPF) chickens with LaSota (virus titers ranging from 10(2) to 10(8) egg infective dose 50 [EID50] in 10-fold increments) and challenged the birds 14 days later with ZJ1 strain, an NDV strain that was isolated in the year 2000 from geese in China. We monitored multiple parameters of immunity, including serum antibody titers, antigen-specific lymphocyte proliferation, and splenic cytokine expression and determined that SPF birds vaccinated with an adequate titer of LaSota strain live vaccine are fully protected from morbidity and mortality due to challenge with ZJ1 strain NDV, and we concluded that in the absence of interfering maternal antibody, protection due to vaccination increases with vaccine titer until a threshold titer is reached, beyond which, little or no further benefit can be elucidated.


Asunto(s)
Pollos , Genotipo , Enfermedad de Newcastle/prevención & control , Virus de la Enfermedad de Newcastle/genética , Vacunas Virales/inmunología , Animales , Anticuerpos Antivirales/sangre , Proliferación Celular , Citocinas/genética , Citocinas/metabolismo , Relación Dosis-Respuesta Inmunológica , Femenino , Regulación de la Expresión Génica/inmunología , Linfocitos/citología , Linfocitos/inmunología , Masculino , Enfermedad de Newcastle/virología , Virus de la Enfermedad de Newcastle/patogenicidad , Organismos Libres de Patógenos Específicos , Bazo/metabolismo , Vacunas Virales/administración & dosificación , Virulencia , Esparcimiento de Virus
13.
J Histochem Cytochem ; 70(4): 273-287, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35193424

RESUMEN

B-cell maturation antigen (BCMA) is a target for the treatment of multiple myeloma with cytolytic therapies, such as chimeric antigen receptor T-cells or T-cell redirecting antibodies. To better understand the potential for "on-target/off-tumor" toxicity caused by BCMA-targeting cytolytic therapies in the brain, we investigated normal brain BCMA expression. An immunohistochemistry (IHC) assay using the E6D7B commercial monoclonal antibody was applied to 107 formalin-fixed, paraffin-embedded brain samples (cerebrum, basal ganglia, cerebellum, brainstem; 63 unique donors). Although immunoreactivity was observed in a small number of neurons in brain regions including the striatum, thalamus, midbrain, and medulla, this immunoreactivity was considered nonspecific and not reflective of BCMA expression because it was distinct from the membranous and Golgi-like pattern seen in positive control samples, was not replicated when a different IHC antibody (D6 clone) was used, and was not corroborated by in situ hybridization data. Analysis of RNA-sequencing data from 478 donors in the GTEx and Allen BrainSpan databases demonstrated low levels of BCMA RNA expression in the striatum of young donors with levels becoming negligible beyond 30 years of age. We concluded that BCMA protein is not present in normal adult human brain, and therefore on-target toxicity in the brain is unlikely.


Asunto(s)
Antígeno de Maduración de Linfocitos B , Mieloma Múltiple , Adulto , Antígeno de Maduración de Linfocitos B/genética , Antígeno de Maduración de Linfocitos B/metabolismo , Encéfalo/metabolismo , Humanos , Inmunohistoquímica , Inmunoterapia Adoptiva , Mieloma Múltiple/terapia
14.
Blood Cancer J ; 12(2): 32, 2022 02 24.
Artículo en Inglés | MEDLINE | ID: mdl-35210399

RESUMEN

Chimeric antigen receptor (CAR) T-cell therapies are highly effective for multiple myeloma (MM) but their impressive efficacy is associated with treatment-related neurotoxicities in some patients. In CARTITUDE-1, 5% of patients with MM reported movement and neurocognitive treatment-emergent adverse events (MNTs) with ciltacabtagene autoleucel (cilta-cel), a B-cell maturation antigen-targeted CAR T-cell therapy. We assessed the associated factors for MNTs in CARTITUDE-1. Based on common features, patients who experienced MNTs were characterized by the presence of a combination of at least two variables: high tumor burden, grade ≥2 cytokine release syndrome (CRS) or any grade immune effector cell-associated neurotoxicity syndrome (ICANS) after cilta-cel infusion, and high CAR T-cell expansion/persistence. Strategies were implemented across the cilta-cel development program to monitor and manage patients with MNTs, including enhanced bridging therapy to reduce baseline tumor burden, early aggressive treatment of CRS and ICANS, handwriting assessments for early symptom detection, and extended monitoring/reporting time for neurotoxicity beyond 100 days post-infusion. After successful implementation of these strategies, the incidence of MNTs was reduced from 5% to <1% across the cilta-cel program, supporting its favorable benefit-risk profile for treatment of MM.


Asunto(s)
Mieloma Múltiple , Síndromes de Neurotoxicidad , Receptores Quiméricos de Antígenos , Humanos , Inmunoterapia Adoptiva/efectos adversos , Incidencia , Mieloma Múltiple/complicaciones , Mieloma Múltiple/terapia , Síndromes de Neurotoxicidad/etiología , Receptores Quiméricos de Antígenos/uso terapéutico
15.
J Gen Virol ; 92(Pt 4): 931-9, 2011 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-21177922

RESUMEN

Newcastle disease virus (NDV) is an avian paramyxovirus that causes significant economic losses to the poultry industry worldwide. There is limited knowledge about the avian immune response to infection with virulent NDVs, and how this response may contribute to disease. In this study, pathogenesis and the transcriptional host response of chickens to a virulent NDV strain that rapidly causes 100% mortality was characterized. Using microarrays, a strong transcriptional host response was observed in spleens at early times after infection with the induction of groups of genes involved in innate antiviral and pro-inflammatory responses. There were multiple genes induced at 48 h post-infection including: type I and II interferons (IFNs), several cytokines and chemokines, IFN effectors and inducible nitric oxide synthase (iNOS). The increased transcription of nitric oxide synthase was confirmed by immunohistochemistry for iNOS in spleens and measured levels of nitric oxide in serum. In vitro experiments showed strong induction of the key host response genes, alpha IFN, beta interferon, and interleukin 1ß and interleukin 6, in splenic leukocytes at 6 h post-infection in comparison to a non-virulent NDV. The robust host response to virulent NDV, in conjunction with severe pathological damage observed, is somewhat surprising considering that all NDV encode a gene, V, which functions as a suppressor of class I IFNs. Taken together, these results suggest that the host response itself may contribute to the pathogenesis of this highly virulent strain in chickens.


Asunto(s)
Pollos/inmunología , Inmunidad Innata , Enfermedad de Newcastle/inmunología , Virus de la Enfermedad de Newcastle/inmunología , Virus de la Enfermedad de Newcastle/patogenicidad , Enfermedades de las Aves de Corral/inmunología , Enfermedades de las Aves de Corral/virología , Animales , Citocinas/biosíntesis , Perfilación de la Expresión Génica , Interacciones Huésped-Patógeno , Inmunohistoquímica , Análisis por Micromatrices , Microscopía , Enfermedad de Newcastle/patología , Enfermedad de Newcastle/virología , Óxido Nítrico Sintasa de Tipo II/biosíntesis , Enfermedades de las Aves de Corral/patología , Bazo/inmunología , Bazo/virología , Factores de Tiempo
16.
Microorganisms ; 9(1)2021 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-33467030

RESUMEN

Streptococcus canis is a common colonizing bacterium of the urogenital tract of cats and dogs that can also cause invasive disease in these animal populations and in humans. Although the virulence mechanisms of S. canis are not well-characterized, an M-like protein, SCM, has recently identified been as a potential virulence factor. SCM is a surface-associated protein that binds to host plasminogen and IgGs suggesting its possible importance in host-pathogen interactions. In this study, we developed in vitro and ex vivo blood component models and murine models of S. canis vaginal colonization, systemic infection, and dermal infection to compare the virulence potential of the zoonotic S. canis vaginal isolate G361 and its isogenic SCM-deficient mutant (G361∆scm). We found that while S. canis establishes vaginal colonization and causes invasive disease in vivo, the contribution of the SCM protein to virulence phenotypes in these models is modest. We conclude that SCM is dispensable for invasive disease in murine models and for resistance to human blood components ex vivo, but may contribute to mucosal persistence, highlighting a potential contribution to the recently appreciated genetic diversity of SCM across strains and hosts.

17.
Sci Transl Med ; 13(586)2021 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-33762439

RESUMEN

Staphylococcus aureus (SA) bloodstream infections cause high morbidity and mortality (20 to 30%) despite modern supportive care. In a human bacteremia cohort, we found that development of thrombocytopenia was correlated to increased mortality and increased α-toxin expression by the pathogen. Platelet-derived antibacterial peptides are important in bloodstream defense against SA, but α-toxin decreased platelet viability, induced platelet sialidase to cause desialylation of platelet glycoproteins, and accelerated platelet clearance by the hepatic Ashwell-Morell receptor (AMR). Ticagrelor (Brilinta), a commonly prescribed P2Y12 receptor inhibitor used after myocardial infarction, blocked α-toxin-mediated platelet injury and resulting thrombocytopenia, thereby providing protection from lethal SA infection in a murine intravenous challenge model. Genetic deletion or pharmacological inhibition of AMR stabilized platelet counts and enhanced resistance to SA infection, and the anti-influenza sialidase inhibitor oseltamivir (Tamiflu) provided similar therapeutic benefit. Thus, a "toxin-platelet-AMR" regulatory pathway plays a critical role in the pathogenesis of SA bloodstream infection, and its elucidation provides proof of concept for repurposing two commonly prescribed drugs as adjunctive therapies to improve patient outcomes.


Asunto(s)
Bacteriemia , Preparaciones Farmacéuticas , Infecciones Estafilocócicas , Animales , Bacteriemia/tratamiento farmacológico , Plaquetas , Humanos , Ratones , Infecciones Estafilocócicas/tratamiento farmacológico , Staphylococcus aureus
18.
mBio ; 12(5): e0118121, 2021 10 26.
Artículo en Inglés | MEDLINE | ID: mdl-34544271

RESUMEN

Hepatic failure is an important risk factor for poor outcome in septic patients. Using a chemical tagging workflow and high-resolution mass spectrometry, we demonstrate that rapid proteome remodeling of the vascular surfaces precedes hepatic damage in a murine model of Staphylococcus aureus sepsis. These early changes include vascular deposition of neutrophil-derived proteins, shedding of vascular receptors, and altered levels of heparin/heparan sulfate-binding factors. Modification of endothelial heparan sulfate, a major component of the vascular glycocalyx, diminishes neutrophil trafficking to the liver and reduces hepatic coagulopathy and organ damage during the systemic inflammatory response to infection. Modifying endothelial heparan sulfate likewise reduces neutrophil trafficking in sterile hepatic injury, reflecting a more general role of heparan sulfate contribution to the modulation of leukocyte behavior during inflammation. IMPORTANCE Vascular glycocalyx remodeling is critical to sepsis pathology, but the glycocalyx components that contribute to this process remain poorly characterized. This article shows that during Staphylococcus aureus sepsis, the liver vascular glycocalyx undergoes dramatic changes in protein composition associated with neutrophilic activity and heparin/heparan sulfate binding, all before organ damage is detectable by standard circulating liver damage markers or histology. Targeted manipulation of endothelial heparan sulfate modulates S. aureus sepsis-induced hepatotoxicity by controlling the magnitude of neutrophilic infiltration into the liver in both nonsterile and sterile injury. These data identify an important vascular glycocalyx component that impacts hepatic failure during nonsterile and sterile injury.


Asunto(s)
Células Endoteliales/metabolismo , Heparitina Sulfato/genética , Heparitina Sulfato/metabolismo , Activación Neutrófila , Neutrófilos/patología , Sepsis/microbiología , Staphylococcus aureus/inmunología , Animales , Modelos Animales de Enfermedad , Células Endoteliales/inmunología , Femenino , Glicocálix/metabolismo , Glicocálix/patología , Hígado/inmunología , Hígado/microbiología , Hígado/patología , Pulmón/inmunología , Pulmón/microbiología , Pulmón/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Staphylococcus aureus/patogenicidad
19.
EBioMedicine ; 46: 193-201, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31353294

RESUMEN

BACKGROUND: Multidrug-resistant (MDR) Acinetobacter baumannii infections have high mortality rates and few treatment options. Synergistic drug combinations may improve clinical outcome and reduce further emergence of resistance in MDR pathogens. Here we show an unexpected potent synergy of two translation inhibitors against the pathogen: commonly prescribed macrolide antibiotic azithromycin (AZM), widely ignored as a treatment alternative for invasive Gram-negative pathogens, and minocycline, among the current standard-of-care agents used for A. baumannii. METHODS: Media-dependent activities of AZM and MIN were evaluated in minimum inhibitory concentration assays and kinetic killing curves, alone or in combination, both in standard bacteriologic media (cation-adjusted Mueller-Hinton Broth) and more physiologic tissue culture media (RPMI), with variations of bicarbonate as a physiologic buffer. Synergy was calculated by fractional inhibitory concentration index (FICI). Therapeutic benefit of combining AZM and MIN was tested in a murine model of A. baumannii pneumonia. AZM + MIN synergism was probed mechanistically by bacterial cytological profiling (BCP), a quantitative fluorescence microscopy technique that identifies disrupted bacterial cellular pathways on a single cell level, and real-time kinetic measurement of translation inhibition via quantitative luminescence. AZM + MIN synergism was further evaluated vs. other contemporary high priority MDR bacterial pathogens. FINDINGS: Although two translation inhibitors are not expected to synergize, each drug complemented kinetic deficiencies of the other, speeding the initiation and extending the duration of translation inhibition as verified by FICI, BCP and kinetic luminescence markers. In an MDR A. baumannii pneumonia model, AZM + MIN combination therapy decreased lung bacterial burden and enhanced survival rates. Synergy between AZM and MIN was also detected vs. MDR strains of Gram-negative Klebsiella pneumoniae and Pseudomonas aeruginosa, and the leading Gram-positive pathogen methicillin-resistant Staphylococcus aureus. INTERPRETATION: As both agents are FDA approved with excellent safety profiles, clinical investigation of AZM and MIN combination regimens may immediately be contemplated for optimal treatment of A. baumannii and other MDR bacterial infections in humans. FUND: National Institutes of Health U01 AI124326 (JP, GS, VN) and U54 HD090259 (GS, VN). IC was supported by the UCSD Research Training Program for Veterinarians T32 OD017863.


Asunto(s)
Infecciones por Acinetobacter/microbiología , Acinetobacter baumannii/efectos de los fármacos , Antibacterianos/farmacología , Farmacorresistencia Bacteriana Múltiple , Infecciones por Acinetobacter/tratamiento farmacológico , Infecciones por Acinetobacter/mortalidad , Acinetobacter baumannii/genética , Animales , Azitromicina/farmacología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Sinergismo Farmacológico , Ratones , Pruebas de Sensibilidad Microbiana , Biosíntesis de Proteínas/efectos de los fármacos
20.
Virulence ; 10(1): 194-206, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-30829556

RESUMEN

Streptococcus canis is a zoonotic agent that causes serious invasive diseases in domestic animals and humans, but knowledge about its pathogenic potential and underlying virulence mechanisms is limited. Here, we report on the ability of certain S. canis isolates to form large bacterial aggregates when grown in liquid broth. Bacterial aggregation was attributed to the presence and the self-binding activity of SCM, the M protein of S. canis, as evaluated by bacterial sedimentation assays, immunofluorescence- and electron microscopic approaches. Using a variety of truncated recombinant SCM fragments, we demonstrated that homophilic SCM interactions occur via the N-terminal, but not the C-terminal part, of the mature M protein. Interestingly, when incubated in human plasma, SCM forms soluble protein complexes comprising its known ligands, immunoglobulin G (IgG) and plasminogen (Plg). Co-incubation studies with purified host proteins revealed that SCM-mediated complex formation is based on the interaction of SCM with itself and with IgG, but not with Plg or fibrinogen (Fbg), well-established constituents of M protein-mediated protein complexes in human-associated streptococci. Notably, these soluble, SCM-mediated plasma complexes harbored complement factor C1q, which can induce complement breakdown in the periphery and therefore represent another immune evasion mechanism of SCM.


Asunto(s)
Antígenos Bacterianos/metabolismo , Adhesión Bacteriana , Proteínas de la Membrana Bacteriana Externa/metabolismo , Proteínas Portadoras/metabolismo , Inmunoglobulina G/metabolismo , Streptococcus/fisiología , Anticuerpos Antibacterianos/metabolismo , Fibrinógeno , Humanos , Unión Proteica
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda