Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Arch Biochem Biophys ; 566: 67-75, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25447814

RESUMEN

Escherichia coli exposed to tellurite shows augmented membrane lipid peroxidation and ROS content. Also, reduced thiols, protein carbonylation, [Fe-S] center dismantling, and accumulation of key metabolites occur in these bacteria. In spite of this, not much is known about tellurite effects on the E. coli electron transport chain (ETC). In this work, tellurite-mediated damage to the E. coli ETC's NADH dehydrogenases and terminal oxidases was assessed. Mutant lacking ETC components showed delayed growth, decreased oxygen consumption and increased ROS in the presence of the toxicant. Membranes from tellurite-exposed E. coli exhibited decreased oxygen consumption and dNADH/NADH dehydrogenase activity, showing an impairment of NDH-I but not of NDH-II activity. Regarding terminal oxidases, only the bo oxidase complex was affected by tellurite. When assaying NDH-I and NDH-II activity in the presence of superoxide, the NDH-I complex was preferentially damaged. The activity was partly restored in the presence of reducing agents, sulfide and Fe(2+) under anaerobic conditions, suggesting that damage affects NDH-I [4Fe-4S] centers. Finally, augmented membrane protein oxidation along with reduced oxidase activity was observed in the presence of the toxicant. Also, the increased expression of genes encoding alternative terminal oxidases probably reflects a cell's change towards anaerobic respiration when facing tellurite.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/efectos de los fármacos , Regulación Bacteriana de la Expresión Génica , NADH Deshidrogenasa/metabolismo , Oxidorreductasas/metabolismo , Telurio/toxicidad , Aerobiosis/efectos de los fármacos , Anaerobiosis/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Membrana Celular/enzimología , Membrana Celular/genética , Escherichia coli/enzimología , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Isoenzimas/genética , Isoenzimas/metabolismo , NADH Deshidrogenasa/genética , Oxidación-Reducción/efectos de los fármacos , Oxidorreductasas/genética , Consumo de Oxígeno/efectos de los fármacos , Carbonilación Proteica/efectos de los fármacos , Superóxidos/metabolismo
2.
Appl Environ Microbiol ; 80(22): 7061-70, 2014 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-25193000

RESUMEN

Tellurium, a metalloid belonging to group 16 of the periodic table, displays very interesting physical and chemical properties and lately has attracted significant attention for its use in nanotechnology. In this context, the use of microorganisms for synthesizing nanostructures emerges as an eco-friendly and exciting approach compared to their chemical synthesis. To generate Te-containing nanostructures, bacteria enzymatically reduce tellurite to elemental tellurium. In this work, using a classic biochemical approach, we looked for a novel tellurite reductase from the Antarctic bacterium Pseudomonas sp. strain BNF22 and used it to generate tellurium-containing nanostructures. A new tellurite reductase was identified as glutathione reductase, which was subsequently overproduced in Escherichia coli. The characterization of this enzyme showed that it is an NADPH-dependent tellurite reductase, with optimum reducing activity at 30°C and pH 9.0. Finally, the enzyme was able to generate Te-containing nanostructures, about 68 nm in size, which exhibit interesting antibacterial properties against E. coli, with no apparent cytotoxicity against eukaryotic cells.


Asunto(s)
Antibacterianos/biosíntesis , Proteínas Bacterianas/metabolismo , Glutatión Reductasa/metabolismo , Nanoestructuras/análisis , Pseudomonas/enzimología , Telurio/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Biotransformación , Estabilidad de Enzimas , Glutatión Reductasa/química , Glutatión Reductasa/genética , Oxidación-Reducción , Pseudomonas/química , Pseudomonas/genética , Pseudomonas/metabolismo
3.
Biometals ; 27(2): 237-46, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24481550

RESUMEN

Tellurite, the most soluble tellurium oxyanion, is extremely harmful for most microorganisms. Part of this toxicity is due to the generation of reactive oxygen species that in turn cause oxidative stress. However, the way in which tellurite interferes with cellular processes is not well understood to date. Looking for new cellular tellurite targets, we decided to evaluate the functioning of the electron transport chain in tellurite-exposed cells. In this communication we show that the E. coli ndh gene, encoding NDH-II dehydrogenase, is significantly induced in toxicant-exposed cells and that the enzyme displays tellurite-reducing activity that results in increased superoxide levels in vitro.


Asunto(s)
Membrana Celular/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Escherichia coli/enzimología , Oxidorreductasas/metabolismo , Superóxidos/metabolismo , Telurio/metabolismo , Telurio/farmacología , Membrana Celular/metabolismo , Escherichia coli/citología , Escherichia coli/metabolismo , Oxidación-Reducción , Oxidorreductasas/genética
4.
mSystems ; 9(4): e0022124, 2024 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-38546227

RESUMEN

Initiation of bacterial DNA replication takes place at the origin of replication (oriC), a region characterized by the presence of multiple DnaA boxes that serve as the binding sites for the master initiator protein DnaA. This process is tightly controlled by modulation of the availability or activity of DnaA and oriC during development or stress conditions. Here, we aimed to uncover the physiological and molecular consequences of stopping replication in the model bacterium Bacillus subtilis. We successfully arrested replication in B. subtilis by employing a clustered regularly interspaced short palindromic repeats interference (CRISPRi) approach to specifically target the key DnaA boxes 6 and 7, preventing DnaA binding to oriC. In this way, other functions of DnaA, such as a transcriptional regulator, were not significantly affected. When replication initiation was halted by this specific artificial and early blockage, we observed that non-replicating cells continued translation and cell growth, and the initial replication arrest did not induce global stress conditions such as the SOS response.IMPORTANCEAlthough bacteria constantly replicate under laboratory conditions, natural environments expose them to various stresses such as lack of nutrients, high salinity, and pH changes, which can trigger non-replicating states. These states can enable bacteria to (i) become tolerant to antibiotics (persisters), (ii) remain inactive in specific niches for an extended period (dormancy), and (iii) adjust to hostile environments. Non-replicating states have also been studied because of the possibility of repurposing energy for the production of additional metabolites or proteins. Using clustered regularly interspaced short palindromic repeats interference (CRISPRi) targeting bacterial replication initiation sequences, we were able to successfully control replication initiation in Bacillus subtilis. This precise approach makes it possible to study non-replicating phenotypes, contributing to a better understanding of bacterial adaptive strategies.


Asunto(s)
Bacillus subtilis , Proteínas de Unión al ADN , Proteínas de Unión al ADN/genética , Bacillus subtilis/genética , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Proteínas Bacterianas/genética , Replicación del ADN/genética
5.
Microlife ; 4: uqad017, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37251512

RESUMEN

The alarmones and second messengers (p)ppGpp are important for the cellular response to amino acid starvation. Although the stringent response is present in many bacteria, the targets and functions of (p)ppGpp can differ between species, and our knowledge of (p)ppGpp targets is constantly expanding. Recently, it was demonstrated that these alarmones are also part of the heat shock response in Bacillus subtilis and that there is a functional overlap with the oxidative and heat stress transcriptional regulator Spx. Here, the (p)ppGpp second messenger alarmones allow the fast stress-induced downregulation of translation while Spx inhibits the further expression of translation-related genes to lower the load on the protein quality control system, while the chaperone and protease expression is induced. In this review, we discuss the role of (p)ppGpp and its intricate connections in the complex network of stress sensing, heat shock response, and adaptation in B. subtilis cells.

6.
Front Microbiol ; 14: 1281058, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38075883

RESUMEN

Metal(loid) salts were used to treat infectious diseases in the past due to their exceptional biocidal properties at low concentrations. However, the mechanism of their toxicity has yet to be fully elucidated. The production of reactive oxygen species (ROS) has been linked to the toxicity of soft metal(loid)s such as Ag(I), Au(III), As(III), Cd(II), Hg(II), and Te(IV). Nevertheless, few reports have described the direct, or ROS-independent, effects of some of these soft-metal(loid)s on bacteria, including the dismantling of iron-sulfur clusters [4Fe-4S] and the accumulation of porphyrin IX. Here, we used genome-wide genetic, proteomic, and biochemical approaches under anaerobic conditions to evaluate the direct mechanisms of toxicity of these metal(loid)s in Escherichia coli. We found that certain soft-metal(loid)s promote protein aggregation in a ROS-independent manner. This aggregation occurs during translation in the presence of Ag(I), Au(III), Hg(II), or Te(IV) and post-translationally in cells exposed to Cd(II) or As(III). We determined that aggregated proteins were involved in several essential biological processes that could lead to cell death. For instance, several enzymes involved in amino acid biosynthesis were aggregated after soft-metal(loid) exposure, disrupting intracellular amino acid concentration. We also propose a possible mechanism to explain how soft-metal(loid)s act as proteotoxic agents.

7.
Front Microbiol ; 12: 656895, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33936013

RESUMEN

The high neuroactive potential of metabolites produced by gut microbes has gained traction over the last few years, with metagenomic-based studies suggesting an important role of microbiota-derived γ-aminobutyric acid (GABA) in modulating mental health. Emerging evidence has revealed the presence of the glutamate decarboxylase (GAD)-encoding gene, a key enzyme to produce GABA, in the prominent human intestinal genus Bacteroides. Here, we investigated GABA production by Bacteroides in culture and metabolic assays combined with comparative genomics and phylogenetics. A total of 961 Bacteroides genomes were analyzed in silico and 17 metabolically and genetically diverse human intestinal isolates representing 11 species were screened in vitro. Using the model organism Bacteroides thetaiotaomicron DSM 2079, we determined GABA production kinetics, its impact on milieu pH, and we assessed its role in mitigating acid-induced cellular damage. We showed that the GAD-system consists of at least four highly conserved genes encoding a GAD, a glutaminase, a glutamate/GABA antiporter, and a potassium channel. We demonstrated a high prevalence of the GAD-system among Bacteroides with 90% of all Bacteroides genomes (96% in human gut isolates only) harboring all genes of the GAD-system and 16 intestinal Bacteroides strains producing GABA in vitro (ranging from 0.09 to 60.84 mM). We identified glutamate and glutamine as precursors of GABA production, showed that the production is regulated by pH, and that the GAD-system acts as a protective mechanism against acid stress in Bacteroides, mitigating cell death and preserving metabolic activity. Our data also indicate that the GAD-system might represent the only amino acid-dependent acid tolerance system in Bacteroides. Altogether, our results suggest an important contribution of Bacteroides in the regulation of the GABAergic system in the human gut.

8.
Nat Commun ; 8: 15320, 2017 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-28492282

RESUMEN

The metalloid tellurite is highly toxic to microorganisms. Several mechanisms of action have been proposed, including thiol depletion and generation of hydrogen peroxide and superoxide, but none of them can fully explain its toxicity. Here we use a combination of directed evolution and chemical and biochemical approaches to demonstrate that tellurite inhibits heme biosynthesis, leading to the accumulation of intermediates of this pathway and hydroxyl radical. Unexpectedly, the development of tellurite resistance is accompanied by increased susceptibility to hydrogen peroxide. Furthermore, we show that the heme precursor 5-aminolevulinic acid, which is used as an antimicrobial agent in photodynamic therapy, potentiates tellurite toxicity. Our results define a mechanism of tellurite toxicity and warrant further research on the potential use of the combination of tellurite and 5-aminolevulinic acid in antimicrobial therapy.


Asunto(s)
Antibacterianos/farmacología , Vías Biosintéticas , Hemo/biosíntesis , Metaloides/farmacología , Telurio/farmacología , Ácido Aminolevulínico/farmacología , Vías Biosintéticas/efectos de los fármacos , Farmacorresistencia Bacteriana/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Escherichia coli/genética , Escherichia coli/metabolismo , Genoma Bacteriano , Deficiencias de Hierro , Pruebas de Sensibilidad Microbiana , Modelos Biológicos , Mutación/genética , Protoporfirinas/farmacología , Superóxidos/metabolismo , Telurio/toxicidad
9.
Front Microbiol ; 7: 1160, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27507969

RESUMEN

The tellurium oxyanion tellurite (TeO3 (2-)) is extremely harmful for most organisms. It has been suggested that a potential bacterial tellurite resistance mechanism would consist of an enzymatic, NAD(P)H-dependent, reduction to the less toxic form elemental tellurium (Te(0)). To date, a number of enzymes such as catalase, type II NADH dehydrogenase and terminal oxidases from the electron transport chain, nitrate reductases, and dihydrolipoamide dehydrogenase (E3), among others, have been shown to display tellurite-reducing activity. This activity is generically referred to as tellurite reductase (TR). Bioinformatic data resting on some of the abovementioned enzymes enabled the identification of common structures involved in tellurite reduction including vicinal catalytic cysteine residues and the FAD/NAD(P)(+)-binding domain, which is characteristic of some flavoproteins. Along this line, thioredoxin reductase (TrxB), alkyl hydroperoxide reductase (AhpF), glutathione reductase (GorA), mercuric reductase (MerA), NADH: flavorubredoxin reductase (NorW), dihydrolipoamide dehydrogenase, and the putative oxidoreductase YkgC from Escherichia coli or environmental bacteria were purified and assessed for TR activity. All of them displayed in vitro TR activity at the expense of NADH or NADPH oxidation. In general, optimal reducing conditions occurred around pH 9-10 and 37°C. Enzymes exhibiting strong TR activity produced Te-containing nanostructures (TeNS). While GorA and AhpF generated TeNS of 75 nm average diameter, E3 and YkgC produced larger structures (>100 nm). Electron-dense structures were observed in cells over-expressing genes encoding TrxB, GorA, and YkgC.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda