Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
Glob Chang Biol ; 30(8): e17436, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-39162201

RESUMEN

Measurements of net primary productivity (NPP) and litter decomposition from tropical peatlands are severely lacking, limiting our ability to parameterise and validate models of tropical peatland development and thereby make robust predictions of how these systems will respond to future environmental and climatic change. Here, we present total NPP (i.e., above- and below-ground) and decomposition data from two floristically and structurally distinct forested peatland sites within the Pastaza Marañón Foreland Basin, northern Peru, the largest tropical peatland area in Amazonia: (1) a palm (largely Mauritia flexuosa) dominated swamp forest and (2) a hardwood dominated swamp forest (known as 'pole forest', due to the abundance of thin-stemmed trees). Total NPP in the palm forest and hardwood-dominated forest (9.83 ± 1.43 and 7.34 ± 0.84 Mg C ha-1 year-1, respectively) was low compared with values reported for terra firme forest in the region (14.21-15.01 Mg C ha-1 year-1) and for tropical peatlands elsewhere (11.06 and 13.20 Mg C ha-1 year-1). Despite the similar total NPP of the two forest types, there were considerable differences in the distribution of NPP. Fine root NPP was seven times higher in the palm forest (4.56 ± 1.05 Mg C ha-1 year-1) than in the hardwood forest (0.61 ± 0.22 Mg C ha-1 year-1). Above-ground palm NPP, a frequently overlooked component, made large contributions to total NPP in the palm-dominated forest, accounting for 41% (14% in the hardwood-dominated forest). Conversely, Mauritia flexuosa litter decomposition rates were the same in both plots: highest for leaf material, followed by root and then stem material (21%, 77% and 86% of mass remaining after 1 year respectively for both plots). Our results suggest potential differences in these two peatland types' responses to climate and other environmental changes and will assist in future modelling studies of these systems.


Mediciones de la productividad primaria neta (PPN) y la descomposición de materia orgánica de las turberas tropicales son escasas, lo que limita nuestra capacidad para parametrizar y validar modelos de desarrollo de las turberas tropicales y, en consecuencia, realizar predicciones sólidas sobre la respuesta de estos sistemas ante futuros cambios ambientales y climáticos. En este estudio, presentamos datos de PPN total (es decir, biomasa aérea y subterránea) y descomposición de la materia orgánica colectada en dos turberas boscosas con características florísticas y estructurales contrastantes dentro de la cuenca Pastaza Marañón al norte del Perú, el área de turberas tropicales más grande de la Amazonia: (1) un bosque pantanoso dominado por palmeras (principalmente Mauritia flexuosa) y (2) un bosque pantanosos dominado por árboles leñosos de tallo delgado (conocido como 'varillal hidromórfico'). La PPN total en el bosque de palmeras y el varillal hidromórfico (9,83 ± 1,43 y 7,34 ± 0,84 Mg C ha­1 año­1 respectivamente) fue baja en comparación con los valores reportados para los bosques de tierra firme en la región (14,21­15,01 Mg C ha­1 año­1) y para turberas tropicales en otros lugares (11,06 y 13,20 Mg C ha­1 año­1). A pesar de que la PPN total fue similar en ambos tipos de bosque, hubo diferencias considerables en la distribución de la PPN. La PPN de las raíces finas fue siete veces mayor en el bosque de palmeras (4,56 ± 1,05 Mg C ha­1 año­1) que en el varillal hidromórfico (0,61 ± 0,22 Mg C ha­1 año­1). La PPN de la biomasa aérea de las palmeras, un componente ignorado frecuentemente, contribuyó en gran medida a la PPN total del bosque de palmeras, representando el 41% (14% en el varillal hidromórfico). Por el contrario, la tasa de descomposición de materia orgánica de Mauritia flexuosa fue la misma en ambos sitios: la más alta corresponde a la hojarasca, seguida por las raíces y luego el tallo (21%, 77% y 86% de la masa restante después de un año, respectivamente para ambos sitios). Nuestros resultados sugieren diferencias potenciales en la respuesta de estos dos tipos de turberas al clima y otros cambios ambientales, y ayudarán en futuros estudios de modelamiento de estos sistemas.


Asunto(s)
Bosques , Perú , Humedales , Suelo/química , Hojas de la Planta/metabolismo , Clima Tropical
2.
Nature ; 519(7543): 344-8, 2015 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-25788097

RESUMEN

Atmospheric carbon dioxide records indicate that the land surface has acted as a strong global carbon sink over recent decades, with a substantial fraction of this sink probably located in the tropics, particularly in the Amazon. Nevertheless, it is unclear how the terrestrial carbon sink will evolve as climate and atmospheric composition continue to change. Here we analyse the historical evolution of the biomass dynamics of the Amazon rainforest over three decades using a distributed network of 321 plots. While this analysis confirms that Amazon forests have acted as a long-term net biomass sink, we find a long-term decreasing trend of carbon accumulation. Rates of net increase in above-ground biomass declined by one-third during the past decade compared to the 1990s. This is a consequence of growth rate increases levelling off recently, while biomass mortality persistently increased throughout, leading to a shortening of carbon residence times. Potential drivers for the mortality increase include greater climate variability, and feedbacks of faster growth on mortality, resulting in shortened tree longevity. The observed decline of the Amazon sink diverges markedly from the recent increase in terrestrial carbon uptake at the global scale, and is contrary to expectations based on models.


Asunto(s)
Dióxido de Carbono/análisis , Secuestro de Carbono , Bosque Lluvioso , Atmósfera/química , Biomasa , Brasil , Carbono/análisis , Carbono/metabolismo , Dióxido de Carbono/metabolismo , Tallos de la Planta/metabolismo , Árboles/crecimiento & desarrollo , Árboles/metabolismo , Clima Tropical , Madera/análisis
3.
J Biomech Eng ; 143(1)2021 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-32766749

RESUMEN

The estimation of human ankle's mechanical impedance is an important tool for modeling human balance. This work presents the implementation of a parameter-estimation approach based on a state-augmented extended Kalman filter (AEKF) to infer the ankle's mechanical impedance during quiet standing. However, the AEKF filter is sensitive to the initialization of the noise covariance matrices. In order to avoid a time-consuming trial-and-error method and to obtain a better estimation performance, a genetic algorithm (GA) is proposed to best tune the measurement noise (Rk) and process noise covariances (Q) of the extended Kalman filter (EKF). Results using simulated data show the efficacy of the proposed algorithm for parameter-estimation of a third-order biomechanical model. Experimental validation of these results is also presented. They suggest that age is an influencing factor in the human balance.


Asunto(s)
Algoritmos , Tobillo , Fenómenos Biomecánicos
4.
Phys Rev Lett ; 122(19): 197701, 2019 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-31144938

RESUMEN

It is known that the quantum mechanical ground state of a nanoscale junction has a significant impact on its electrical transport properties. This becomes particularly important in transistors consisting of a single molecule. Because of strong electron-electron interactions and the possibility of accessing ground states with high spins, these systems are eligible hosts of a current-blockade phenomenon called a ground-state spin blockade. This effect arises from the inability of a charge carrier to account for the spin difference required to enter the junction, as that process would violate the spin selection rules. Here, we present a direct experimental demonstration of a ground-state spin blockade in a high-spin single-molecule transistor. The measured transport characteristics of this device exhibit a complete suppression of resonant transport due to a ground-state spin difference of 3/2 between subsequent charge states. Strikingly, the blockade can be reversibly lifted by driving the system through a magnetic ground-state transition in one charge state, using the tunability offered by both magnetic and electric fields.

5.
Nano Lett ; 17(1): 186-193, 2017 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-28073272

RESUMEN

Future multifunctional hybrid devices might combine switchable molecules and 2D material-based devices. Spin-crossover compounds are of particular interest in this context since they exhibit bistability and memory effects at room temperature while responding to numerous external stimuli. Atomically thin 2D materials such as graphene attract a lot of attention for their fascinating electrical, optical, and mechanical properties, but also for their reliability for room-temperature operations. Here, we demonstrate that thermally induced spin-state switching of spin-crossover nanoparticle thin films can be monitored through the electrical transport properties of graphene lying underneath the films. Model calculations indicate that the charge carrier scattering mechanism in graphene is sensitive to the spin-state dependence of the relative dielectric constants of the spin-crossover nanoparticles. This graphene sensor approach can be applied to a wide class of (molecular) systems with tunable electronic polarizabilities.

6.
Ann Bot ; 120(5): 819-832, 2017 11 10.
Artículo en Inglés | MEDLINE | ID: mdl-29077782

RESUMEN

Background and Aims: Ophiocaryon is a lesser known genus in Sabiaceae. This study examines flowers of six Ophiocaryon species in comparison with Meliosmaalba, to identify taxonomically informative characters for understanding relationships within the family Sabiaceae, to imply previously unknown pollination mechanisms of Ophiocaryon, and to contribute to the placement of Sabiaceae within the early-diverging eudicots. Methods: Floral morphology and anatomy of six Ophiocaryon species and M. alba were studied and described using scanning electron microscopy, clearing techniques and resin sectioning. Key Results: Novel characters of Ophiocaryon were identified, e.g. conical cells on petals, different kinds of orbicules in anthers, stomata on nectary appendage tips and ovary, two distinct surface patterns on stamens and ovary, tanniferous cell layers in the ovary wall, and acorn-shaped unitegmic ovules with very short integuments. Comparison of floral characters between Ophiocaryon and Meliosma found that the calyx, corolla, androecium and gynoecium of Ophiocaryon resemble an undeveloped state of the latter taxon, reflecting a paedomorphic regression of the flower of Ophiocaryon. The flower morphology and anatomy of Ophiocaryon was compared with its putative sister species M. alba, but no clear shared derived characters could be detected. Moreover, the findings of scent, presence of conical cells on petals and a nectary suggest flowers are pollinated by small insects with a secondary pollen presentation on the cupula of fertile stamens. Conclusions: We found that Ophiocaryon may be derived from ancestors that were similar to extant Meliosma in their flower structure and pollination mechanism. However, the lack of shared derived characters between Ophiocaryon and its phylogenetic sister group M. alba is puzzling and requires further investigations on the diversity of the latter species.


Asunto(s)
Flores/anatomía & histología , Magnoliopsida/anatomía & histología , Evolución Biológica , Flores/ultraestructura , Magnoliopsida/clasificación , Magnoliopsida/ultraestructura , Microscopía Electrónica de Rastreo , Filogenia
7.
Conserv Biol ; 31(6): 1283-1292, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28272753

RESUMEN

Large, intact areas of tropical peatland are highly threatened at a global scale by the expansion of commercial agriculture and other forms of economic development. Conserving peatlands on a landscape scale, with their hydrology intact, is of international conservation importance to preserve their distinctive biodiversity and ecosystem services and maintain their resilience to future environmental change. We explored threats to and opportunities for conserving remaining intact tropical peatlands; thus, we excluded peatlands of Indonesia and Malaysia, where extensive deforestation, drainage, and conversion to plantations means conservation in this region can protect only small fragments of the original ecosystem. We focused on a case study, the Pastaza-Marañón Foreland Basin (PMFB) in Peru, which is among the largest known intact tropical peatland landscapes in the world and is representative of peatland vulnerability. Maintenance of the hydrological conditions critical for carbon storage and ecosystem function of peatlands is, in the PMFB, primarily threatened by expansion of commercial agriculture linked to new transport infrastructure that is facilitating access to remote areas. There remain opportunities in the PMFB and elsewhere to develop alternative, more sustainable land-use practices. Although some of the peatlands in the PMFB fall within existing legally protected areas, this protection does not include the most carbon-dense (domed pole forest) areas. New carbon-based conservation instruments (e.g., REDD+, Green Climate Fund), developing markets for sustainable peatland products, transferring land title to local communities, and expanding protected areas offer pathways to increased protection for intact tropical peatlands in Amazonia and elsewhere, such as those in New Guinea and Central Africa which remain, for the moment, broadly beyond the frontier of commercial development.


Asunto(s)
Conservación de los Recursos Naturales , Humedales , Indonesia , Malasia , Perú
8.
Dalton Trans ; 53(20): 8764-8771, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38712733

RESUMEN

In this work, we address the synthesis of stable spin-crossover nanoparticles capable of undergoing a hysteretic spin transition at room temperature. For this purpose, we use the reverse-micelle protocol to prepare naked [Fe(NH2trz)3](NO3)2 and core@shell [Fe(NH2trz)3](NO3)2@SiO2 nanoparticles. Through meticulous adjustment of synthetic parameters, we achieved nanoparticle sizes ranging from approximately 40 nm to 60 nm. Our findings highlight that [Fe(NH2trz)3](NO3)2 presents a modest thermal hysteresis of 7 K, which decreases by downsizing. Conversely, silica-coated nanoparticles with sizes of ca. 60 and 40 nm demonstrate a remarkable hysteretic response of approximately 30 K, switching their spin state around room temperature. Moreover, the presence of a SiO2 shell substantially enhances the nanoparticles' stability against oxidation. In this context, the larger 60 nm [Fe(NH2trz)3](NO3)2@SiO2 hybrid remains stable in water for up to two hours, enabling the observation of an unreported water-induced spin transition after 30 min. Therefore, this work also introduces an intriguing avenue for inducing spin transitions through solvent exchange, underscoring the versatility and potential of these nanoparticles.

9.
Inorg Chem ; 52(10): 6214-22, 2013 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-23621644

RESUMEN

We report the preparation of single-layer layered double hydroxide (LDH) two-dimensional (2D) nanosheets by exfoliation of highly crystalline NiAl-NO3 LDH. Next, these unilamellar moieties have been incorporated layer-by-layer (LbL) into a poly(sodium 4-styrenesulfonate)/LDH nanosheet multilayer ultrathin film (UTF). Fourier transform infrared spectroscopy (FT-IR), ultraviolet-visible light (UV-vis), and X-ray diffraction (XRD) profiles have been used to follow the uniform growth of the UTF. The use of a magnetic LDH as the cationic component of the multilayered architecture enables study of the resulting magnetic properties of the UTFs. Our magnetic data show the appearance of spontaneous magnetization at ∼5 K, thus confirming the effective transfer of the magnetic properties of the bulk LDH to the self-assembled film that displays glassy-like ferromagnetic behavior. The high number of bilayers accessible-more than 80-opens the door for the preparation of more-complex hybrid multifunctional materials that combine magnetism with the physical properties provided by other exfoliable layered inorganic hosts.


Asunto(s)
Hidróxidos/química , Nanoestructuras/química , Polímeros/química , Ácidos Sulfónicos/química , Hidróxidos/síntesis química , Campos Magnéticos , Tamaño de la Partícula , Propiedades de Superficie , Difracción de Rayos X
10.
Inorg Chem ; 52(23): 13536-45, 2013 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-24224547

RESUMEN

In this article, we present a theoretical microscopic approach to describe the magnetic and spectroscopic behavior of multifunctional hybrid materials which demonstrate spin crossover and ferromagnetic ordering. The low-spin to high-spin transition is considered as a cooperative phenomenon that is driven by the interaction of the electronic shells of the Fe ions with the full symmetric deformation of the local surrounding that is extended over the crystal lattice via the acoustic phonon field. The proposed model is applied to the analysis of the series [Fe(III)(sal2-trien)] [Mn(II)Cr(III)(ox)3]·solv, in short 1·solv, where solv = CH2Cl2, CH2Br2, and CHBr3.

11.
J Am Chem Soc ; 134(36): 14982-90, 2012 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-22894703

RESUMEN

A robust, stable and processable family of mononuclear lanthanoid complexes based on polyoxometalates (POMs) that exhibit single-molecule magnetic behavior is described here. Preyssler polyanions of general formula [LnP(5)W(30)O(110)](12-) (Ln(3+) = Tb, Dy, Ho, Er, Tm, and Yb) have been characterized with static and dynamic magnetic measurements and heat capacity experiments. For the Dy and Ho derivatives, slow relaxation of the magnetization has been found. A simple interpretation of these properties is achieved by using crystal field theory.

12.
Phys Rev Lett ; 108(24): 247213, 2012 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-23004325

RESUMEN

We report ac susceptibility and continuous wave and pulsed EPR experiments performed on GdW10 and GdW30 polyoxometalate clusters, in which a Gd3+ ion is coordinated to different polyoxometalate moieties. Despite the isotropic character of gadolinium as a free ion, these molecules show slow magnetic relaxation at very low temperatures, characteristic of single molecule magnets. For T≲200 mK, the spin-lattice relaxation becomes dominated by pure quantum tunneling events, with rates that agree quantitatively with those predicted by the Prokof'ev and Stamp model [Phys. Rev. Lett. 80, 5794 (1998)]. The sign of the magnetic anisotropy, the energy level splittings, and the tunneling rates strongly depend on the molecular structure. We argue that GdW30 molecules are also promising spin qubits with a coherence figure of merit Q(M)≳50.

13.
RSC Adv ; 11(36): 22419-22425, 2021 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-35480789

RESUMEN

A new direct and straightforward method is proposed to synthesize bare Au nanoparticles (Au NPs) on a quartz surface by nanosecond 532 nm pulsed laser irradiation of a quartz surface in contact with Au(iii) precursor solution. The characterisation by XPS, UV-Vis, SEM and AFM measurements demonstrate the formation of bare Au NPs anchored on the quartz surface with a mean height of 27 ± 10 nm localized in the laser irradiation area. The main features of this approach are their simplicity, quick fabrication and the large surface area covered by Au NPs. The absence of ligands/stabilizing agents on the Au NPs makes this substrate very suitable for its direct surface modification opening the range of applications in biology, medicine, sensing, catalysis, among others. As a proof of concept, the capabilities and advantages of this substrate as Surface Enhanced Raman Spectroscopy (SERS) platform were tested demonstrating the absence of any Raman signal overlapping with the analyte in the whole spectral range.

14.
Dalton Trans ; 50(17): 5931-5942, 2021 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-33949535

RESUMEN

The 1 : 2 and 1 : 1 Co(ii) complexes of the L ligand (L = 6-(3,5-diamino-2,4,6-triazinyl)2,2'-bipyridine) with formulas [CoII(L)2](ClO4)2·0.5MeCN·Et2O (1) and [CoII(L)(CH3CN)2(H2O)](ClO4)2·MeCN (2) have been prepared. The structural and magnetic characterization of the two compounds shows that they contain octahedral high-spin Co(ii) and present a field-induced slow relaxation of the magnetization. 1 has been inserted into a bimetallic oxalate-based network leading to a novel achiral 3D compound of formula [CoII(L)2][MnIICrIII(ox)3]2·(solvate) (3) exhibiting ferromagnetic ordering below 4.6 K. EPR measurements suggest a weak magnetic coupling between the two sublattices.

15.
J Comput Chem ; 31(6): 1321-32, 2010 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-20044799

RESUMEN

We present a FORTRAN code based on a new powerful and efficient computational approach to solve the double exchange problem for high-nuclearity MV clusters containing arbitrary number of localized spins and itinerant electrons. We also report some examples in order to show the possibilities of the program.

16.
Parasite Immunol ; 32(9-10): 633-43, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20691015

RESUMEN

Most of the current research on parasitic infections that affect humans and domestic animals has been focused on vaccines, diagnostic methods, epidemiology, new drug design, and recently, with the advancement of genomics and proteomics, on the evolutionary origins of parasites. However, the basic biology of many parasites of medical and veterinary importance has not been intensively studied. Some efforts have been made to obtain information on the parasite-host relationship; however, knowledge of the intricate neuroimmunoendocrine interactions of the host-parasite network, the consequences of this interaction on the host and parasite physiology, and its possible applications needs further investigation. We review here the literature, our own studies on the host-parasite neuroimmunoendocrine network, and how this basic knowledge can be used to design new treatments, by way of using hormones, antihormones, and hormone analogues as a possible novel therapy during parasitic diseases, with special emphasis on helminth parasites. Besides the biological interest, these investigations may contribute to the future identification of alternative treatments for several parasitic diseases. This complicated neuroimmunoendocrine network management during parasitic infections, and its physiological and behavioural consequences upon the host, may be operative in other mammalian infections. Such complexity may also help to explain the often conflicting results, observed between infections with respect to the role of the host sex and age, and hints to other avenues of research and strategies for their treatment and control.


Asunto(s)
Antiparasitarios , Sistema Endocrino/fisiología , Helmintiasis/tratamiento farmacológico , Helmintiasis/parasitología , Helmintos/fisiología , Interacciones Huésped-Parásitos , Sistema Inmunológico/fisiología , Animales , Antiparasitarios/química , Antiparasitarios/farmacología , Antiparasitarios/uso terapéutico , Diseño de Fármacos , Helmintiasis/inmunología , Antagonistas de Hormonas/uso terapéutico , Hormonas/uso terapéutico , Humanos
17.
Inorg Chem ; 49(17): 8073-7, 2010 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-20677766

RESUMEN

To explain the single-molecule magnet behavior of the mononuclear complex [(tpaMes)Fe](-) we have developed a model that takes into account the trigonal ligand field splitting of the atomic (5)D term of the Fe(II) ion, and the spin-orbital splitting and mixing of the ligand field terms. The ground ligand field term is shown to be the orbital doublet (5)E possessing an unquenched orbital angular momentum. We demonstrate that the splitting of this term cannot be described by the conventional zero-field splitting Hamiltonian proving thus the irrelevance of the spin-Hamiltonian formalism in the present case. The first-order orbital angular momentum is shown to lead to the strong magnetic anisotropy with the trigonal axis being the easy axis of the magnetization.

18.
Inorg Chem ; 48(10): 4557-68, 2009 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-19371089

RESUMEN

A general approach to the problem of electron delocalization in the high-nuclearity mixed-valence (MV) clusters containing an arbitrary number of localized spins and itinerant electrons is developed. Along with the double exchange, we consider the isotropic magnetic exchange between the localized electrons as well as the Coulomb intercenter repulsion. As distinguished from the previous approaches dealing with the MV systems in which itinerant electrons are delocalized over all constituent metal sites, here, we consider a more common case of systems exhibiting partial delocalization and containing several delocalized domains. Taking full advantage of the powerful angular momentum technique, we were able to derive closed form analytical expressions for the matrix elements of the full Hamiltonian. These expressions provide an efficient tool for treating complex mixed-valence systems, because they contain only products of 6j-symbols (that appear while treating the delocalized parts) and 9j-symbols (exchange interactions in localized parts) and do not contain high-order recoupling coefficients and 3j-symbols that essentially constrained all previous theories of mixed valency. The approach developed here is accompanied by an efficient computational procedure that allows us to calculate the bulk thermodynamic properties (magnetic susceptibility, magnetization, and magnetic specific heat) of high-nuclearity MV clusters. Finally, this approach has been used to discuss the magnetic properties of the octanuclear MV cluster [Fe(8)(mu(4)-O)(4)(4-Cl-pz)(12)Cl(4)](-) and the diphthalocyanine chains [YPc(2)].CH(2)Cl(2) and [ScPc(2)].CH(2)Cl(2) composed of MV dimers interacting through the magnetic exchange and Coulomb repulsion.


Asunto(s)
Magnetismo , Modelos Químicos , Teoría Cuántica , Electrones , Modelos Moleculares
19.
Ultramicroscopy ; 109(6): 730-40, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19269094

RESUMEN

The field of discrete tomography focuses on the reconstruction of samples that consist of only a few different materials. Ideally, a three-dimensional (3D) reconstruction of such a sample should contain only one grey level for each of the compositions in the sample. By exploiting this property in the reconstruction algorithm, either the quality of the reconstruction can be improved significantly, or the number of required projection images can be reduced. The discrete reconstruction typically contains fewer artifacts and does not have to be segmented, as it already contains one grey level for each composition. Recently, a new algorithm, called discrete algebraic reconstruction technique (DART), has been proposed that can be used effectively on experimental electron tomography datasets. In this paper, we propose discrete tomography as a general reconstruction method for electron tomography in materials science. We describe the basic principles of DART and show that it can be applied successfully to three different types of samples, consisting of embedded ErSi(2) nanocrystals, a carbon nanotube grown from a catalyst particle and a single gold nanoparticle, respectively.

20.
Nat Chem ; 11(4): 301-309, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30903036

RESUMEN

Spins in solids or in molecules possess discrete energy levels, and the associated quantum states can be tuned and coherently manipulated by means of external electromagnetic fields. Spins therefore provide one of the simplest platforms to encode a quantum bit (qubit), the elementary unit of future quantum computers. Performing any useful computation demands much more than realizing a robust qubit-one also needs a large number of qubits and a reliable manner with which to integrate them into a complex circuitry that can store and process information and implement quantum algorithms. This 'scalability' is arguably one of the challenges for which a chemistry-based bottom-up approach is best-suited. Molecules, being much more versatile than atoms, and yet microscopic, are the quantum objects with the highest capacity to form non-trivial ordered states at the nanoscale and to be replicated in large numbers using chemical tools.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda