Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Am J Transplant ; 23(11): 1709-1722, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37543091

RESUMEN

The induction of operational immune tolerance is a major goal in beta-cell replacement strategies for the treatment of type 1 diabetes. Our group previously reported long-term efficacy via biomaterial-mediated programmed death ligand 1 (PD-L1) immunotherapy in islet allografts in nonautoimmune models. In this study, we evaluated autoimmune recurrence and allograft rejection during islet transplantation in spontaneous nonobese diabetic (NOD) mice. Graft survival and metabolic function were significantly prolonged over 60 days in recipients of syngeneic islets receiving the biomaterial-delivered immunotherapy, but not in control animals. The biomaterial-mediated PD-L1 immunotherapy resulted in delayed allograft rejection in diabetic NOD mice compared with controls. Discrimination between responders and nonresponders was attributed to the enriched presence of CD206+ program death 1+ macrophages and exhausted signatures in the cytotoxic T cell compartment in the local graft microenvironment. Notably, draining lymph nodes had similar remodeling in innate and adaptive immune cell populations. This work establishes that our biomaterial platform for PD-L1 delivery can modulate immune responses to transplanted islets in diabetic NOD mice and, thus, can provide a platform for the development of immunologic strategies to curb the allo- and autoimmune processes in beta-cell transplant recipients.


Asunto(s)
Diabetes Mellitus Tipo 1 , Trasplante de Islotes Pancreáticos , Ratones , Animales , Ratones Endogámicos NOD , Antígeno B7-H1 , Rechazo de Injerto/etiología , Diabetes Mellitus Tipo 1/terapia , Inmunoterapia , Supervivencia de Injerto
2.
Small ; 18(36): e2106896, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35274457

RESUMEN

Hydrogel microparticles (microgels) are an attractive approach for therapeutic delivery because of their modularity, injectability, and enhanced integration with the host tissue. Multiple microgel fabrication strategies and chemistries have been implemented, yet manipulation of microgel degradability and its effect on in vivo tissue responses remains underexplored. Here, the authors report a facile method to synthesize microgels crosslinked with ester-containing junctions to afford tunable degradation kinetics. Monodisperse microgels of maleimide-functionalized poly(ethylene-glycol) are generated using droplet microfluidics crosslinked with thiol-terminated, ester-containing molecules. Tunable mechanics are achievable based on the ratio of degradable to nondegradable crosslinkers in the continuous phase. Degradation in an aqueous medium leads to microgel deformation based on swelling and a decrease in elastic modulus. Furthermore, degradation byproducts are cytocompatible and do not cause monocytic cell activation under noninflammatory conditions. These injectable microgels possess time-dependent degradation on the order of weeks in vivo. Lastly, the evaluation of tissue responses in a subcutaneous dorsal pocket shows a dynamic type-1 like immune response to the synthetic microgels, driven by interferon gamma (IFN-γ ) expression, which can be moderated by tuning the degradation properties. Collectively, this study demonstrates the development of a hydrolytic microgel platform that can be adapted to desired host tissue immune responses.


Asunto(s)
Microgeles , Ésteres , Hidrogeles , Inmunidad , Polietilenglicoles
3.
J Immunol ; 204(10): 2840-2851, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-32253240

RESUMEN

Allogeneic islet transplantation is limited by adverse effects of chronic immunosuppression used to control rejection. The programmed cell death 1 pathway as an important immune checkpoint has the potential to obviate the need for chronic immunosuppression. We generated an oligomeric form of programmed cell death 1 ligand chimeric with core streptavidin (SA-PDL1) that inhibited the T effector cell response to alloantigens and converted T conventional cells into CD4+Foxp3+ T regulatory cells. The SA-PDL1 protein was effectively displayed on the surface of biotinylated mouse islets without a negative impact islet viability and insulin secretion. Transplantation of SA-PDL1-engineered islet grafts with a short course of rapamycin regimen resulted in sustained graft survival and function in >90% of allogeneic recipients over a 100-d observation period. Long-term survival was associated with increased levels of intragraft transcripts for innate and adaptive immune regulatory factors, including IDO-1, arginase-1, Foxp3, TGF-ß, IL-10, and decreased levels of proinflammatory T-bet, IL-1ß, TNF-α, and IFN-γ as assessed on day 3 posttransplantation. T cells of long-term graft recipients generated a proliferative response to donor Ags at a similar magnitude to T cells of naive animals, suggestive of the localized nature of tolerance. Immunohistochemical analyses showed intense peri-islet infiltration of T regulatory cells in long-term grafts and systemic depletion of this cell population resulted in prompt rejection. The transient display of SA-PDL1 protein on the surface of islets serves as a practical means of localized immunomodulation that accomplishes sustained graft survival in the absence of chronic immunosuppression with potential clinical implications.


Asunto(s)
Aloinjertos/fisiología , Antígeno B7-H1/metabolismo , Diabetes Mellitus Tipo 1/inmunología , Terapia de Inmunosupresión/métodos , Islotes Pancreáticos/fisiología , Estreptavidina/metabolismo , Linfocitos T Reguladores/inmunología , Animales , Antígeno B7-H1/genética , Diferenciación Celular , Supervivencia Celular , Factores de Transcripción Forkhead/metabolismo , Humanos , Tolerancia Inmunológica , Inmunidad/genética , Inmunomodulación , Trasplante de Islotes Pancreáticos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C3H , Ratones Endogámicos C57BL , Proteínas Recombinantes de Fusión/genética , Estreptavidina/genética
4.
Am J Transplant ; 19(5): 1315-1327, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30378751

RESUMEN

Transplant of hydrogel-encapsulated allogeneic islets has been explored to reduce or eliminate the need for chronic systemic immunosuppression by creating a physical barrier that prevents direct antigen presentation. Although successful in rodents, translation of alginate microencapsulation to large animals and humans has been hindered by large capsule sizes (≥500 µm diameter) that result in suboptimal nutrient diffusion in the intraperitoneal space. We developed a microfluidic encapsulation system that generates synthetic poly(ethylene glycol)-based microgels with smaller diameters (310 ± 14 µm) that improve encapsulated islet insulin responsiveness over alginate capsules and allow transplant within vascularized tissue spaces, thereby reducing islet mass requirements and graft volumes. By delivering poly(ethylene glycol)-encapsulated islets to an isolated, retrievable, and highly vascularized site via a vasculogenic delivery vehicle, we demonstrate that a single pancreatic donor syngeneic islet mass exhibits improved long-term function over conventional alginate capsules and close integration with transplant site vasculature. In vivo tracking of bioluminescent allogeneic encapsulated islets in an autoimmune type 1 diabetes murine model showed enhanced cell survival over unencapsulated islets in the absence of chronic systemic immunosuppression. This method demonstrates a translatable alternative to intraperitoneal encapsulated islet transplant.


Asunto(s)
Diabetes Mellitus Experimental/terapia , Diabetes Mellitus Tipo 1/terapia , Insulina/metabolismo , Trasplante de Islotes Pancreáticos/métodos , Islotes Pancreáticos/citología , Microfluídica/métodos , Polietilenglicoles/química , Animales , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Tipo 1/patología , Femenino , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL
5.
Nat Mater ; 17(8): 732-739, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29867165

RESUMEN

Islet transplantation is a promising therapy for type 1 diabetes. However, chronic immunosuppression to control rejection of allogeneic islets induces morbidities and impairs islet function. T effector cells are responsible for islet allograft rejection and express Fas death receptors following activation, becoming sensitive to Fas-mediated apoptosis. Here, we report that localized immunomodulation using microgels presenting an apoptotic form of the Fas ligand with streptavidin (SA-FasL) results in prolonged survival of allogeneic islet grafts in diabetic mice. A short course of rapamycin treatment boosted the immunomodulatory efficacy of SA-FasL microgels, resulting in acceptance and function of allografts over 200 days. Survivors generated normal systemic responses to donor antigens, implying immune privilege of the graft, and had increased CD4+CD25+FoxP3+ T regulatory cells in the graft and draining lymph nodes. Deletion of T regulatory cells resulted in acute rejection of established islet allografts. This localized immunomodulatory biomaterial-enabled approach may provide an alternative to chronic immunosuppression for clinical islet transplantation.


Asunto(s)
Materiales Biocompatibles/metabolismo , Materiales Biocompatibles/farmacología , Proteína Ligando Fas/metabolismo , Proteína Ligando Fas/farmacología , Inmunomodulación/efectos de los fármacos , Trasplante de Islotes Pancreáticos/inmunología , Animales , Ratones , Estreptavidina/metabolismo , Trasplante Homólogo
6.
Proc Natl Acad Sci U S A ; 109(11): 4245-50, 2012 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-22371586

RESUMEN

A major hindrance in engineering tissues containing highly metabolically active cells is the insufficient oxygenation of these implants, which results in dying or dysfunctional cells in portions of the graft. The development of methods to increase oxygen availability within tissue-engineered implants, particularly during the early engraftment period, would serve to allay hypoxia-induced cell death. Herein, we designed and developed a hydrolytically activated oxygen-generating biomaterial in the form of polydimethylsiloxane (PDMS)-encapsulated solid calcium peroxide, PDMS-CaO(2). Encapsulation of solid peroxide within hydrophobic PDMS resulted in sustained oxygen generation, whereby a single disk generated oxygen for more than 6 wk at an average rate of 0.026 mM per day. The ability of this oxygen-generating material to support cell survival was evaluated using a ß cell line and pancreatic rat islets. The presence of a single PDMS-CaO(2) disk eliminated hypoxia-induced cell dysfunction and death for both cell types, resulting in metabolic function and glucose-dependent insulin secretion comparable to that in normoxic controls. A single PDMS-CaO(2) disk also sustained enhanced ß cell proliferation for more than 3 wk under hypoxic culture conditions. Incorporation of these materials within 3D constructs illustrated the benefits of these materials to prevent the development of detrimental oxygen gradients within large implants. Mathematical simulations permitted accurate prediction of oxygen gradients within 3D constructs and highlighted conditions under which supplementation of oxygen tension would serve to benefit cellular viability. Given the generality of this platform, the translation of these materials to other cell-based implants, as well as ischemic tissues in general, is envisioned.


Asunto(s)
Materiales Biocompatibles/farmacología , Células Secretoras de Insulina/patología , Oxígeno/farmacología , Animales , Compuestos de Calcio/farmacología , Muerte Celular/efectos de los fármacos , Hipoxia de la Célula/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Técnicas de Cocultivo , Dimetilpolisiloxanos/farmacología , Hidrólisis/efectos de los fármacos , Células Secretoras de Insulina/efectos de los fármacos , Ratones , Óxidos/farmacología , Ratas , Sefarosa/farmacología , Factores de Tiempo
7.
Adv Healthc Mater ; : e2400965, 2024 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-38843866

RESUMEN

For patients suffering from organ failure due to injury or autoimmune disease, allogeneic organ transplantation with chronic immunosuppression is considered the god standard in terms of clinical treatment. However, the true "holy grail" of transplant immunology is operational tolerance, in which the recipient exhibits a sustained lack of alloreactivity toward unencountered antigen presented by the donor graft. This outcome is resultant from critical changes to the phenotype and genotype of the immune repertoire predicated by the activation of specific signaling pathways responsive to soluble and mechanosensitive cues. Biomaterials have emerged as a medium for interfacing with and reprogramming these endogenous pathways toward tolerance in precise, minimally invasive, and spatiotemporally defined manners. By viewing seminal and contemporary breakthroughs in transplant tolerance induction through the lens of biomaterials-mediated immunomodulation strategies-which include intrinsic material immunogenicity, the depot effect, graft coatings, induction and delivery of tolerogenic immune cells, biomimicry of tolerogenic immune cells, and in situ reprogramming-this review emphasizes the stunning diversity of approaches in the field and spotlights exciting future directions for research to come.

8.
Tissue Eng Part A ; 30(7-8): 299-313, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38318841

RESUMEN

Immune checkpoint signaling, such as programmed cell death protein-1 (PD-1), is a key target for immunotherapy due to its role in dampening immune responses. PD-1 signaling in T cells is regulated by complex physicochemical and mechanical cues. However, how these mechanical forces are integrated with biochemical responses remains poorly understood. Our previous work demonstrated that the use of an immobilizing polyethylene glycol (PEG) linker on synthetic microgels for the presentation of a chimeric form of PD-L1, SA-PD-L1, lead to local regulatory responses capable of abrogating allograft rejection in a model of cell-based transplantation. We herein provide evidence that enhanced immune regulating function can be obtained when presentation of SA-PD-L1 is achieved through a longer more flexible PEG chain. Presentation of SA-PD-L1 through a linker of high molecular weight, and thus longer length (10 kDa, 60 nm in length), led to enhance conversion of naive T cells into T regulatory cells (Tregs) in vitro. In addition, using a subcutaneous implant model and protein tethered through three different linker sizes (6, 30, and 60 nm) to the surface of PEG hydrogels, we demonstrated that longer linkers promoted PD-1 immunomodulatory role in vivo through three main functions: (1) augmenting immune cell recruitment at the transplant site; (2) promoting the accumulation of naive Tregs expressing migratory markers; and (3) dampening CD8+ cytolytic molecule production while augmenting expression of exhaustion phenotypes locally. Notably, accumulation of Treg cells at the implant site persisted for over 30 days postimplantation, an effect not observed when protein was presented with the shorter version of the linkers (6 and 30 nm). Collectively, these studies reveal a facile approach by which PD-L1 function can be modulated through external tuning of synthetic presenting linkers. Impact statement Recently, there has been a growing interest in immune checkpoint molecules as potential targets for tolerance induction, including programmed cell death protein-1 (PD-1). However, how the mechanics of ligand binding to PD-1 receptor affect downstream activation signaling pathways remains unresolved. By taking advantage of the effect of polyethylene glycol chain length on molecule kinetics in an aqueous solution, we herein show that PD-L1 function can be amplified by adjusting the length of the grafting linker. Our results uncover a potential facile mechanism that can be exploited to advance the role of immune checkpoint ligands, in particular PD-L1, in tolerance induction for immunosuppression-free cell-based therapies.


Asunto(s)
Antígeno B7-H1 , Receptor de Muerte Celular Programada 1 , Receptor de Muerte Celular Programada 1/metabolismo , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Linfocitos T Reguladores/metabolismo , Inmunidad , Proteínas Reguladoras de la Apoptosis
9.
J Biomed Mater Res A ; 112(6): 866-880, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38189109

RESUMEN

For cell therapies, the subcutaneous space is an attractive transplant site due to its large surface area and accessibility for implantation, monitoring, biopsy, and retrieval. However, its poor vascularization has catalyzed research to induce blood vessel formation within the site to enhance cell revascularization and survival. Most studies focus on the subcutaneous space of rodents, which does not recapitulate important anatomical features and vascularization responses of humans. Herein, we evaluate biomaterial-driven vascularization in the porcine subcutaneous space. Additionally, we report the first use of cost-effective fluorescent microspheres to quantify perfusion in the porcine subcutaneous space. We investigate the vascularization-inducing efficacy of vascular endothelial growth factor (VEGF)-delivering synthetic hydrogels based on 4-arm poly(ethylene) glycol macromers with terminal maleimides (PEG-4MAL). We compare three groups: a non-degradable hydrogel with a VEGF-releasing PEG-4MAL gel coating (Core+VEGF gel); an uncoated, non-degradable hydrogel (Core-only); and naïve tissue. After 2 weeks, Core+VEGF gel has significantly higher tissue perfusion, blood vessel area, blood vessel density, and number of vessels compared to both Core-only and naïve tissue. Furthermore, healthy vital signs during surgery and post-procedure metrics demonstrate the safety of hydrogel delivery. We demonstrate that VEGF-delivering synthetic hydrogels induce robust vascularization and perfusion in the porcine subcutaneous space.


Asunto(s)
Materiales Biocompatibles , Factor A de Crecimiento Endotelial Vascular , Humanos , Porcinos , Animales , Factor A de Crecimiento Endotelial Vascular/farmacología , Materiales Biocompatibles/metabolismo , Hidrogeles/farmacología , Hidrogeles/metabolismo , Polietilenglicoles
10.
Cell Rep Med ; 4(3): 100959, 2023 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-36863336

RESUMEN

The transplanting islets to the liver approach suffers from an immediate posttransplant loss of islets of more than 50%, progressive graft dysfunction over time, and precludes recovery of grafts should there be serious complications such as the development of teratomas with grafts that are stem cell-derived islets (SC-islets). The omentum features an attractive extrahepatic alternative site for clinical islet transplantation. We explore an approach in which allogeneic islets are transplanted onto the omentum, which is bioengineered with a plasma-thrombin biodegradable matrix in three diabetic non-human primates (NHPs). Within 1 week posttransplant, each transplanted NHP achieves normoglycemia and insulin independence and remains stable until termination of the experiment. Success was achieved in each case with islets recovered from a single NHP donor. Histology demonstrates robust revascularization and reinnervation of the graft. This preclinical study can inform the development of strategies for ß cell replacement including the use of SC-islets or other types of novel cells in clinical settings.


Asunto(s)
Trasplante de Islotes Pancreáticos , Islotes Pancreáticos , Animales , Epiplón/cirugía , Islotes Pancreáticos/cirugía , Islotes Pancreáticos/metabolismo , Trasplante Homólogo , Trasplante de Islotes Pancreáticos/efectos adversos , Trasplante de Islotes Pancreáticos/patología , Primates , Aloinjertos
11.
Biomaterials ; 286: 121601, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35660823

RESUMEN

The transformative potential of cells as therapeutic agents is being realized in a wide range of applications, from regenerative medicine to cancer therapy to autoimmune disorders. The majority of these therapies require ex vivo expansion of the cellular product, often utilizing fetal bovine serum (FBS) in the culture media. However, the impact of residual FBS on immune responses to cell therapies and the resulting cell therapy outcomes remains unclear. Here, we show that hydrogel-delivered FBS elicits a robust type 2 immune response characterized by infiltration of eosinophils and CD4+ T cells. Host secretion of cytokines associated with type 2 immunity, including IL-4, IL-5, and IL-13, is also increased in FBS-containing hydrogels. We demonstrate that the immune response to xenogeneic serum components dominates the local environment and masks the immunomodulatory effects of biomaterial-delivered mesenchymal stromal/stem cells. Importantly, delivery of relatively small amounts of FBS (3.2% by volume) within BMP-2-containing biomaterial constructs dramatically reduces the ability of these constructs to promote de novo bone formation in a radial defect model in immunocompetent mice. These results urge caution when interpreting the immunological and tissue repair outcomes in immunocompetent pre-clinical models from cells and biomaterial constructs that have come in contact with xenogeneic serum components.


Asunto(s)
Materiales Biocompatibles , Células Madre Mesenquimatosas , Animales , Materiales Biocompatibles/farmacología , Diferenciación Celular , Hidrogeles/farmacología , Inmunidad , Ratones , Osteogénesis
12.
ACS Biomater Sci Eng ; 8(10): 4341-4353, 2022 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-36134725

RESUMEN

Biomaterial systems such as hydrogels enable localized delivery and postinjection modulation of cellular therapies in a wide array of contexts. Biomaterials as adjuvants have been an active area of investigation, but the study of functionalized biomaterials supporting immunosuppressive cell therapies for tolerogenic applications is still nascent. Here, we developed a 4-arm poly(ethylene-glycol)-maleimide (PEG-4MAL) hydrogel functionalized with interleukin-10 (IL-10) to improve the local delivery and efficacy of a cell therapy against autoimmune disease. The biophysical and biochemical properties of PEG-4MAL hydrogels were optimized to support dendritic cell (DC) viability and an immature phenotype. IL-10-functionalized PEG-4MAL (PEG-IL10) hydrogels exhibited controlled IL-10 release, extended the duration of DC support, and protected DCs from inflammatory assault. After incorporation in PEG-IL10 hydrogels, these DCs induced CD25+FoxP3+ regulatory T cells (Tregs) during in vitro coculture. These studies serve as a proof-of-concept for improving the efficacy of immunosuppressive cell therapies through biomaterial delivery. The flexible nature of this system enables its widespread application across a breadth of other tolerogenic applications for future investigation.


Asunto(s)
Hidrogeles , Interleucina-10 , Materiales Biocompatibles/farmacología , Células Dendríticas/metabolismo , Etilenos , Factores de Transcripción Forkhead/metabolismo , Hidrogeles/química , Hidrogeles/farmacología , Maleimidas/química , Fenotipo , Polietilenglicoles/química
13.
J Biomed Mater Res A ; 110(11): 1728-1737, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35841329

RESUMEN

Type 1 diabetes (T1D), an autoimmune disorder in which the insulin-producing ß-cells in the islets of Langerhans in the pancreas are destroyed, afflicts over 1.6 million Americans. Although pancreatic islet transplantation has shown promise in treating T1D, continuous use of required immunosuppression regimens limits clinical islet transplantation as it poses significant adverse effects on graft recipients and does not achieve consistent long-term graft survival with 50%-70% of recipients maintaining insulin independence at 5 years. T cells play a key role in graft rejection, and rebalancing pathogenic T effector and protective T regulatory cells can regulate autoimmune disorders and transplant rejection. The synergy of the interleukin-2 (IL-2) and Fas immunomodulatory pathways presents an avenue for eliminating the need for systemic immune suppression by exploiting IL-2's role in expanding regulatory T cells and leveraging Fas ligand (FasL) activity on antigen-induced cell death of effector T cells. Herein, we developed a hydrogel platform for co-delivering an analog of IL-2, IL-2D, and FasL-presenting microgels to achieve localized immunotolerance to pancreatic islets by targeting the upregulation of regulatory T cells and effector T cells simultaneously. Although this hydrogel provided for sustained, local delivery of active immunomodulatory proteins, indefinite allograft survival was not achieved. Immune profiling analysis revealed upregulation of target regulatory T cells but also increases in Granzyme B-expressing CD8+ T cells at the graft site. We attribute the failed establishment of allograft survival to these Granzyme B-expressing T cells. This study underscores the delicate balance of immunomodulatory components important for allograft survival - whose outcome can be dependent on timing, duration, modality of delivery, and disease model.


Asunto(s)
Diabetes Mellitus Tipo 1 , Trasplante de Islotes Pancreáticos , Islotes Pancreáticos , Aloinjertos , Linfocitos T CD8-positivos , Diabetes Mellitus Tipo 1/metabolismo , Diabetes Mellitus Tipo 1/terapia , Granzimas/metabolismo , Humanos , Hidrogeles/metabolismo , Hidrogeles/farmacología , Insulina/metabolismo , Interleucina-2/metabolismo , Interleucina-2/farmacología , Islotes Pancreáticos/metabolismo , Trasplante de Islotes Pancreáticos/patología
14.
Sci Adv ; 8(19): eabm9881, 2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35559682

RESUMEN

Islet transplantation to treat insulin-dependent diabetes is greatly limited by the need for maintenance immunosuppression. We report a strategy through which cotransplantation of allogeneic islets and streptavidin (SA)-FasL-presenting microgels to the omentum under transient rapamycin monotherapy resulted in robust glycemic control, sustained C-peptide levels, and graft survival in diabetic nonhuman primates for >6 months. Surgical extraction of the graft resulted in prompt hyperglycemia. In contrast, animals receiving microgels without SA-FasL under the same rapamycin regimen rejected islet grafts acutely. Graft survival was associated with increased number of FoxP3+ cells in the graft site with no significant changes in T cell systemic frequencies or responses to donor and third-party antigens, indicating localized tolerance. Recipients of SA-FasL microgels exhibited normal liver and kidney metabolic function, demonstrating safety. This localized immunomodulatory strategy succeeded with unmodified islets and does not require long-term immunosuppression, showing translational potential in ß cell replacement for treating type 1 diabetes.


Asunto(s)
Diabetes Mellitus Tipo 1 , Trasplante de Islotes Pancreáticos , Microgeles , Aloinjertos/metabolismo , Animales , Diabetes Mellitus Tipo 1/terapia , Trasplante de Islotes Pancreáticos/métodos , Primates , Sirolimus , Estreptavidina
15.
Acta Biomater ; 130: 268-280, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34087442

RESUMEN

Insufficient oxygenation is a serious issue arising within cell-based implants, as the hypoxic period between implantation and vascularization of the graft is largely unavoidable. In situ oxygen supplementation at the implant site should significantly mitigate hypoxia-induced cell death and dysfunction, as well as improve transplant efficacy, particularly for highly metabolically active cells such as pancreatic islets. One promising approach is the use of an oxygen generating material created through the encapsulation of calcium peroxide within polydimethylsiloxane (PDMS), termed OxySite. In this study, OxySite microbeads were incorporated within a macroporous PDMS scaffold to create a single, streamlined, oxygen generating macroporous scaffold. The resulting OxySite scaffold generated sufficient local oxygenation for up to 20 days, with nontoxic levels of reaction intermediates or by-products. The benefit of local oxygen release on transplant efficacy was investigated in a diabetic Lewis rat syngeneic transplantation model using a clinically relevant islet dosage (10,000 IEQ/kg BW) with different isolation purities (80%, 90%, and 99%). Impure islet preparations containing pancreatic non-islet cells, which are common in the clinical setting, permit examination of the effect of increased overall oxygen demand. Our transplantation outcomes showed that elevating the oxygen demand of the graft with decreasing isolation purity resulted in decreased graft efficacy for control implants, while the integration of OxySite significantly mitigated this impact and resulted in improved graft outcomes. Results highlight the superior clinical translational potential of these off-the-shelf OxySite scaffolds, where islet purity and the overall oxygen demands of implants are increased and highly variable. The oxygen-generating porous scaffold further provides a broad platform for enhancing the survival and efficacy of cellular implants for numerous other applications. STATEMENT OF SIGNIFICANCE: Hypoxia is a serious issue within tissue engineered implants. To address this challenge, we developed a distinct macroporous scaffold platform containing oxygen-generating microbeads. This oxygen-generating scaffold showed the potential to support clinically relevant cell dosages for islet transplantation, leading to improved treatment efficacy. This platform can also be used to mitigate hypoxia for other biomedical applications.


Asunto(s)
Trasplante de Islotes Pancreáticos , Islotes Pancreáticos , Animales , Supervivencia de Injerto , Oxígeno , Porosidad , Ratas , Ratas Endogámicas Lew
16.
Adv Healthc Mater ; 9(9): e2000102, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32255552

RESUMEN

Translation of transplanted alginate-encapsulated pancreatic islets to treat type 1 diabetes has been hindered by inconsistent long-term efficacy. This loss of graft function can be partially attributed to islet dysfunction associated with the destruction of extracellular matrix (ECM) interactions during the islet isolation process as well as immunosuppression-associated side effects. This study aims at recapitulating islet-ECM interactions by the direct functionalization of alginate with the ECM-derived peptides RGD, LRE, YIGSR, PDGEA, and PDSGR. Peptide functionalization is controlled in a concentration-dependent manner and its presentation is found to be homogeneous across the microcapsule environment. Preweaned porcine islets are encapsulated in peptide-functionalized alginate microcapsules, and those encapsulated in RGD-functionalized alginate displays enhanced viability and glucose-stimulated insulin release. Effects are RGD-specific and not observed with its scrambled control RDG nor with LRE, YIGSR, PDGEA, and PDSGR. This study supports the sustained presentation of ECM-derived peptides in helping to maintain health of encapsulated pancreatic islets and may aid in prolonging longevity of encapsulated islet grafts.


Asunto(s)
Trasplante de Islotes Pancreáticos , Islotes Pancreáticos , Alginatos , Animales , Matriz Extracelular , Insulina , Péptidos/farmacología , Porcinos
17.
Sci Adv ; 6(35): eaba5573, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32923626

RESUMEN

Antibody-mediated immune checkpoint blockade is a transformative immunotherapy for cancer. These same mechanisms can be repurposed for the control of destructive alloreactive immune responses in the transplantation setting. Here, we implement a synthetic biomaterial platform for the local delivery of a chimeric streptavidin/programmed cell death-1 (SA-PD-L1) protein to direct "reprogramming" of local immune responses to transplanted pancreatic islets. Controlled presentation of SA-PD-L1 on the surface of poly(ethylene glycol) microgels improves local retention of the immunomodulatory agent over 3 weeks in vivo. Furthermore, local induction of allograft acceptance is achieved in a murine model of diabetes only when receiving the SA-PD-L1-presenting biomaterial in combination with a brief rapamycin treatment. Immune characterization revealed an increase in T regulatory and anergic cells after SA-PD-L1-microgel delivery, which was distinct from naïve and biomaterial alone microenvironments. Engineering the local microenvironment via biomaterial delivery of checkpoint proteins has the potential to advance cell-based therapies, avoiding the need for systemic chronic immunosuppression.


Asunto(s)
Antígeno B7-H1 , Trasplante de Islotes Pancreáticos , Animales , Antígeno B7-H1/metabolismo , Materiales Biocompatibles/farmacología , Supervivencia de Injerto , Factores Inmunológicos , Inmunoterapia , Ratones , Ratones Endogámicos C57BL , Receptor de Muerte Celular Programada 1 , Estreptavidina
18.
Adv Healthc Mater ; 8(14): e1900371, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31111689

RESUMEN

Thiol-norbornene (thiol-ene) photoclickable poly(ethylene glycol) (PEG) hydrogels are a versatile biomaterial for cell encapsulation, drug delivery, and regenerative medicine. Numerous in vitro studies with these 4-arm ester-linked PEG-norbornene (PEG-4eNB) hydrogels demonstrate robust cytocompatibility and ability to retain long-term integrity with nondegradable crosslinkers. However, when transplanted in vivo into the subcutaneous or intraperitoneal space, these PEG-4eNB hydrogels with nondegradable crosslinkers rapidly degrade within 24 h. This characteristic limits the usefulness of PEG-4eNB hydrogels in biomedical applications. Replacing the ester linkage with an amide linkage (PEG-4aNB) mitigates this rapid in vivo degradation, and the PEG-4aNB hydrogels maintain long-term in vivo stability for months. Furthermore, when compared to PEG-4eNB, the PEG-4aNB hydrogels demonstrate equivalent mechanical properties, crosslinking kinetics, and high cytocompatibility with rat islets and human mesenchymal stem cells. Thus, the PEG-4aNB hydrogels may be a suitable replacement platform without necessitating critical design changes or sacrificing key properties relevant to the well-established PEG-4eNB hydrogels.


Asunto(s)
Hidrogeles/química , Luz , Polietilenglicoles/química , Compuestos de Sulfhidrilo/química , Animales , Femenino , Humanos , Hidrogeles/síntesis química , Cinética , Células Madre Mesenquimatosas/citología , Ratones Endogámicos BALB C , Polietilenglicoles/síntesis química , Ratas , Compuestos de Sulfhidrilo/síntesis química
19.
Biomaterials ; 172: 54-65, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29715595

RESUMEN

The use of immunoisolating macrodevices in islet transplantation confers the benefit of safety and translatability by containing transplanted cells within a single retrievable device. To date, there has been limited development and characterization of synthetic poly(ethylene glycol) (PEG)-based hydrogel macrodevices for islet encapsulation and transplantation. Herein, we describe a two-component synthetic PEG hydrogel macrodevice system, designed for islet delivery to an extrahepatic islet transplant site, consisting of a hydrogel core cross-linked with a non-degradable PEG dithiol and a vasculogenic outer layer cross-linked with a proteolytically sensitive peptide to promote degradation and enhance localized vascularization. Synthetic PEG macrodevices exhibited equivalent passive molecular transport to traditional microencapsulation materials (e.g., alginate) and long-term stability in the presence of proteases in vitro and in vivo, out to 14 weeks in rats. Encapsulated islets demonstrated high viability within the device in vitro and the incorporation of RGD adhesive peptides within the islet encapsulating PEG hydrogel improved insulin responsiveness to a glucose challenge. In vivo, the implementation of a vasculogenic, degradable hydrogel layer at the outer interface of the macrodevice enhanced vascular density within the rat omentum transplant site, resulting in improved encapsulated islet viability in a syngeneic diabetic rat model. These results highlight the benefits of the facile PEG platform to provide controlled presentation of islet-supportive ligands, as well as degradable interfaces for the promotion of engraftment and overall graft efficacy.


Asunto(s)
Portadores de Fármacos/química , Trasplante de Islotes Pancreáticos/métodos , Islotes Pancreáticos/metabolismo , Polietilenglicoles/química , Andamios del Tejido/química , Alginatos/metabolismo , Animales , Materiales Biocompatibles/metabolismo , Reactivos de Enlaces Cruzados/química , Liberación de Fármacos , Humanos , Hidrogeles/metabolismo , Insulina/metabolismo , Masculino , Péptidos/metabolismo , Permeabilidad , Ratas Endogámicas Lew , Reología/efectos de los fármacos , Ingeniería de Tejidos/métodos
20.
Biomaterials ; 129: 139-151, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28342320

RESUMEN

A major obstacle in the survival and efficacy of tissue engineered transplants is inadequate oxygenation, whereby unsupportive oxygen tensions result in significant cellular dysfunction and death within the implant. In a previous report, we developed an innovative oxygen generating biomaterial, termed OxySite, to provide supportive in situ oxygenation to cells and prevent hypoxia-induced damage. Herein, we explored the capacity of this biomaterial to mitigate hypoxic stress in both rat and nonhuman primate pancreatic islets by decreasing cell death, supporting metabolic activity, sustaining aerobic metabolism, preserving glucose responsiveness, and decreasing the generation of inflammatory cytokines. Further, the impact of supplemental oxygenation on in vivo cell function was explored by the transplantation of islets previously co-cultured with OxySite into a diabetic rat model. Transplant outcomes revealed significant improvement in graft efficacy for OxySite-treated islets, when transplanted within an extrahepatic site. These results demonstrate the potency of the OxySite material to mitigate activation of detrimental hypoxia-induced pathways in islets during culture and highlights the importance of in situ oxygenation on resulting islet transplant outcomes.


Asunto(s)
Materiales Biocompatibles/farmacología , Hipoxia/patología , Islotes Pancreáticos/patología , Oxígeno/farmacología , Estrés Fisiológico/efectos de los fármacos , Anaerobiosis , Animales , Apoptosis/efectos de los fármacos , Biomarcadores/metabolismo , Técnicas de Cocultivo , Diabetes Mellitus Experimental/patología , Diabetes Mellitus Experimental/terapia , Glucólisis/efectos de los fármacos , Inflamación/patología , Islotes Pancreáticos/efectos de los fármacos , Trasplante de Islotes Pancreáticos , Macaca fascicularis , Masculino , Neovascularización Fisiológica/efectos de los fármacos , Ratas Endogámicas Lew , Supervivencia Tisular/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda