Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 96
Filtrar
1.
Haematologica ; 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38899342

RESUMEN

Hematological cancers are among the most common cancers in adults and children. Despite significant improvements in therapies, many patients still succumb to the disease. Therefore, novel therapies are needed. The Wiskott-Aldrich syndrome protein (WASp) family regulates actin assembly in conjunction with the Arp2/3 complex, a ubiquitous nucleation factor. WASp is expressed exclusively in hematopoietic cells and exists in two allosteric conformations: autoinhibited or activated. Here, we describe the development of EG-011, a first-in-class small molecule activator of the WASp auto-inhibited form. EG-011 possesses in vitro and in vivo anti-tumor activity as a single agent in lymphoma, leukemia, and multiple myeloma, including models of secondary resistance to PI3K, BTK, and proteasome inhibitors. The in vitro activity was confirmed in a lymphoma xenograft. Actin polymerization and WASp binding was demonstrated using multiple techniques. Transcriptome analysis highlighted homology with drugs-inducing actin polymerization.

2.
J Chem Inf Model ; 63(11): 3601-3613, 2023 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-37227780

RESUMEN

The SARS-CoV-2 main protease (Mpro) is a crucial enzyme for viral replication and has been considered an attractive drug target for the treatment of COVID-19. In this study, virtual screening techniques and in vitro assays were combined to identify novel Mpro inhibitors starting from around 8000 FDA-approved drugs. The docking analysis highlighted 17 promising best hits, biologically characterized in terms of their Mpro inhibitory activity. Among them, 7 cephalosporins and the oral anticoagulant betrixaban were able to block the enzyme activity in the micromolar range with no cytotoxic effect at the highest concentration tested. After the evaluation of the degree of conservation of Mpro residues involved in the binding with the studied ligands, the ligands' activity on SARS-CoV-2 replication was assessed. The ability of betrixaban to affect SARS-CoV-2 replication associated to its antithrombotic effect could pave the way for its possible use in the treatment of hospitalized COVID-19 patients.


Asunto(s)
COVID-19 , Humanos , SARS-CoV-2 , Antivirales/farmacología , Antivirales/química , Reposicionamiento de Medicamentos , Ligandos , Inhibidores de Proteasas/farmacología , Inhibidores de Proteasas/química , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular
3.
Bioorg Chem ; 131: 106286, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36459778

RESUMEN

In this work, new steroidal aromatase inhibitors (AIs) were designed, synthesized, and tested. In one approach, C-ring substituted steroids namely those functionalized at C-11 position with an α or ß hydroxyl group or with a carbonyl group as well as C-9/C-11 steroidal olefins and epoxides were studied. It was found that the carbonyl group at C-11 is more beneficial for aromatase inhibition than the hydroxyl group, and that the C-ring epoxides were more potent than the C-ring olefins, leading to the discovery of a very strong AI, compound 7, with an IC50 of 0.011 µM, better than Exemestane, the steroidal AI in clinical use, which presents an IC50 of 0.050 µM. In another approach, we explored the biological activity of A-ring C-1/C-2 steroidal olefins and epoxides in relation to aromatase inhibition and compared it with the biological activity of C-ring C-9/C-11 steroidal olefins and epoxides. On the contrary to what was observed for the C-ring olefins and epoxides, the A-ring epoxides were less potent than A-ring olefins. Finally, the effect of 7ß-methyl substitution on aromatase inhibition was compared with 7α-methyl substitution, showing that 7ß-methyl is better than 7α-methyl substitution. Molecular modelling studies showed that the 7ß-methyl on C-7 seems to protrude into the opening to the access channel of aromatase in comparison to the 7α-methyl. This comparison led to find the best steroidal AI (12a) of this work with IC50 of 0.0058 µM. Compound 12a showed higher aromatase inhibition capacity than two of the three AIs currently in clinical use.


Asunto(s)
Inhibidores de la Aromatasa , Aromatasa , Inhibidores de la Aromatasa/farmacología , Aromatasa/metabolismo , Esteroides/farmacología , Relación Estructura-Actividad , Compuestos Epoxi
4.
Int J Mol Sci ; 24(15)2023 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-37569576

RESUMEN

The RNA-binding protein HuD has been shown to play a crucial role in gene regulation in the nervous system and is involved in various neurological and psychiatric diseases. In this study, through the creation of an interaction network on HuD and its potential targets, we identified a strong association between HuD and several diseases of the nervous system. Specifically, we focused on the relationship between HuD and the brain-derived neurotrophic factor (BDNF), whose protein is implicated in several neuronal diseases and is involved in the regulation of neuronal development, survival, and function. To better investigate this relationship and given that we previously demonstrated that folic acid (FA) is able to directly bind HuD itself, we performed in vitro experiments in neuron-like human SH-SY5Y cells in the presence of FA, also known to be a pivotal environmental factor influencing the nervous system development. Our findings show that FA exposure results in a significant increase in both HuD and BDNF transcripts and proteins after 2 and 4 h of treatment, respectively. Similar data were obtained after 2 h of FA incubation followed by 2 h of washout. This increase was no longer detected upon 24 h of FA exposure, probably due to a signaling shutdown mechanism. Indeed, we observed that following 24 h of FA exposure HuD is methylated. These findings indicate that FA regulates BDNF expression via HuD and suggest that FA can behave as an epigenetic modulator of HuD in the nervous system acting via short- and long-term mechanisms. Finally, the present results also highlight the potential of BDNF as a therapeutic target for specific neurological and psychiatric diseases.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo , Neuroblastoma , Humanos , Factor Neurotrófico Derivado del Encéfalo/genética , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proteínas ELAV/genética , Proteínas ELAV/metabolismo , Proteína 4 Similar a ELAV/genética , Neuroblastoma/metabolismo , Neuronas/metabolismo
5.
Molecules ; 28(3)2023 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-36771100

RESUMEN

Multiple myeloma (MM) is an aggressive and incurable disease for most patients, characterized by periods of treatment, remission and relapse. The introduction of new classes of drugs, such as proteasome inhibitors (PIs), has improved survival outcomes in these patient populations. The proteasome is the core of the ubiquitin-proteasome system (UPS), a complex and conserved pathway involved in the control of multiple cellular processes, including cell cycle control, transcription, DNA damage repair, protein quality control and antigen presentation. To date, PIs represent the gold standard for the treatment of MM. Bortezomib was the first PI approved by the FDA, followed by next generation of PIs, namely carfilzomib and ixazomib. Natural agents play an important role in anti-tumor drug discovery, and many of them have recently been reported to inhibit the proteasome, thus representing a new potential source of anti-MM drugs. Based on the pivotal biological role of the proteasome and on PIs' significance in the management of MM, in this review we aim to briefly summarize recent evidence on natural compounds capable of inhibiting the proteasome, thus triggering anti-MM activity.


Asunto(s)
Antineoplásicos , Mieloma Múltiple , Humanos , Inhibidores de Proteasoma/farmacología , Inhibidores de Proteasoma/uso terapéutico , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/patología , Complejo de la Endopetidasa Proteasomal , Antineoplásicos/efectos adversos , Bortezomib/uso terapéutico
6.
J Transl Med ; 20(1): 482, 2022 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-36273153

RESUMEN

BACKGROUND: DNA ligases are crucial for DNA repair and cell replication since they catalyze the final steps in which DNA breaks are joined. DNA Ligase III (LIG3) exerts a pivotal role in Alternative-Non-Homologous End Joining Repair (Alt-NHEJ), an error-prone DNA repair pathway often up-regulated in genomically unstable cancer, such as Multiple Myeloma (MM). Based on the three-dimensional (3D) LIG3 structure, we performed a computational screening to identify LIG3-targeting natural compounds as potential candidates to counteract Alt-NHEJ activity in MM. METHODS: Virtual screening was conducted by interrogating the Phenol Explorer database. Validation of binding to LIG3 recombinant protein was performed by Saturation Transfer Difference (STD)-nuclear magnetic resonance (NMR) experiments. Cell viability was analyzed by Cell Titer-Glo assay; apoptosis was evaluated by flow cytometric analysis following Annexin V-7AAD staining. Alt-NHEJ repair modulation was evaluated using plasmid re-joining assay and Cytoscan HD. DNA Damage Response protein levels were analyzed by Western blot of whole and fractionated protein extracts and immunofluorescence analysis. The mitochondrial DNA (mtDNA) copy number was determined by qPCR. In vivo activity was evaluated in NOD-SCID mice subcutaneously engrafted with MM cells. RESULTS: Here, we provide evidence that a natural flavonoid Rhamnetin (RHM), selected by a computational approach, counteracts LIG3 activity and killed Alt-NHEJ-dependent MM cells. Indeed, Nuclear Magnetic Resonance (NMR) showed binding of RHM to LIG3 protein and functional experiments revealed that RHM interferes with LIG3-driven nuclear and mitochondrial DNA repair, leading to significant anti-MM activity in vitro and in vivo. CONCLUSION: Taken together, our findings provide proof of concept that RHM targets LIG3 addiction in MM and may represent therefore a novel promising anti-tumor natural agent to be investigated in an early clinical setting.


Asunto(s)
ADN Ligasa (ATP) , Reparación del ADN , Flavonoides , Mieloma Múltiple , Animales , Ratones , Anexina A5/genética , Anexina A5/metabolismo , ADN Ligasa (ATP)/genética , ADN Ligasa (ATP)/metabolismo , ADN Ligasas/química , ADN Ligasas/genética , ADN Ligasas/metabolismo , Reparación del ADN/efectos de los fármacos , Reparación del ADN/genética , ADN Mitocondrial/efectos de los fármacos , ADN Mitocondrial/genética , ADN Mitocondrial/metabolismo , Flavonoides/farmacología , Flavonoides/uso terapéutico , Ratones Endogámicos NOD , Ratones SCID , Mieloma Múltiple/tratamiento farmacológico , Mieloma Múltiple/genética , Mieloma Múltiple/metabolismo , Fenoles , Proteínas Recombinantes/metabolismo
7.
Plant Cell ; 31(11): 2789-2804, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31548254

RESUMEN

Compartmentation is a key strategy enacted by plants for the storage of specialized metabolites. The saffron spice owes its red color to crocins, a complex mixture of apocarotenoid glycosides that accumulate in intracellular vacuoles and reach up to 10% of the spice dry weight. We developed a general approach, based on coexpression analysis, heterologous expression in yeast (Saccharomyces cerevisiae), and in vitro transportomic assays using yeast microsomes and total plant metabolite extracts, for the identification of putative vacuolar metabolite transporters, and we used it to identify Crocus sativus transporters mediating vacuolar crocin accumulation in stigmas. Three transporters, belonging to both the multidrug and toxic compound extrusion and ATP binding cassette C (ABCC) families, were coexpressed with crocins and/or with the gene encoding the first dedicated enzyme in the crocin biosynthetic pathway, CsCCD2. Two of these, belonging to the ABCC family, were able to mediate transport of several crocins when expressed in yeast microsomes. CsABCC4a was selectively expressed in C. sativus stigmas, was predominantly tonoplast localized, transported crocins in vitro in a stereospecific and cooperative way, and was able to enhance crocin accumulation when expressed in Nicotiana benthamiana leaves.plantcell;31/11/2789/FX1F1fx1.


Asunto(s)
Transportadoras de Casetes de Unión a ATP/metabolismo , Carotenoides/metabolismo , Crocus/metabolismo , Proteínas de Plantas/metabolismo , Vacuolas/metabolismo , Transportadoras de Casetes de Unión a ATP/genética , Vías Biosintéticas , Clonación Molecular , Crocus/genética , Flores/metabolismo , Regulación de la Expresión Génica de las Plantas , Cinética , Extractos Vegetales , Hojas de la Planta/citología , Hojas de la Planta/metabolismo , Proteínas de Plantas/genética , Saccharomyces cerevisiae/genética , Distribución Tisular/fisiología , Nicotiana/genética , Nicotiana/metabolismo
8.
Int J Mol Sci ; 23(21)2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36361848

RESUMEN

The insurgence of drug resistance in treating Multiple Myeloma (MM) still represents a major hamper in finding effective treatments, although over the past decades new classes of drugs, such as proteasome inhibitors and immunomodulatory drugs, have been discovered. Recently, our research team, within a Nature-Aided Drug Discovery project, isolated from Hibiscus Sabdariffa L. calyces the secondary metabolite called Hib-ester which possesses antiproliferative properties against human multiple myeloma RPMI 8226 cells, reduces migration and cell invasion and inhibits proteasome without neurotoxic effects. In the present study, we explored the chemical spaces of the hit compound Hib-ester. We explored the structure-activity relationships (SAR), and we optimized the scaffold through sequentially modifying Hib-ester subunits. Compound screening was performed based on cytotoxicity against the RPMI 8226 cells to assess the potential efficacy toward human MM. The ability of the most effective molecules to inhibit the proteasome was evaluated and the binding mode of the most promising compounds in the proteasome chymotrypsin binding pocket was deciphered through molecular modeling simulations. Compounds 13 and 14 are more potent than Hib-ester, demonstrating that our strategy was suitable for the identification of a novel chemotype for developing possible drug candidates and hopefully widening the drug armamentarium against MM.


Asunto(s)
Antineoplásicos , Mieloma Múltiple , Humanos , Mieloma Múltiple/tratamiento farmacológico , Complejo de la Endopetidasa Proteasomal/metabolismo , Línea Celular Tumoral , Inhibidores de Proteasoma/farmacología , Inhibidores de Proteasoma/química , Ésteres , Antineoplásicos/uso terapéutico
9.
Molecules ; 27(21)2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36364347

RESUMEN

The SARS-CoV-2 non-structural protein 13 (nsp13) helicase is an essential enzyme for viral replication and has been identified as an attractive target for the development of new antiviral drugs. In detail, the helicase catalyzes the unwinding of double-stranded DNA or RNA in a 5' to 3' direction and acts in concert with the replication-transcription complex (nsp7/nsp8/nsp12). In this work, bioinformatics and computational tools allowed us to perform a detailed conservation analysis of the SARS-CoV-2 helicase genome and to further predict the druggable enzyme's binding pockets. Thus, a structure-based virtual screening was used to identify valuable compounds that are capable of recognizing multiple nsp13 pockets. Starting from a database of around 4000 drugs already approved by the Food and Drug Administration (FDA), we chose 14 shared compounds capable of recognizing three out of four sites. Finally, by means of visual inspection analysis and based on their commercial availability, five promising compounds were submitted to in vitro assays. Among them, PF-03715455 was able to block both the unwinding and NTPase activities of nsp13 in a micromolar range.


Asunto(s)
Tratamiento Farmacológico de COVID-19 , SARS-CoV-2 , Humanos , Reposicionamiento de Medicamentos , ARN Helicasas/metabolismo , Proteínas no Estructurales Virales/metabolismo , ADN Helicasas/metabolismo , Antivirales/farmacología
10.
J Antimicrob Chemother ; 76(2): 396-412, 2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33254234

RESUMEN

OBJECTIVES: To define key genetic elements, single or in clusters, underlying SARS-CoV-2 (severe acute respiratory syndrome coronavirus-2) evolutionary diversification across continents, and their impact on drug-binding affinity and viral antigenicity. METHODS: A total of 12 150 SARS-CoV-2 sequences (publicly available) from 69 countries were analysed. Mutational clusters were assessed by hierarchical clustering. Structure-based virtual screening (SBVS) was used to select the best inhibitors of 3-chymotrypsin-like protease (3CL-Pr) and RNA-dependent RNA polymerase (RdRp) among the FDA-approved drugs and to evaluate the impact of mutations on binding affinity of these drugs. The impact of mutations on epitope recognition was predicted following Grifoni et al. (Cell Host Microbe 2020. 27: 671-80.). RESULTS: Thirty-five key mutations were identified (prevalence: ≥0.5%), residing in different viral proteins. Sixteen out of 35 formed tight clusters involving multiple SARS-CoV-2 proteins, highlighting intergenic co-evolution. Some clusters (including D614GSpike + P323LRdRp + R203KN + G204RN) occurred in all continents, while others showed a geographically restricted circulation (T1198KPL-Pr + P13LN + A97VRdRp in Asia, L84SORF-8 + S197LN in Europe, Y541CHel + H504CHel + L84SORF-8 in America and Oceania). SBVS identified 20 best RdRp inhibitors and 21 best 3CL-Pr inhibitors belonging to different drug classes. Notably, mutations in RdRp or 3CL-Pr modulate, positively or negatively, the binding affinity of these drugs. Among them, P323LRdRp (prevalence: 61.9%) reduced the binding affinity of specific compounds including remdesivir while it increased the binding affinity of the purine analogues penciclovir and tenofovir, suggesting potential hypersusceptibility. Finally, specific mutations (including Y541CHel + H504CHel) strongly hampered recognition of Class I/II epitopes, while D614GSpike profoundly altered the structural stability of a recently identified B cell epitope target of neutralizing antibodies (amino acids 592-620). CONCLUSIONS: Key genetic elements reflect geographically dependent SARS-CoV-2 genetic adaptation, and may play a potential role in modulating drug susceptibility and hampering viral antigenicity. Thus, a close monitoring of SARS-CoV-2 mutational patterns is crucial to ensure the effectiveness of treatments and vaccines worldwide.


Asunto(s)
Adaptación Biológica/genética , Antivirales/metabolismo , COVID-19/inmunología , Proteasas 3C de Coronavirus/genética , Inhibidores de Proteasa de Coronavirus/metabolismo , ARN Polimerasa Dependiente de ARN de Coronavirus/genética , SARS-CoV-2/genética , Américas , Secuencia de Aminoácidos , Antígenos Virales/sangre , Antivirales/uso terapéutico , Asia , COVID-19/epidemiología , Simulación por Computador , Proteasas 3C de Coronavirus/metabolismo , Inhibidores de Proteasa de Coronavirus/uso terapéutico , ARN Polimerasa Dependiente de ARN de Coronavirus/metabolismo , Europa (Continente) , Evolución Molecular , Humanos , Simulación del Acoplamiento Molecular , Familia de Multigenes , Mutación/genética , Tasa de Mutación , Oceanía , Unión Proteica , SARS-CoV-2/enzimología , Topografía Médica , Tratamiento Farmacológico de COVID-19
11.
Drug Resist Updat ; 53: 100721, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33132205

RESUMEN

Coronaviridae is a peculiar viral family, with a very large RNA genome and characteristic appearance, endowed with remarkable tendency to transfer from animals to humans. Since the beginning of the 21st century, three highly transmissible and pathogenic coronaviruses have crossed the species barrier and caused deadly pneumonia, inflicting severe outbreaks and causing human health emergencies of inconceivable magnitude. Indeed, in the past two decades, two human coronaviruses emerged causing serious respiratory illness: severe acute respiratory syndrome coronavirus (SARS-CoV-1) and Middle Eastern respiratory syndrome coronavirus (MERS-CoV), causing more than 10,000 cumulative cases, with mortality rates of 10 % for SARS-CoV-1 and 34.4 % for MERS-CoV. More recently, the severe acute respiratory syndrome coronavirus virus 2 (SARS-CoV-2) has emerged in China and has been identified as the etiological agent of the recent COVID-19 pandemic outbreak. It has rapidly spread throughout the world, causing nearly 22 million cases and ∼ 770,000 deaths worldwide, with an estimated mortality rate of ∼3.6 %, hence posing serious challenges for adequate and effective prevention and treatment. Currently, with the exception of the nucleotide analogue prodrug remdesivir, and despite several efforts, there is no known specific, proven, pharmacological treatment capable of efficiently and rapidly inducing viral containment and clearance of SARS-CoV-2 infection as well as no broad-spectrum drug for other human pathogenic coronaviruses. Another confounding factor is the paucity of molecular information regarding the tendency of coronaviruses to acquire drug resistance, a gap that should be filled in order to optimize the efficacy of antiviral drugs. In this light, the present review provides a systematic update on the current knowledge of the marked global efforts towards the development of antiviral strategies aimed at coping with the infection sustained by SARS-CoV-2 and other human pathogenic coronaviruses, displaying drug resistance profiles. The attention has been focused on antiviral drugs mainly targeting viral protease, RNA polymerase and spike glycoprotein, that have been tested in vitro and/or in clinical trials as well as on promising compounds proven to be active against coronaviruses by an in silico drug repurposing approach. In this respect, novel insights on compounds, identified by structure-based virtual screening on the DrugBank database endowed by multi-targeting profile, are also reported. We specifically identified 14 promising compounds characterized by a good in silico binding affinity towards, at least, two of the four studied targets (viral and host proteins). Among which, ceftolozane and NADH showed the best multi-targeting profile, thus potentially reducing the emergence of resistant virus strains. We also focused on potentially novel pharmacological targets for the development of compounds with anti-pan coronavirus activity. Through the analysis of a large set of viral genomic sequences, the current review provides a comprehensive and specific map of conserved regions across human coronavirus proteins which are essential for virus replication and thus with no or very limited tendency to mutate. Hence, these represent key druggable targets for novel compounds against this virus family. In this respect, the identification of highly effective and innovative pharmacological strategies is of paramount importance for the treatment and/or prophylaxis of the current pandemic but potentially also for future and unavoidable outbreaks of human pathogenic coronaviruses.


Asunto(s)
Antivirales/administración & dosificación , Infecciones por Coronavirus/tratamiento farmacológico , Sistemas de Liberación de Medicamentos/métodos , SARS-CoV-2/efectos de los fármacos , Secuencia de Aminoácidos , Animales , Antivirales/química , Antivirales/metabolismo , COVID-19/metabolismo , Infecciones por Coronavirus/metabolismo , Sistemas de Liberación de Medicamentos/tendencias , Humanos , Inhibidores de Proteasas/administración & dosificación , Inhibidores de Proteasas/química , Inhibidores de Proteasas/metabolismo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Inhibidores de la Transcriptasa Inversa/administración & dosificación , Inhibidores de la Transcriptasa Inversa/química , Inhibidores de la Transcriptasa Inversa/metabolismo , SARS-CoV-2/metabolismo , Tratamiento Farmacológico de COVID-19
12.
Molecules ; 26(21)2021 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-34771006

RESUMEN

Multiple Myeloma (MM) is an aggressive tumor causing millions of deaths every year and currently available therapies are often unsuccessful or correlated with severe side effects. In our previous work we demonstrated that the Hibiscus sabdariffa hydroalcoholic extract inhibits the growth of the MM cell line and we isolated two metabolites responsible for the activity: Hib-ester and Hib-carbaldehyde. Herein we report their interaction with proteasome, one of the main targets in the fight against MM. The molecular modelling study outlined a good interaction of both compounds with the target and these results prompted us to investigate their potential to inhibit proteasome. Metabolites were then isolated from the calyces and an extract with a high content of Hib-ester and Hib-carbaldehyde was prepared. An anticancer profile was drawn, evaluating apoptosis, autophagy and proteasome inhibition, with the anticancer properties being mainly attributed to the Hib-ester and Hib-carbaldehyde, while the proteasome inhibition of the extract could also be ascribed to the presence of anthocyanins, a class of secondary metabolites already known for their proteasome inhibitory activity.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Hibiscus/química , Mieloma Múltiple/tratamiento farmacológico , Extractos Vegetales/farmacología , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/metabolismo , Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Modelos Moleculares , Mieloma Múltiple/patología , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación , Células Tumorales Cultivadas
13.
Molecules ; 25(23)2020 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-33255661

RESUMEN

Mushrooms can be considered a valuable source of natural bioactive compounds with potential polypharmacological effects due to their proven antimicrobial, antiviral, antitumor, and antioxidant activities. In order to identify new potential anticancer compounds, an in-house chemical database of molecules extracted from both edible and non-edible fungal species was employed in a virtual screening against the isoform 7 of the Histone deacetylase (HDAC). This target is known to be implicated in different cancer processes, and in particular in both breast and ovarian tumors. In this work, we proposed the ibotenic acid as lead compound for the development of novel HDAC7 inhibitors, due to its antiproliferative activity in human breast cancer cells (MCF-7). These promising results represent the starting point for the discovery and the optimization of new HDAC7 inhibitors and highlight the interesting opportunity to apply the "drug repositioning" paradigm also to natural compounds deriving from mushrooms.


Asunto(s)
Antineoplásicos/química , Antineoplásicos/farmacología , Productos Biológicos/química , Productos Biológicos/farmacología , Hongos/química , Inhibidores de Histona Desacetilasas/química , Inhibidores de Histona Desacetilasas/farmacología , Antineoplásicos/aislamiento & purificación , Sitios de Unión , Productos Biológicos/aislamiento & purificación , Línea Celular Tumoral , Reposicionamiento de Medicamentos , Inhibidores de Histona Desacetilasas/aislamiento & purificación , Histona Desacetilasas , Humanos , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Estructura Molecular , Unión Proteica , Relación Estructura-Actividad
14.
Molecules ; 25(9)2020 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-32384767

RESUMEN

Essential oils (EOs) are popular in aromatherapy, a branch of alternative medicine that claims their curative effects. Moreover, several studies reported EOs as potential anti-cancer agents by inducing apoptosis in different cancer cell models. In this study, we have considered EOs as a potential resource of new kinase inhibitors with a polypharmacological profile. On the other hand, computational methods offer the possibility to predict the theoretical activity profile of ligands, discovering dangerous off-targets and/or synergistic effects due to the potential multi-target action. With this aim, we performed a Structure-Based Virtual Screening (SBVS) against X-ray models of several protein kinases selected from the Protein Data Bank (PDB) by using a chemoinformatics database of EOs. By evaluating theoretical binding affinity, 13 molecules were detected among EOs as new potential kinase inhibitors with a multi-target profile. The two compounds with higher percentages in the EOs were studied more in depth by means Induced Fit Docking (IFD) protocol, in order to better predict their binding modes taking into account also structural changes in the receptor. Finally, given its good binding affinity towards five different kinases, cinnamyl cinnamate was biologically tested on different cell lines with the aim to verify the antiproliferative activity. Thus, this work represents a starting point for the optimization of the most promising EOs structure as kinase inhibitors with multi-target features.


Asunto(s)
Antineoplásicos/farmacología , Aceites Volátiles/química , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Quinasas/química , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Cinamatos/farmacología , Receptores ErbB/química , Humanos , Ligandos , Simulación del Acoplamiento Molecular , Aceites Volátiles/análisis , Polifarmacología , Proteínas Tirosina Quinasas/química , Proteínas Proto-Oncogénicas B-raf/química , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora/química , Proteínas Tirosina Quinasas Receptoras/química , Relación Estructura-Actividad
15.
J Antimicrob Chemother ; 73(5): 1158-1166, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29373677

RESUMEN

Background: Dolutegravir, an integrase strand-transfer inhibitor (STI), shows a high genetic barrier to resistance. Dolutegravir is reported to be effective against viruses resistant to raltegravir and elvitegravir. In this study, we report the case of a patient treated with dolutegravir monotherapy. Failure of dolutegravir treatment was observed concomitant with the appearance of N155H-K211R-E212T mutations in the integrase (IN) gene in addition to the polymorphic K156N mutation that was present at baseline in this patient. Methods: The impact of N155H-K156N-K211R-E212T mutations was studied in cell-free, culture-based assays and by molecular modelling. Results: Cell-free and culture-based assays confirm that selected mutations in the patient, in the context of the polymorphic mutation K156N present at the baseline, lead to high resistance to dolutegravir requiring that the analysis be done at timepoints longer than usual to properly reveal the results. Interestingly, the association of only N155H and K156N is sufficient for significant resistance to dolutegravir. Modelling studies showed that dolutegravir is less stable in IN/DNA complexes with respect to the WT sequence. Conclusions: Our results indicate that the stability of STI IN/DNA complexes is an important parameter that must be taken into account when evaluating dolutegravir resistance. This study confirms that a pathway including N155H can be selected in patients treated with dolutegravir with the help of the polymorphic K156N that acts as a secondary mutation that enhances the resistance to dolutegravir.


Asunto(s)
Farmacorresistencia Viral , Inhibidores de Integrasa VIH/farmacología , Integrasa de VIH/genética , VIH-1/efectos de los fármacos , VIH-1/enzimología , Compuestos Heterocíclicos con 3 Anillos/farmacología , Mutación Missense , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/virología , Integrasa de VIH/química , Inhibidores de Integrasa VIH/administración & dosificación , Compuestos Heterocíclicos con 3 Anillos/administración & dosificación , Humanos , Simulación del Acoplamiento Molecular , Oxazinas , Piperazinas , Piridonas , Insuficiencia del Tratamiento
16.
Biochim Biophys Acta Gen Subj ; 1861(5 Pt B): 1329-1340, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-28025082

RESUMEN

BACKGROUND: Recent findings demonstrated that, in mammalian cells, telomere DNA (Tel) is transcribed into telomeric repeat-containing RNA (TERRA), which is involved in fundamental biological processes, thus representing a promising anticancer target. For this reason, the discovery of dual (as well as selective) Tel/TERRA G-quadruplex (G4) binders could represent an innovative strategy to enhance telomerase inhibition. METHODS: Initially, docking simulations of known Tel and TERRA active ligands were performed on the 3D coordinates of bimolecular G4 Tel DNA (Tel2) and TERRA (TERRA2). Structure-based pharmacophore models were generated on the best complexes and employed for the virtual screening of ~257,000 natural compounds. The 20 best candidates were submitted to biophysical assays, which included circular dichroism and mass spectrometry at different K+ concentrations. RESULTS: Three hits were here identified and characterized by biophysical assays. Compound 7 acts as dual Tel2/TERRA2 G4-ligand at physiological KCl concentration, while hits 15 and 17 show preferential thermal stabilization for Tel2 DNA. The different molecular recognition against the two targets was also discussed. CONCLUSIONS: Our successful results pave the way to further lead optimization to achieve both increased selectivity and stabilizing effect against TERRA and Tel DNA G4s. GENERAL SIGNIFICANCE: The current study combines for the first time molecular modelling and biophysical assays applied to bimolecular DNA and RNA G4s, leading to the identification of innovative ligand chemical scaffolds with a promising anticancer profile. This article is part of a Special Issue entitled "G-quadruplex" Guest Editor: Dr. Concetta Giancola and Dr. Daniela Montesarchio.


Asunto(s)
Antineoplásicos/metabolismo , ADN/metabolismo , Diseño de Fármacos , G-Cuádruplex , Guanosina/metabolismo , ARN/metabolismo , Telomerasa/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacología , Sitios de Unión , Dicroismo Circular , ADN/química , ADN/efectos de los fármacos , ADN/genética , G-Cuádruplex/efectos de los fármacos , Guanosina/química , Ensayos Analíticos de Alto Rendimiento , Ligandos , Simulación del Acoplamiento Molecular , Desnaturalización de Ácido Nucleico , Potasio/química , ARN/química , ARN/efectos de los fármacos , ARN/genética , Estabilidad del ARN , Espectrometría de Masa por Ionización de Electrospray , Relación Estructura-Actividad , Telomerasa/química , Telomerasa/efectos de los fármacos , Telomerasa/genética , Temperatura
17.
Molecules ; 22(9)2017 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-32961649

RESUMEN

Mushrooms are widely-consumed fungi which contain natural compounds that can be used both for their nutritive and medicinal properties, i.e., taking advantage of their antimicrobial, antiviral, antitumor, anti-allergic, immunomodulation, anti-inflammatory, anti-atherogenic, hypoglycemic, hepatoprotective and antioxidant effects. Currently, scientific interest in natural compounds extracted from the fungal species is increasing because these compounds are also known to have pharmacological/biological activity. Unfortunately, however, their mechanisms of action are often unknown, not well understood or have not been investigated in their entirety. Given the poly-pharmacological properties of bioactive fungal compounds, it was decided to carry out a multi-targeted approach to predict possible interactions occurring among bioactive natural fungal extracts and several macromolecular targets that are therapeutically interesting, i.e., proteins, enzymes and nucleic acids. A chemical database of compounds extracted from both edible and no-edible mushrooms was created. This database was virtually screened against 43 macromolecular targets downloaded from the Protein Data Bank website. The aim of this work is to provide a molecular description of the main interactions involving ligand/multi-target recognition in order to understand the polypharmacological profile of the most interesting fungal extracts and to suggest a design strategy of new multi-target agents.

18.
Bioorg Med Chem ; 24(12): 2823-31, 2016 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-27160054

RESUMEN

In this work, new potent steroidal aromatase inhibitors both in microsomes and in breast cancer cells have been found. The synthesis of the 3,4-(ethylenedioxy)androsta-3,5-dien-17-one (12), a new steroid containing a heterocycle dioxene fused in the A-ring, led to the discovery of a new reaction for which a mechanism is proposed. New structure-activity relationships were established. Some 5ß-steroids, such as compound 4ß,5ß-epoxyandrostan-17-one (9), showed aromatase inhibitory activity, because they adopt a similar A-ring conformation as those of androstenedione, the natural substrate of aromatase. Moreover, new chemical features to increase planarity were disclosed, specifically the 3α,4α-cyclopropane ring, as in 3α,4α-methylen-5α-androstan-17-one (5) (IC50=0.11µM), and the Δ(9-11) double bond in the C-ring, as in androsta-4,9(11)-diene-3,17-dione (13) (IC50=0.25µM). In addition, induced-fit docking (IFD) simulations and site of metabolism (SoM) predictions helped to explain the recognition of new potent steroidal aromatase inhibitors within the enzyme. These insights can be valuable tools for the understanding of the molecular recognition process by the aromatase and for the future design of new steroidal inhibitors.


Asunto(s)
Androstanos/química , Androstanos/farmacología , Androstenodiona/química , Androstenodiona/farmacología , Inhibidores de la Aromatasa/química , Inhibidores de la Aromatasa/farmacología , Aromatasa/metabolismo , Neoplasias de la Mama/enzimología , Línea Celular Tumoral , Femenino , Humanos , Simulación del Acoplamiento Molecular , Esteroides/química , Esteroides/farmacología , Relación Estructura-Actividad
19.
Antimicrob Agents Chemother ; 59(8): 4870-81, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26055363

RESUMEN

Incomplete APOBEC3G/F neutralization by a defective HIV-1Vif protein can promote genetic diversification by inducing G-to-A mutations in the HIV-1 genome. The HIV-1 Env V3 loop, critical for coreceptor usage, contains several putative APOBEC3G/F target sites. Here, we determined if APOBEC3G/F, in the presence of Vif-defective HIV-1 virus, can induce G-to-A mutations at V3 positions critical to modulation of CXCR4 usage. Peripheral blood mononuclear cells (PBMC) and monocyte-derived macrophages (MDM) from 2 HIV-1-negative donors were infected with CCR5-using 81.A-VifWT virus (i.e., with wild-type [WT] Vif protein), 81.A-VifE45G, or 81.A-VifK22E (known to incompletely/partially neutralize APOBEC3G/F). The rate of G-toA mutations was zero or extremely low in 81.A-VifWT- and 81.A-VifE45G-infected PBMC from both donors. Conversely, G-to-A enrichment was detected in 81.A-VifK22E-infected PBMC (prevalence ranging from 2.18% at 7 days postinfection [dpi] to 3.07% at 21 dpi in donor 1 and from 10.49% at 7 dpi to 8.69% at 21 dpi in donor 2). A similar scenario was found in MDM. G-to-A mutations occurred at 8 V3 positions, resulting in nonsynonymous amino acid substitutions. Of them, G24E and E25K strongly correlated with phenotypically/genotypically defined CXCR4-using viruses (P = 0.04 and 5.5e-7, respectively) and increased the CXCR4 N-terminal binding affinity for V3 (WT, -40.1 kcal/mol; G24E, -510 kcal/mol; E25K, -522 kcal/mol). The analysis of paired V3 and Vif DNA sequences from 84 HIV-1-infected patients showed that the presence of a Vif-defective virus correlated with CXCR4 usage in proviral DNA (P = 0.04). In conclusion, incomplete APOBEC3G/F neutralization by a single Vif amino acid substitution seeds a CXCR4-using proviral reservoir. This can have implications for the success of CCR5 antagonist-based therapy, as well as for the risk of disease progression.


Asunto(s)
Citosina Desaminasa/genética , Infecciones por VIH/genética , VIH-1/genética , Mutación/genética , Receptores CCR5/genética , Receptores CXCR4/genética , Desaminasas APOBEC , Secuencia de Aminoácidos , Sustitución de Aminoácidos/genética , Secuencia de Bases , Línea Celular , Citidina Desaminasa , Evolución Molecular , Células HEK293 , Infecciones por VIH/virología , Humanos , Leucocitos Mononucleares/virología
20.
Cell Physiol Biochem ; 35(5): 2006-18, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25871776

RESUMEN

BACKGROUND/AIMS: Published observations on serum and glucocorticoid regulated kinase 1 (Sgk1) knockout murine models and Sgk1-specific RNA silencing in the RKO human colon carcinoma cell line point to this kinase as a central player in colon carcinogenesis and in resistance to taxanes. METHODS: By in vitro kinase activity inhibition assays, cell cycle and viability analysis in human cancer model systems, we describe the biologic effects of a recently identified kinase inhibitor, SI113, characterized by a substituted pyrazolo[3,4-d]pyrimidine scaffold, that shows specificity for Sgk1. RESULTS: SI113 was able to inhibit in vitro cell growth in cancer cells derived from tumors with different origins. In RKO cells, this kinase inhibitor blocked insulin-dependent phosphorylation of the Sgk1 substrate Mdm2, the main regulator of p53 protein stability, and induced necrosis and apoptosis when used as a single agent. Finally, SI113 potentiated the effects of paclitaxel on cell viability. CONCLUSION: Since SI113 appears to be effective in inducing cell death in RKO cells, potentiating paclitaxel sensitivity, we believe that this new molecule could be efficiently employed, alone or in combination with paclitaxel, in colon cancer chemotherapy.


Asunto(s)
Proliferación Celular/efectos de los fármacos , Proteínas Inmediatas-Precoces/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Pirazoles/farmacología , Pirimidinas/farmacología , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/uso terapéutico , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Humanos , Proteínas Inmediatas-Precoces/metabolismo , Insulina/farmacología , Células MCF-7 , Necrosis , Paclitaxel/farmacología , Paclitaxel/uso terapéutico , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/uso terapéutico , Proteínas Serina-Treonina Quinasas/metabolismo , Estabilidad Proteica , Proteínas Proto-Oncogénicas c-mdm2/metabolismo , Pirazoles/química , Pirazoles/uso terapéutico , Pirimidinas/química , Pirimidinas/uso terapéutico , Proteína p53 Supresora de Tumor/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda