Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Int J Mol Sci ; 24(23)2023 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-38068911

RESUMEN

The aim of personalized cancer vaccines is to elicit potent and tumor-specific immune responses against neoantigens specific to each patient and to establish durable immunity, while minimizing the adverse events. Over recent years, there has been a renewed interest in personalized cancer vaccines, primarily due to the advancement of innovative technologies for the identification of neoantigens and novel vaccine delivery platforms. Here, we review the emerging field of personalized cancer vaccination, with a focus on the use of viral vectors as a vaccine platform. The recent advancements in viral vector technology have led to the development of efficient production processes, positioning personalized viral vaccines as one of the preferred technologies. Many clinical trials have shown the feasibility, safety, immunogenicity and, more recently, preliminary evidence of the anti-tumor activity of personalized vaccination, fostering active research in the field, including further clinical trials for different tumor types and in different clinical settings.


Asunto(s)
Vacunas contra el Cáncer , Neoplasias , Vacunas Virales , Humanos , Neoplasias/terapia , Inmunoterapia , Vectores Genéticos/genética , Vacunación , Antígenos de Neoplasias
2.
Int J Mol Sci ; 22(24)2021 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-34948316

RESUMEN

BACKGROUND: Oncolytic viruses are immunotherapeutic agents that can be engineered to encode payloads of interest within the tumor microenvironment to enhance therapeutic efficacy. Their therapeutic potential could be limited by many avenues for immune evasion exerted by the tumor. One such is mediated by adenosine, which induces pleiotropic immunosuppression by inhibiting antitumor immune populations as well as activating tolerogenic stimuli. Adenosine is produced starting from the highly immunostimulatory ATP, which is progressively hydrolyzed to ADP and adenosine by CD39 and CD73. Cancer cells express high levels of CD39 and CD73 ectoenzymes, thus converting immunostimulatory purinergic signal of ATP into an immunosuppressive signal. For this reason, CD39, CD73 and adenosine receptors are currently investigated in clinical trials as targets for metabolic cancer immunotherapy. This is of particular relevance in the context of oncovirotherapy, as immunogenic cell death induced by oncolytic viruses causes the secretion of a high amount of ATP which is available to be quickly converted into adenosine. METHODS: Here, we took advantage of adenosine deaminase enzyme that naturally converts adenosine into the corresponding inosine derivative, devoid of immunoregulatory function. We encoded ADA into an oncolytic targeted herpes virus redirected to human HER2. An engineered ADA with an ectopic signal peptide was also generated to improve enzyme secretion (ADA-SP). RESULTS: Insertion of the expression cassette was not detrimental for viral yield and cancer cell cytotoxicity. The THV_ADA and THV_ADA-SP successfully mediated the secretion of functional ADA enzyme. In in vitro model of human monocytes THP1, this ability of THV_ADA and THV_ADA-SP resulted in the retrieval of eADO-exposed monocytes replication rate, suggesting the proficiency of the viruses in rescuing the immune function. CONCLUSIONS: Encoding ADA into oncolytic viruses revealed promising properties for preclinical exploitation.


Asunto(s)
Adenosina Desaminasa/genética , Adenosina/genética , Herpesviridae/genética , Neoplasias/genética , Virus Oncolíticos/genética , Antígenos CD/metabolismo , Línea Celular , Humanos , Inmunoterapia/métodos , Neoplasias/virología , Viroterapia Oncolítica/métodos , Células THP-1 , Microambiente Tumoral/genética
3.
Int J Mol Sci ; 22(2)2021 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-33418877

RESUMEN

BACKGROUND: HER2-based retargeted viruses are in advanced phases of preclinical development of breast cancer models. Mesothelin (MSLN) is a cell-surface tumor antigen expressed in different subtypes of breast and non-breast cancer. Its recent identification as a marker of some triple-negative breast tumors renders it an attractive target, presently investigated in clinical trials employing antibody drug conjugates and CAR-T cells. The availability of MSLN-retargeted oncolytic viruses may complement the current immunotherapeutic panel of biological drugs against HER2-negative breast and non-breast tumors. METHODS: A fully virulent, tumor-targeted oncolytic Herpes simplex virus-1 (MSLN-THV) with a selectivity for mesothelin-expressing cancer cells was generated. Recombineering technology was used to replace an essential moiety of the viral glycoprotein D with antibody fragments derived from clinically validated MSLN monoclonal antibodies, and to allow IL12 cargo expression in infected cells. Panels of breast and female reproductive system cell lines were used to verify the oncolytic potential of the viral constructs. A platform for production of the retargeted viruses was developed in HEK 293 cells, providing stable expression of a suitable chimeric receptor. RESULTS: We demonstrated the selectivity of viral infection and cytotoxicity by MSLN-retargeted viruses in a panel of mesothelin-positive cancer cells, originating from breast and female reproductive system tumors. We also developed a second-generation oncolytic MSLN-THV, encoding IL12, to enhance the immunotherapeutic potential of the viral backbone. A non-tumor cell line expressing a chimeric MSLN/Nectin-1 receptor, de-sensitized from antiviral responses by genetic inactivation of the Stimulator of Interferon Genes (STING)-dependent pathway was engineered, to optimize viral yields. CONCLUSIONS: Our proof-of-concept study proposes MSLN-retargeted herpesviruses as potential cancer immunotherapeutics for assessments in preclinical models of MSLN-positive tumors, complementing the available panel of oncolytic viruses to HER2-negative breast tumors.


Asunto(s)
Proteínas Ligadas a GPI/metabolismo , Herpesvirus Humano 1/fisiología , Viroterapia Oncolítica/métodos , Neoplasias de la Mama/metabolismo , Neoplasias de la Mama/terapia , Línea Celular Tumoral , Supervivencia Celular , Femenino , Edición Génica , Células HEK293 , Herpesvirus Humano 1/genética , Humanos , Inmunoterapia , Proteínas de la Membrana/deficiencia , Proteínas de la Membrana/genética , Mesotelina , Receptor ErbB-2/metabolismo
4.
Nucleic Acids Res ; 41(21): e199, 2013 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-24049077

RESUMEN

As the only mammalian Argonaute protein capable of directly cleaving mRNAs in a small RNA-guided manner, Argonaute-2 (Ago2) is a keyplayer in RNA interference (RNAi) silencing via small interfering (si) or short hairpin (sh) RNAs. It is also a rate-limiting factor whose saturation by si/shRNAs limits RNAi efficiency and causes numerous adverse side effects. Here, we report a set of versatile tools and widely applicable strategies for transient or stable Ago2 co-expression, which overcome these concerns. Specifically, we engineered plasmids and viral vectors to co-encode a codon-optimized human Ago2 cDNA along with custom shRNAs. Furthermore, we stably integrated this Ago2 cDNA into a panel of standard human cell lines via plasmid transfection or lentiviral transduction. Using various endo- or exogenous targets, we demonstrate the potential of all three strategies to boost mRNA silencing efficiencies in cell culture by up to 10-fold, and to facilitate combinatorial knockdowns. Importantly, these robust improvements were reflected by augmented RNAi phenotypes and accompanied by reduced off-targeting effects. We moreover show that Ago2/shRNA-co-encoding vectors can enhance and prolong transgene silencing in livers of adult mice, while concurrently alleviating hepatotoxicity. Our customizable reagents and avenues should broadly improve future in vitro and in vivo RNAi experiments in mammalian systems.


Asunto(s)
Proteínas Argonautas/genética , Técnicas de Silenciamiento del Gen , Vectores Genéticos , Interferencia de ARN , Animales , Proteínas Argonautas/metabolismo , Línea Celular Tumoral , Dependovirus/genética , Células HEK293 , Humanos , Lentivirus/genética , Hígado/metabolismo , Ratones , Fenotipo , Plásmidos/genética , ARN Interferente Pequeño/genética , ARN Interferente Pequeño/metabolismo , Transducción Genética
5.
Mol Ther Oncol ; 32(1): 200760, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38596303

RESUMEN

Neoantigen (neoAg)-based cancer vaccines expand preexisting antitumor immunity and elicit novel cancer-specific T cells. However, at odds with prophylactic vaccines, therapeutic antitumor immunity must be induced when the tumor is present and has already established an immunosuppressive environment capable of rapidly impairing the function of anticancer neoAg T cells, thereby leading to lack of efficacy. To overcome tumor-induced immunosuppression, we first vaccinated mice bearing immune checkpoint inhibitor (CPI)-resistant tumors with an adenovirus vector encoding a set of potent cancer-exogenous CD8 and CD4 T cell epitopes (Ad-CAP1), and then "taught" cancer cells to express the same epitopes by using a tumor-retargeted herpesvirus vector (THV-CAP1). Potent CD8 effector T lymphocytes were elicited by Ad-CAP1, and subsequent THV-CAP1 delivery led to a significant delay in tumor growth and even cure.

6.
Vaccines (Basel) ; 12(3)2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38543959

RESUMEN

Quality control testing of vaccines, including potency assessment, is critical to ensure equivalence of clinical lots. We developed a potency assay to support the clinical advancement of Nous-209, a cancer vaccine based on heterologous prime/boost administration of two multivalent viral vector products: GAd-209 and MVA-209. These consist of a mix of four Adeno (Great Ape Adenovirus; GAd) and four Modified Vaccinia Ankara (MVA) vectors respectively, each containing a different transgene encoding a synthetic polypeptide composed of antigenic peptide fragments joined one after the other. The potency assay employs quantitative Reverse Transcription PCR (RT-Q-PCR) to quantitatively measure the transcripts from the four transgenes encoded by each product in in vitro infected cells, enabling simultaneous detection. Results showcase the assay's robustness and biological relevance, as it effectively detects potency loss in one component of the mixture comparably to in vivo immunogenicity testing. This report details the assay's setup and validation, offering valuable insights for the clinical development of similar genetic vaccines, particularly those encoding synthetic polypeptides.

7.
Cancer Immunol Res ; 12(4): 440-452, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38331413

RESUMEN

Tumor neoantigens (nAg) represent a promising target for cancer immunotherapy. The identification of nAgs that can generate T-cell responses and have therapeutic activity has been challenging. Here, we sought to unravel the features of nAgs required to induce tumor rejection. We selected clinically validated Great Ape-derived adenoviral vectors (GAd) as a nAg delivery system for differing numbers and combinations of nAgs. We assessed their immunogenicity and efficacy in murine models of low to high disease burden, comparing multi-epitope versus mono-epitope vaccines. We demonstrated that the breadth of immune response is critical for vaccine efficacy and having multiple immunogenic nAgs encoded in a single vaccine improves efficacy. The contribution of each single neoantigen was examined, leading to the identification of 2 nAgs able to induce CD8+ T cell-mediated tumor rejection. They were both active as individual nAgs in a setting of prophylactic vaccination, although to different extents. However, the efficacy of these single nAgs was lost in a setting of therapeutic vaccination in tumor-bearing mice. The presence of CD4+ T-cell help restored the efficacy for only the most expressed of the two nAgs, demonstrating a key role for CD4+ T cells in sustaining CD8+ T-cell responses and the necessity of an efficient recognition of the targeted epitopes on cancer cells by CD8+ T cells for an effective antitumor response. This study provides insight into understanding the determinants of nAgs relevant for effective treatment and highlights features that could contribute to more effective antitumor vaccines. See related Spotlight by Slingluff Jr, p. 382.


Asunto(s)
Vacunas contra el Cáncer , Neoplasias , Ratones , Animales , Carga Tumoral , Linfocitos T CD8-positivos , Linfocitos T CD4-Positivos , Epítopos , Antígenos de Neoplasias
8.
Clin Cancer Res ; 30(11): 2412-2423, 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38506710

RESUMEN

PURPOSE: Personalized vaccines targeting multiple neoantigens (nAgs) are a promising strategy for eliciting a diversified antitumor T-cell response to overcome tumor heterogeneity. NOUS-PEV is a vector-based personalized vaccine, expressing 60 nAgs and consists of priming with a nonhuman Great Ape Adenoviral vector (GAd20) followed by boosts with Modified Vaccinia Ankara. Here, we report data of a phase Ib trial of NOUS-PEV in combination with pembrolizumab in treatment-naïve patients with metastatic melanoma (NCT04990479). PATIENTS AND METHODS: The feasibility of this approach was demonstrated by producing, releasing, and administering to 6 patients 11 of 12 vaccines within 8 weeks from biopsy collection to GAd20 administration. RESULTS: The regimen was safe, with no treatment-related serious adverse events observed and mild vaccine-related reactions. Vaccine immunogenicity was demonstrated in all evaluable patients receiving the prime/boost regimen, with detection of robust neoantigen-specific immune responses to multiple neoantigens comprising both CD4 and CD8 T cells. Expansion and diversification of vaccine-induced T-cell receptor (TCR) clonotypes was observed in the posttreatment biopsies of patients with clinical response, providing evidence of tumor infiltration by vaccine-induced neoantigen-specific T cells. CONCLUSIONS: These findings indicate the ability of NOUS-PEV to amplify and broaden the repertoire of tumor-reactive T cells to empower a diverse, potent, and durable antitumor immune response. Finally, a gene signature indicative of the reduced presence of activated T cells together with very poor expression of the antigen-processing machinery genes has been identified in pretreatment biopsies as a potential biomarker of resistance to the treatment.


Asunto(s)
Adenoviridae , Antígenos de Neoplasias , Vacunas contra el Cáncer , Vectores Genéticos , Medicina de Precisión , Humanos , Vacunas contra el Cáncer/inmunología , Vacunas contra el Cáncer/administración & dosificación , Antígenos de Neoplasias/inmunología , Antígenos de Neoplasias/genética , Vectores Genéticos/genética , Vectores Genéticos/administración & dosificación , Femenino , Persona de Mediana Edad , Masculino , Medicina de Precisión/métodos , Adenoviridae/genética , Adenoviridae/inmunología , Melanoma/terapia , Melanoma/inmunología , Anciano , Vacunación/métodos , Linfocitos T/inmunología , Adulto , Linfocitos T CD8-positivos/inmunología
9.
Front Immunol ; 14: 1156714, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37180141

RESUMEN

Introduction: Virus vectored genetic vaccines (Vvgv) represent a promising approach for eliciting immune protection against infectious diseases and cancer. However, at variance with classical vaccines to date, no adjuvant has been combined with clinically approved genetic vaccines, possibly due to the detrimental effect of the adjuvant-induced innate response on the expression driven by the genetic vaccine vector. We reasoned that a potential novel approach to develop adjuvants for genetic vaccines would be to "synchronize" in time and space the activity of the adjuvant with that of the vaccine. Methods: To this aim, we generated an Adenovirus vector encoding a murine anti-CTLA-4 monoclonal antibody (Ad-9D9) as a genetic adjuvant for Adenovirus based vaccines. Results: The co-delivery of Ad-9D9 with an Adeno-based COVID-19 vaccine encoding the Spike protein resulted in stronger cellular and humoral immune responses. In contrast, only a modest adjuvant effect was achieved when combining the vaccine with the same anti-CTLA-4 in its proteinaceous form. Importantly, the administration of the adjuvant vector at different sites of the vaccine vector abrogates the immunostimulatory effect. We showed that the adjuvant activity of Ad-α-CTLA-4 is independent from the vaccine antigen as it improved the immune response and efficacy of an Adenovirus based polyepitope vaccine encoding tumor neoantigens. Discussion: Our study demonstrated that the combination of Adenovirus Encoded Adjuvant (AdEnA) with an Adeno-encoded antigen vaccine enhances immune responses to viral and tumor antigens, representing a potent approach to develop more effective genetic vaccines.


Asunto(s)
Infecciones por Adenoviridae , Vacunas contra el Adenovirus , COVID-19 , Enfermedades Transmisibles , Neoplasias , Ratones , Animales , Humanos , Adenoviridae/genética , Vacunas contra la COVID-19 , Adyuvantes Inmunológicos , Adyuvantes Farmacéuticos
10.
J Immunother Cancer ; 11(4)2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-37117006

RESUMEN

BACKGROUND: Tumor microenvironment (TME) represents a critical hurdle in cancer immunotherapy, given its ability to suppress antitumor immunity. Several efforts are made to overcome this hostile TME with the development of new therapeutic strategies modifying TME to boost antitumor immunity. Among these, cytokine-based approaches have been pursued for their known immunomodulatory effects on different cell populations within the TME. IL-12 is a potent pro-inflammatory cytokine that demonstrates striking immune activation and tumor control but causes severe adverse effects when systemically administered. Thus, local administration is considered a potential strategy to achieve high cytokine concentrations at the tumor site while sparing systemic adverse effects. METHODS: Modified Vaccinia Ankara (MVA) vector is a potent inducer of pro-inflammatory response. Here, we cloned IL-12 into the genome of MVA for intratumoral immunotherapy, combining the immunomodulatory properties of both the vector and the cargo. The antitumor activity of MVA-IL-12 and its effect on TME reprogramming were investigated in preclinical tumor models. RNA sequencing (RNA-Seq) analysis was performed to assess changes in the TME in treated and distal tumors and the effect on the intratumoral T-cell receptor repertoire. RESULTS: Intratumoral injection of MVA-IL-12 resulted in strong antitumor activity with the complete remission of established tumors in multiple murine models, including those resistant to checkpoint inhibitors. The therapeutic activity of MVA-IL-12 was associated with very low levels of circulating cytokine. Effective TME reprogramming was demonstrated on treatment, with the reduction of immunosuppressive M2 macrophages while increasing pro-inflammatory M1, and recruitment of dendritic cells. TME switch from immunosuppressive into immunostimulatory environment allowed for CD8 T cells priming and expansion leading to tumor attack. CONCLUSIONS: Intratumoral administration of MVA-IL-12 turns immunologically 'cold' tumors 'hot' and overcomes resistance to programmed cell death protein-1 blockade.


Asunto(s)
Interleucina-12 , Neoplasias , Humanos , Ratones , Animales , Interleucina-12/genética , Interleucina-12/farmacología , Microambiente Tumoral , Virus Vaccinia/genética , Citocinas/metabolismo , Neoplasias/patología
11.
Mol Ther ; 19(3): 461-9, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21119624

RESUMEN

Mucopolysaccharidosis VI (MPS VI) is caused by deficient arylsulfatase B (ARSB) activity resulting in lysosomal storage of glycosaminoglycans (GAGs). MPS VI is characterized by dysostosis multiplex, organomegaly, corneal clouding, and heart valve thickening. Gene transfer to a factory organ like liver may provide a lifetime source of secreted ARSB. We show that intravascular administration of adeno-associated viral vectors (AAV) 2/8-TBG-felineARSB in MPS VI cats resulted in ARSB expression up to 1 year, the last time point of the study. In newborn cats, normal circulating ARSB activity was achieved following delivery of high vector doses (6 × 10(13) genome copies (gc)/kg) whereas delivery of AAV2/8 vector doses as low as 2 × 10(12) gc/kg resulted in higher than normal serum ARSB levels in juvenile MPS VI cats. In MPS VI cats showing high serum ARSB levels, independent of the age at treatment, we observed: (i) clearance of GAG storage, (ii) improvement of long bone length, (iii) reduction of heart valve thickness, and (iv) improvement in spontaneous mobility. Thus, AAV2/ 8-mediated liver gene transfer represents a promising therapeutic strategy for MPS VI patients.


Asunto(s)
Dependovirus , Técnicas de Transferencia de Gen , Hígado , Mucopolisacaridosis VI/terapia , Animales , Huesos/metabolismo , Huesos/patología , Gatos , Dependovirus/genética , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Terapia Genética , Vectores Genéticos/administración & dosificación , Vectores Genéticos/genética , Glicosaminoglicanos/metabolismo , Células HEK293 , Humanos , Hígado/metabolismo , Actividad Motora/efectos de los fármacos , Actividad Motora/genética , Mucopolisacaridosis VI/enzimología , Mucopolisacaridosis VI/patología , N-Acetilgalactosamina-4-Sulfatasa/genética , N-Acetilgalactosamina-4-Sulfatasa/metabolismo , Fenotipo , Resultado del Tratamiento
12.
J Immunother Cancer ; 9(11)2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34824160

RESUMEN

BACKGROUND: A number of different immune pathways are involved in the effective killing of cancer cells, collectively named as the 'Cancer Immunity Cycle'. Anti-PD-1 checkpoint blockade (CPB) therapy is active on one of these pathways and reinvigorates anticancer T cell immunity, leading to long-term responses in a limited fraction of patients with cancer. We have previously shown that neoantigens-based adenovirus vectored vaccine in combination with anti-PD-1 further expands pre-existing anticancer immunity and elicits novel neoantigen-specific T cells thereby increasing efficacy to 50% of tumor clearance in mice. Here we added a third component to the CPB plus vaccine combination, which is able to modify the suppressive tumor microenvironment by reducing the number of tumor-infiltrating regulatory T cells (Tregs), as strategy for improving the therapeutic efficacy and overcoming resistance. METHODS: The antitumor efficacy of anti-PD-1, neoantigen vaccine and Treg modulating agents, either Bempegaldesleukin (BEMPEG: NKTR-214) or an anti-CTLA-4 mAb with Treg-depleting activity, was investigated in murine tumor models. We evaluated tumor growth in treated animals, neoantigen-specific T cells in tumors, tumor-infiltrating lymphocytes (TILs) and intratumoral Tregs. RESULTS: The addition of BEMPEG or anti-CTLA-4 to the combination of vaccine and anti-PD-1 led to complete eradication of large tumors in nearby 100% of treated animals, in association with expansion and activation of cancer neoantigen-specific T cells and reduction of tumor-infiltrating Tregs. CONCLUSION: These data support the notion that the integrated regulation of three steps of the cancer immunity cycle, including expansion of neoantigen-specific T cells, reversal of the exhausted T cell phenotype together with the reduction of intratumoral Tregs may represent a novel rationally designed drug combination approach to achieve higher cure rates.


Asunto(s)
Vacunas contra el Cáncer/inmunología , Expresión Génica/genética , Inmunoterapia/métodos , Receptor de Muerte Celular Programada 1/inmunología , Linfocitos T Reguladores/inmunología , Animales , Femenino , Humanos , Ratones
13.
Vaccines (Basel) ; 9(8)2021 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-34452005

RESUMEN

Neoantigens are tumor-specific antigens able to induce T-cell responses, generated by mutations in protein-coding regions of expressed genes. Previous studies demonstrated that only a limited subset of mutations generates neoantigens in microsatellite stable tumors. We developed a method, called VENUS (Vaccine-Encoded Neoantigens Unrestricted Selection), to prioritize mutated peptides with high potential to be neoantigens. Our method assigns to each mutation a weighted score that combines the mutation allelic frequency, the abundance of the transcript coding for the mutation, and the likelihood to bind the patient's class-I major histocompatibility complex alleles. By ranking mutated peptides encoded by mutations detected in nine cancer patients, VENUS was able to select in the top 60 ranked peptides, the 95% of neoantigens experimentally validated including both CD8 and CD4 T cell specificities. VENUS was evaluated in a murine model in the context of vaccination with an adeno vector encoding the top ranked mutations prioritized in the MC38 cell line. Efficacy studies demonstrated anti tumoral activity of the vaccine when used in combination with checkpoint inhibitors. The results obtained highlight the importance of a combined scoring system taking into account multiple features of each tumor mutation to improve the accuracy of neoantigen prediction.

14.
Trends Mol Med ; 15(1): 23-31, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-19097940

RESUMEN

As gene therapy begins to produce its first clinical successes, interest in ocular gene transfer has grown owing to the favorable safety and efficacy characteristics of the eye as a target organ for drug delivery. Important advances also include the availability of viral and non-viral vectors that are able to efficiently transduce various ocular cell types, the use of intraocular delivery routes and the development of transcriptional regulatory elements that allow sustained levels of gene transfer in small and large animal models after a single administration. Here, we review recent progress in the field of ocular gene therapy. The first experiments in humans with severe inherited forms of blindness seem to confirm the good safety and efficacy profiles observed in animal models and suggest that gene transfer has the potential to become a valuable therapeutic strategy for otherwise untreatable blinding diseases.


Asunto(s)
Oftalmopatías/terapia , Terapia Genética/tendencias , Animales , Modelos Animales de Enfermedad , Oftalmopatías/genética , Humanos
15.
Cancers (Basel) ; 12(11)2020 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-33213060

RESUMEN

The dichotomic contribution of cancer cell lysis and tumor immunogenicity is considered essential for effective oncovirotherapy, suggesting that the innate antiviral immune response is a hurdle for efficacy of oncolytic viruses. However, emerging evidence is resizing this view. By sensing cytosolic DNA, the cyclic GMP-AMP synthase (cGAS) and stimulator of interferon genes (STING) axis can both counteract viral spread and contribute to the elicitation of adaptive immunity via type I interferon responses. In this paper, we analyzed the tumor-resident function of Sting-mediated DNA sensing in a combined approach of oncovirotherapy and PD-1 immune checkpoint blockade, in an immunocompetent murine model. While supporting increased lytic potential by oncolytic HER2-retargeted HSV-1 in vitro and in vivo, Sting-knockout tumors showed molecular signatures of an immunosuppressive tumor microenvironment. These signatures were correspondingly associated with ineffectiveness of the combination therapy in a model of established tumors. Results suggest that the impairment in antiviral response of Sting-knockout tumors, while favoring viral replication, is not able to elicit an adequate immunotherapeutic effect, due to lack of immunogenic cell death and the inability of Sting-knockout cancer cells to promote anti-tumor adaptive immune responses. Accordingly, we propose that antiviral, tumor-resident Sting provides fundamental contributions to immunotherapeutic efficacy of oncolytic viruses.

16.
Sci Rep ; 10(1): 4307, 2020 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-32152425

RESUMEN

Oncolytic virotherapy is emerging as a promising therapeutic option for solid tumours. Several oncolytic vectors in clinical testing are based on attenuated viruses; thus, efforts are being taken to develop a new repertoire of oncolytic viruses, based on virulent viral genomes. This possibility, however, raises concerns dealing with the safety features of the virulent phenotypes. We generated a double regulated Herpes simplex type-1 virus (HSV-1), in which tumour cell restricted replicative potential was combined to selective entry via ERBB2 receptor retargeting. The transcriptional control of the viral alpha4 gene encoding for the infected cell protein-4 (ICP4) by the cellular Survivin/BIRC5 promoter conferred a tumour cell-restricted replicative potential to a virulent HSV-1 genome. The combination of the additional ERBB2 retargeting further improved the selectivity for tumour cells, conferring to the double regulated virus a very limited ability to infect and propagate in non-cancerous cells. Accordingly, a suitable replicative and cytotoxic potential was maintained in tumour cell lines, allowing the double regulated virus to synergize in vivo with immune checkpoint (anti-PD-1) blockade in immunocompetent mice. Thus, restricting the replicative spectrum and tropism of virulent HSV-1 genomes by combination of conditional replication and retargeting provides an improved safety, does not alter the oncolytic strength, and is exploitable for its therapeutic potential with immune checkpoint blockade in cancer.


Asunto(s)
Herpesvirus Humano 1/genética , Viroterapia Oncolítica/métodos , Neoplasias Ováricas/terapia , Regiones Promotoras Genéticas , Receptor ErbB-2/metabolismo , Survivin/genética , Replicación Viral , Animales , Femenino , Humanos , Ratones , Ratones Endogámicos C57BL , Neoplasias Ováricas/genética , Neoplasias Ováricas/metabolismo , Neoplasias Ováricas/virología , Receptor ErbB-2/genética , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
17.
Mol Ther Oncolytics ; 19: 253-264, 2020 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-33209980

RESUMEN

Oncolytic viruses (OVs) are novel anti-tumor agents with the ability to selectively infect and kill tumor cells while sparing normal tissue. Beyond tumor cytolysis, OVs are capable of priming an anti-tumor immune response via lysis and cross-presentation of locally expressed endogenous tumor antigens, acting as an "endovaccine." The effectiveness of OVs, similar to other immunotherapies, can be hampered by an immunosuppressive tumor microenvironment. In this study, we modified a previously generated oncolytic herpes simplex virus (oHSV) retargeted to the human HER2 (hHER2) tumor molecule and encoding murine interleukin-12 (mIL-12), by insertion of a second immunomodulatory molecule, murine granulocyte-macrophage colony-stimulating factor (mGM-CSF), to maximize therapeutic efficacy. We assessed the efficacy of this double-armed virus (R-123) compared to singly expressing GM-CSF and IL-12 oHSVs in tumor-bearing mice. While monotherapies were poorly effective, combination with α-PD1 enhanced the anti-tumor response, with the highest efficacy of 100% response rate achieved by the combination of R-123 and α-PD1. Efficacy was T cell-dependent, and the induced immunity was long lasting and able to reject a second contralateral tumor. Importantly, systemic delivery of R-123 combined with α-PD1 was effective in inhibiting the development of tumor metastasis. As such, this approach could have a significant therapeutic impact paving the way for further development of this platform in cancer immunotherapy.

18.
Cancer Res ; 80(18): 3972-3982, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32690723

RESUMEN

Tumors with microsatellite instability (MSI) are caused by a defective DNA mismatch repair system that leads to the accumulation of mutations within microsatellite regions. Indels in microsatellites of coding genes can result in the synthesis of frameshift peptides (FSP). FSPs are tumor-specific neoantigens shared across patients with MSI. In this study, we developed a neoantigen-based vaccine for the treatment of MSI tumors. Genetic sequences from 320 MSI tumor biopsies and matched healthy tissues in The Cancer Genome Atlas database were analyzed to select shared FSPs. Two hundred nine FSPs were selected and cloned into nonhuman Great Ape Adenoviral and Modified Vaccinia Ankara vectors to generate a viral-vectored vaccine, referred to as Nous-209. Sequencing tumor biopsies of 20 independent patients with MSI colorectal cancer revealed that a median number of 31 FSPs out of the 209 encoded by the vaccine was detected both in DNA and mRNA extracted from each tumor biopsy. A relevant number of peptides encoded by the vaccine were predicted to bind patient HLA haplotypes. Vaccine immunogenicity was demonstrated in mice with potent and broad induction of FSP-specific CD8 and CD4 T-cell responses. Moreover, a vaccine-encoded FSP was processed in vitro by human antigen-presenting cells and was subsequently able to activate human CD8 T cells. Nous-209 is an "off-the-shelf" cancer vaccine encoding many neoantigens shared across sporadic and hereditary MSI tumors. These results indicate that Nous-209 can induce the optimal breadth of immune responses that might achieve clinical benefit to treat and prevent MSI tumors. SIGNIFICANCE: These findings demonstrate the feasibility of an "off-the-shelf" vaccine for treatment and prevention of tumors harboring frameshift mutations and neoantigenic peptides as a result of microsatellite instability.


Asunto(s)
Antígenos de Neoplasias/inmunología , Vacunas contra el Cáncer/inmunología , Neoplasias Colorrectales/terapia , Inmunogenicidad Vacunal/inmunología , Inestabilidad de Microsatélites , Animales , Células Presentadoras de Antígenos/inmunología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Vacunas contra el Cáncer/genética , Línea Celular Tumoral , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/inmunología , Femenino , Mutación del Sistema de Lectura , Humanos , Ratones , Proteínas de Neoplasias/análisis , Proteínas de Neoplasias/inmunología
19.
Mol Ther ; 16(1): 30-7, 2008 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17955027

RESUMEN

Mucopolysaccharidosis VI (MPS VI) is caused by deficient activity of arylsulfatase B (ARSB), resulting in intralysosomal storage of dermatan sulfate (DS) and multisystem disease without central nervous system involvement. After gene transfer, muscle or liver can theoretically be converted into factories for systemic ARSB secretion, leading to uptake by non-transduced cells. We have injected newborn MPS VI rats and cats with adeno-associated viral (AAV) vectors expressing ARSB under the control of liver-specific, muscle-specific, or universally active promoters. After systemic or intramuscular (IM) administration of AAV, therapeutic levels of circulating ARSB are achieved, resulting in skeletal improvements and significant decrease in glycosaminoglycan (GAG) storage, inflammation and apoptosis (despite a neutralizing immune response to ARSB in MPS VI rats). In addition, we have observed wide-spread dissemination of vector after IM AAV administration. This results in secretion of therapeutic levels of ARSB when the universally active cytomegalovirus (CMV) but not the muscle-specific muscle creatine kinase (MCK) promoter is used, suggesting that transduction of extramuscular sites rather than enzyme secretion from muscle occurs after muscle ARSB gene transfer. We conclude that AAV-mediated expression of ARSB from liver represents a feasible therapeutic strategy for MPS VI, potentially avoiding multiple infusions of costly recombinant enzyme associated with enzyme replacement therapy.


Asunto(s)
Huesos/patología , Terapia Genética , Hígado/enzimología , Mucopolisacaridosis VI/genética , Mucopolisacaridosis VI/terapia , Músculo Esquelético/enzimología , N-Acetilgalactosamina-4-Sulfatasa/administración & dosificación , N-Acetilgalactosamina-4-Sulfatasa/genética , Animales , Animales Recién Nacidos , Huesos/enzimología , Gatos , Dependovirus/genética , Femenino , Vectores Genéticos/administración & dosificación , Masculino , Mucopolisacaridosis VI/patología , Músculo Cuádriceps/enzimología , Ratas
20.
Nat Commun ; 10(1): 2688, 2019 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-31217437

RESUMEN

Neoantigens (nAgs) are promising tumor antigens for cancer vaccination with the potential of inducing robust and selective T cell responses. Genetic vaccines based on Adenoviruses derived from non-human Great Apes (GAd) elicit strong and effective T cell-mediated immunity in humans. Here, we investigate for the first time the potency and efficacy of a novel GAd encoding multiple neoantigens. Prophylactic or early therapeutic vaccination with GAd efficiently control tumor growth in mice. In contrast, combination of the vaccine with checkpoint inhibitors is required to eradicate large tumors. Gene expression profile of tumors in regression shows abundance of activated tumor infiltrating T cells with a more diversified TCR repertoire in animals treated with GAd and anti-PD1 compared to anti-PD1. Data suggest that effectiveness of vaccination in the presence of high tumor burden correlates with the breadth of nAgs-specific T cells and requires concomitant reversal of tumor suppression by checkpoint blockade.


Asunto(s)
Adenoviridae/inmunología , Antineoplásicos Inmunológicos/uso terapéutico , Vacunas contra el Cáncer/uso terapéutico , Neoplasias/terapia , Vacunas Virales/uso terapéutico , Adenoviridae/genética , Animales , Antígenos de Neoplasias/inmunología , Antineoplásicos Inmunológicos/farmacología , Vacunas contra el Cáncer/genética , Vacunas contra el Cáncer/inmunología , Línea Celular Tumoral/trasplante , Terapia Combinada/métodos , Modelos Animales de Enfermedad , Femenino , Humanos , Inmunoterapia/métodos , Activación de Linfocitos/efectos de los fármacos , Activación de Linfocitos/inmunología , Linfocitos Infiltrantes de Tumor/efectos de los fármacos , Linfocitos Infiltrantes de Tumor/inmunología , Ratones , Neoplasias/inmunología , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Receptor de Muerte Celular Programada 1/inmunología , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología , Resultado del Tratamiento , Carga Tumoral/efectos de los fármacos , Carga Tumoral/inmunología , Vacunas Sintéticas/genética , Vacunas Sintéticas/inmunología , Vacunas Sintéticas/uso terapéutico , Vacunas Virales/genética , Vacunas Virales/inmunología
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda