Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Chemistry ; 28(5): e202103420, 2022 Jan 24.
Artículo en Inglés | MEDLINE | ID: mdl-34817102

RESUMEN

Understanding the impact of shaping processes on solid adsorbents is critical for the implementation of MOFs in industrial separation processes or as catalytic materials. Production of MOF-containing shaped particles is typically associated with loss of porosity and modification of acid sites, two phenomena that affect their performance. Herein, we report a detailed study on how extrusion affects the crystallinity, porosity, and acidity of the aluminium fumarate MOF with clays or SiO2 gel binders. Thorough characterization showed that the clay binders confer the extrudates a good mechanical robustness at the expense of porosity, while silica gel shows an opposite trend. The CO2 selectivity towards CH4 , of interest for natural gas separation processes, is maintained upon the extrusion process. Moreover, probe FTIR spectroscopy revealed no major changes in the types of acid sites. This study highlights that these abundant and inexpensive clay materials may be used for scaling MOFs as active adsorbents.


Asunto(s)
Estructuras Metalorgánicas , Aluminio , Fumaratos , Porosidad , Dióxido de Silicio
2.
Chemphyschem ; 23(24): e202200416, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36008355

RESUMEN

The energetics of sulfur-carbon interaction are studied using thermo-desorption and immersion microcalorimetry experiments. Sulfur is incorporated in meso- and microporous carbons by impregnation either from the liquid phase or the vapor phase. Varying the temperature of impregnation enables to fill preferentially microporous domains (vapor impregnation) or both micro-meso-macro domains (liquid impregnation). The three carbons lead to similar immersion enthalpies per unit area for liquid sulfur. This suggests that they possess similar surface-liquid interactions and that liquid sulfur, below the polymerization temperature, wets the whole surface accessible to nitrogen.


Asunto(s)
Carbono , Azufre , Carbono/química , Adsorción , Azufre/química , Nitrógeno , Termodinámica
3.
Chemistry ; 27(22): 6804-6814, 2021 Apr 16.
Artículo en Inglés | MEDLINE | ID: mdl-33586233

RESUMEN

Defect engineering and metal encapsulation are considered as valuable approaches to fine-tune the reactivity of metal-organic frameworks. In this work, various MOF-808 (Zr) samples are synthesized and characterized with the final aim to understand how defects and/or platinum nanoparticle encapsulation act on the intrinsic and reactive properties of these MOFs. The reactivity of the pristine, defective and Pt encapsulated MOF-808 is quantified with water adsorption and CO2 adsorption calorimetry. The results reveal strong competitive effects between crystal morphology and missing linker defects which in turn affect the crystal morphology, porosity, stability, and reactivity. In spite of leading to a loss in porosity, the introduction of defects (missing linkers or Pt nanoparticles) is beneficial to the stability of the MOF-808 towards water and could also be advantageously used to tune adsorption properties of this MOF family.

4.
Chemistry ; 24(29): 7498-7506, 2018 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-29709084

RESUMEN

Because of their high tunability and surface area, metal-organic frameworks (MOFs) show great promise as supports for metal nanoparticles. Depending on the synthesis route, MOFs may contain defects. Here, we show that highly crystalline MIL-100(Fe) and disordered Basolite® F300, with identical iron 1,3,5-benzenetricarboxylate composition, exhibit very divergent properties when used as a support for Pd nanoparticle deposition. While MIL-100(Fe) shows a regular MTN-zeotype crystal structure with two types of cages, Basolite® F300 lacks long-range order beyond 8 Šand has a single-pore system. The medium-range configurational linker-node disorder in Basolite® F300 results in a reduced number of Lewis acid sites, yielding more hydrophobic surface properties compared to hydrophilic MIL-100(Fe). The hydrophilic/hydrophobic nature of MIL-100(Fe) and Basolite® F300 impacts the amount of Pd and particle size distribution of Pd nanoparticles deposited during colloidal synthesis and dry impregnation methods, respectively. It is suggested that polar (apolar) solvents/precursors attractively interact with hydrophilic (hydrophobic) MOF surfaces, allowing tools at hand to increase the level of control over, for example, the nanoparticle size distribution.

5.
J Synchrotron Radiat ; 19(Pt 5): 806-13, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22898961

RESUMEN

A Calvet-type differential scanning calorimeter has been implemented on a synchrotron beamline devoted to X-ray absorption spectroscopy. As a case study, the complex crystallization process in amorphous Ge(15)Sb(85) phase-change material is followed by simultaneous calorimetric and quick-EXAFS measurements. A first crystallization at 514(1) K is related to the crystallization of an Sb-rich phase accompanied by segregation of Ge atoms. Upon further heating, the as-formed amorphous Ge regions crystallize at 604(1) K. A quantitative analysis of the latent heat allows a Ge(11)Sb(89) stoichiometry to be proposed for the first crystallized phase.

6.
Nat Commun ; 11(1): 1216, 2020 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-32139685

RESUMEN

Metal-organic frameworks are widely considered for the separation of chemical mixtures due to their adjustable physical and chemical properties. However, while much effort is currently devoted to developing new adsorbents for a given separation, an ideal scenario would involve a single adsorbent for multiple separations. Porous materials exhibiting framework flexibility offer unique opportunities to tune these properties since the pore size and shape can be controlled by the application of external stimuli. Here, we establish a proof-of-concept for the molecular sieving separation of species with similar sizes (CO2/N2 and CO2/CH4), via precise mechanical control of the pore size aperture in a flexible metal-organic framework. Besides its infinite selectivity for the considered gas mixtures, this material shows excellent regeneration capability when releasing the external mechanical constraint. This strategy, combining an external stimulus applied to a structurally compliant adsorbent, offers a promising avenue for addressing some of the most challenging gas separations.

7.
Phys Rev Lett ; 103(24): 245901, 2009 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-20366211

RESUMEN

Negative thermal expansion (NTE) in tellurium based liquid alloys (GeTe6 and GeTe12) is analyzed through the atomic vibrational properties. Using neutron inelastic scattering, we show that the structural evolution resulting in the NTE is due to a gain of vibrational entropy that cancels out the Peierls distortion. In the NTE temperature range, these competing effects give rise to noticeable changes in the vibrational density of states spectra. Additional first principles molecular dynamics simulations emphasize the role of the temperature dependance of the Ge atomic environment in this mechanism. For comparison, we extended our study to Ge2Sb2Te5 and Ge1Sb2Te4 phase-change materials.

8.
Nat Commun ; 10(1): 2580, 2019 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-31189892

RESUMEN

The majority of research into metal-organic frameworks (MOFs) focuses on their crystalline nature. Recent research has revealed solid-liquid transitions within the family, which we use here to create a class of functional, stable and porous composite materials. Described herein is the design, synthesis, and characterisation of MOF crystal-glass composites, formed by dispersing crystalline MOFs within a MOF-glass matrix. The coordinative bonding and chemical structure of a MIL-53 crystalline phase are preserved within the ZIF-62 glass matrix. Whilst separated phases, the interfacial interactions between the closely contacted microdomains improve the mechanical properties of the composite glass. More significantly, the high temperature open pore phase of MIL-53, which spontaneously transforms to a narrow pore upon cooling in the presence of water, is stabilised at room temperature in the crystal-glass composite. This leads to a significant improvement of CO2 adsorption capacity.

10.
Rev Sci Instrum ; 79(8): 085103, 2008 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19044376

RESUMEN

In this paper we describe a prototype of a diamond anvil cell (DAC) for high pressure/high temperature studies. This DAC combines the use of a resistive oven of 250 W power in a very small volume, associated with special conical seats for Boehler-type diamond anvils in order to have a large angular acceptance. To protect the diamond anvils from burning and to avoid the oven oxidation, the heated DAC is enclosed in a vacuum chamber. The assemblage was used to study the melting curve of germanium at high pressure (up to 20 GPa) and high temperature (up to 1200 K) using x-ray diffraction and x-ray absorption spectroscopy.


Asunto(s)
Absorciometría de Fotón , Presión Atmosférica , Diamante/química , Calefacción , Difracción de Rayos X , Diseño de Equipo , Germanio/química , Ensayo de Materiales/métodos , Fenómenos Físicos , Termodinámica
11.
J Chem Phys ; 122(19): 194505, 2005 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-16161595

RESUMEN

Synchrotron small angle x-ray scattering measurements on water and zinc bromide ZnBr2 aqueous solutions were carried out from ambient to supercritical conditions. For both systems several isobars (between 285 and 600 bars) were followed beyond the critical isochore. The data were analyzed through an Ornstein-Zernike formalism in terms of correlation length and null angle structure factor. The results for pure water are in agreement with previously published values. Solutions of different electrolyte concentrations were studied. In each case, the values of the correlation length and null angle structure factor are larger than those of pure water. This effect is more pronounced for higher concentrations and/or for pressure closer to the critical point of pure water. This is in agreement with the shift of the critical point determined in the literature for NaCl solutions. Comparing these results to previous x-ray absorption measurements carried out on identical samples we propose the following two step sequence for ionic hydration up to supercritical conditions: (1) from ambient to about 300 degrees C, an increase of ion pairing and formation of multi-ionic complexes which can be correlated to the decrease of the dielectric constant; (2) an enhancement of the local solvation shell of ions due to the onset of the thermal density fluctuations at high temperature, leading to a screening effect between ions and inhibiting the ion pairing processes.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda