Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
BMC Biol ; 22(1): 26, 2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38302906

RESUMEN

BACKGROUND: The ability of recombinant adeno-associated virus to transduce preimplantation mouse embryos has led to the use of this delivery method for the production of genetically altered knock-in mice via CRISPR-Cas9. The potential exists for this method to simplify the production and extend the types of alleles that can be generated directly in the zygote, obviating the need for manipulations of the mouse genome via the embryonic stem cell route. RESULTS: We present the production data from a total of 13 genetically altered knock-in mouse models generated using CRISPR-Cas9 electroporation of zygotes and delivery of donor repair templates via transduction with recombinant adeno-associated virus. We explore the efficiency of gene targeting at a total of 12 independent genetic loci and explore the effects of allele complexity and introduce strategies for efficient identification of founder animals. In addition, we investigate the reliability of germline transmission of the engineered allele from founder mice generated using this methodology. By comparing our production data against genetically altered knock-in mice generated via gene targeting in embryonic stem cells and their microinjection into blastocysts, we assess the animal cost of the two methods. CONCLUSIONS: Our results confirm that recombinant adeno-associated virus transduction of zygotes provides a robust and effective delivery route for donor templates for the production of knock-in mice, across a range of insertion sizes (0.9-4.7 kb). We find that the animal cost of this method is considerably less than generating knock-in models via embryonic stem cells and thus constitutes a considerable 3Rs reduction.


Asunto(s)
Sistemas CRISPR-Cas , Dependovirus , Ratones , Animales , Dependovirus/genética , Reproducibilidad de los Resultados , Cigoto , Marcación de Gen , Técnicas de Sustitución del Gen/métodos
2.
Traffic ; 17(11): 1214-1226, 2016 11.
Artículo en Inglés | MEDLINE | ID: mdl-27601190

RESUMEN

Advances in membrane cell biology are hampered by the relatively high proportion of proteins with no known function. Such proteins are largely or entirely devoid of structurally significant domain annotations. Structural bioinformaticians have developed profile-profile tools such as HHsearch (online version called HHpred), which can detect remote homologies that are missed by tools used to annotate databases. Here we have applied HHsearch to study a single structural fold in a single model organism as proof of principle. In the entire clan of protein domains sharing the pleckstrin homology domain fold in yeast, systematic application of HHsearch accurately identified known PH-like domains. It also predicted 16 new domains in 13 yeast proteins many of which are implicated in intracellular traffic. One of these was Vps13p, where we confirmed the functional importance of the predicted PH-like domain. Even though such predictions require considerable work to be corroborated, they are useful first steps. HHsearch should be applied more widely, particularly across entire proteomes of model organisms, to significantly improve database annotations.


Asunto(s)
Proteínas de la Membrana/química , Dominios Homólogos a Pleckstrina , Proteínas de Saccharomyces cerevisiae/química , Biología Computacional/métodos , Bases de Datos de Proteínas , Proyectos Piloto , Estructura Secundaria de Proteína , Homología de Secuencia de Aminoácido , Programas Informáticos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda