Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Nanotechnology ; 32(9): 095604, 2021 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-33096540

RESUMEN

Au nanoparticles (NPs) characterized by distinct surface chemistry (including dodecanethiol or oleylamine as capping agent), different sizes (∼5 and ∼10 nm) and crystallinities (polycrystalline or single crystalline), were chosen as seeds to demonstrate the versatility and robustness of our two-step core-shell Au@Ag NP synthesis process. The central component of this strategy is to solubilize the shell precursor (AgNO3) in oleylamine and to induce the growth of the shell on selected seeds under heating. The shell thickness is thus controlled by the temperature, the annealing time, the (shell precursor)/(seed) concentration ratio, seed size and crystallinity. The shell thickness is thus shown to increase with the reactant concentration and to grow faster on polycrystalline seeds. The crystalline structure and chemical composition were characterized by HRTEM, STEM-HAADF, EELS and Raman spectroscopy. The plasmonic response of Au@Ag core-shell NPs as a function of core size and shell thickness was assessed by spectrophotometry and simulated by calculations based on the discrete dipole approximation (DDA) method. Finally, the nearly monodisperse core-shell Au@Ag NPs were shown to form micrometer-scale facetted 3D fcc-ordered superlattices (SLs) after solvent evaporation and deposition on a solid substrate. These SLs are promising candidates for applications as a tunable surface-enhanced Raman scattering platform.

2.
J Am Chem Soc ; 142(17): 7937-7946, 2020 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-32223242

RESUMEN

By shortening solid-state diffusion times, the nanoscale size reduction of dielectric materials-such as ionic crystals-has fueled synthetic efforts toward their use as nanoparticles, NPs, in electrochemical storage and conversion cells. Meanwhile, there is a lack of strategies able to image the dynamics of such conversion, operando and at the single NP level. It is achieved here by optical microscopy for a model dielectric ionic nanocrystal, a silver halide NP. Rather than the classical core-shrinking mechanism often used to rationalize the complete electrochemical conversion and charge storage in NPs, an alternative mechanism is proposed here. Owing to its poor conductivity, the NP conversion proceeds to completion through the formation of multiple inclusions. The superlocalization of NP during such heterogeneous multiple-step conversion suggests the local release of ions, which propels the NP toward reacting sites enabling its full conversion.


Asunto(s)
Nanopartículas del Metal/química , Nanopartículas/química
3.
Chemphyschem ; 18(21): 3066-3075, 2017 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-28862382

RESUMEN

Herein we present new substrates for surface-enhanced Raman spectroscopy (SERS). The synthesis of colloidal nanoparticles through an organometallic route allowed us to obtain gold, silver, or copper nanoparticles with well-controlled shapes and sizes (5-12 nm in diameter). The organization of these nanoparticles into large-scale 3D superlattices produces a very large number of "hot spots" at the origin of the signal enhancement. Each superlattice was studied individually to correlate its optical and SERS properties to the thickness, the nanoparticle sizes, and the interparticle distance. This experimental and theoretical study provides insights for the optimization and tuning of the SERS activity. Indeed, significant SERS amplification could be observed regardless of the nature of the metal. In addition, the SERS signal was homogeneous at the surface of the superlattices, which opens the route for a new approach in analytical SERS detection.

4.
Langmuir ; 29(43): 13140-5, 2013 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-24102499

RESUMEN

Here, we study the stability of the 2D organization of thiol-coated silver nanoparticles (NPs) by transmission electron microscopy. Whatever the alkyl chain length and the nature of the silver precursor, we show the rapid corrosion (over a few days) of the NPs by O2 from laboratory air whereas they remain stable for several weeks under a nitrogen atmosphere. We show that this phenomenon is amplified by the humidity in the air and by thiols trapped in the NP monolayers. We obtain evidence of these thiols in excess by infrared and energy-dispersive spectroscopies. This study of stability has been extended to gold nanoparticles (AuNPs) coated with dodecanethiols. The AuNPs remain stable under laboratory air because of the higher redox potential of Au compared to that of Ag and O2.

5.
ACS Nano ; 17(20): 20462-20472, 2023 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-37812521

RESUMEN

Precise knowledge of the dependence of nano-object properties on their structural characteristics such as their size, shape, composition, or crystallinity, in turn, enables them to be finely characterized using appropriate techniques. Spectrophotometry and inelastic light scattering spectroscopy are noninvasive techniques that are proving highly robust and efficient for characterizing the optical response and vibrational properties of metal nano-objects. Here, we investigate the optical and vibrational properties of monodomain silver nanocubes synthesized by the chemical route, with edge length ranging from around 20 to 58 nm. The synthesized nanocrystals are not perfectly cubic and exhibit rounded edges and corners. This rounding was quantitatively taken into account by assimilating the shape of the nanocubes to superellipsoids. The effect of rounding on their optical response was clearly evidenced by localized surface plasmon resonance spectroscopy and supported by calculations based on the discrete dipole approximation method. The study of their acoustic vibrations by high-resolution low-frequency Raman scattering revealed a substructure of the T2g band, which was analyzed as a function of rounding. The measured frequencies are consistent with the existence of an anticrossing pattern of the two T2g branches. Such an avoided crossing in the T2g modes is clearly evidenced by calculating the vibrational frequencies of silver nanocubes using the Rayleigh-Ritz variational method that accounts for both their real size, shape, and cubic elasticity. These results show that it is possible to assess the rounding of nanocubes, including by means of ensemble spectroscopic measurements on well-calibrated particles.

6.
Adv Mater ; 35(45): e2305402, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37492940

RESUMEN

Gas nanobubbles are directly linked to many important chemical reactions. While they can be detrimental to operational devices, they also reflect the local activity at the nanoscale. Here, supercrystals made of highly monodisperse Ag@Pt core-shell nanoparticles are first grown onto a solid support and fully characterized by electron microscopies and X-ray scattering. Supercrystals are then used as a plasmonic photocatalytic platform for triggering the hydrogen evolution reaction. The catalytic activity is measured operando at the single supercrystal level by high-resolution optical microscopy, which allows gas nanobubble nucleation to be probed at the early stage with high temporal resolution and the amount of gas molecules trapped inside them to be quantified. Finally, a correlative microscopy approach and high-resolution electron energy loss spectroscopy help to decipher the mechanisms at the origin of the local degradation of the supercrystals during catalysis, namely nanoscale erosion and corrosion.

7.
RSC Adv ; 11(12): 7043-7050, 2021 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-35423205

RESUMEN

A one-pot synthesis of gold nano-objects is described by simply mixing a gold salt (HAuCl4), dodecanethiol and 3,6-di-2-pyridyl-1,2,4,5-tetrazine. When a large excess of thiol is used, gold nanoclusters of 2 nm are obtained in a large amount and with a narrow size distribution. The reaction mechanism was investigated by absorption and emission spectroscopies and shows the in situ formation of dihydrotetrazine acting as the reductant of Au(iii) to make Au(0). Au nanoclusters were isolated from the molecular precursors by HPLC. The nature of the ligands stabilizing Au nanoclusters was investigated by various techniques such as mass spectrometry, SEM-EDS, XPS and NMR. Thiol and tetrazine are shown to play both the role of ligand stabilizing the clusters. Finally, when a much smaller amount of thiol is used, a mixture of Au nanoclusters and Au nanoparticles of 10-15 nm, sometimes aggregated into clusters of 50 nm is obtained. The formation of larger nanoobjects is explained by the lower amount of thiol available to block the growth at the early stage as shown by UV-vis absorption monitoring.

8.
ACS Nano ; 12(11): 10833-10842, 2018 Nov 27.
Artículo en Inglés | MEDLINE | ID: mdl-30346722

RESUMEN

When narrowly distributed silver nanoparticles (NPs) are functionalized by dodecanethiol, they acquire the ability to self-organize in organic solvents into 3D supercrystals (SCs). The NP surface chemistry is shown to introduce a light-driven thermomigration effect, thermophoresis. Using a laser beam to heat the NPs and generate steep thermal gradients, the migration effect is triggered dynamically, leading to tailored structures with high density of plasmonic hot spots. This work describes how to manipulate the hot spots and monitor the effect by holography, thus providing a complete characterization of the migration process on a single object basis. Extensive single object tracking strategies are employed to measure the SCs trajectories, evaluate their size, drift velocity magnitude and direction, allowing the identification of the physical chemical origins of the migration. The phenomenon is shown to happen as a result of the combination of thermophoresis (at short length scales) and convection (long-range), and does not require a metallic substrate. This constitutes a fully optical method to dynamically generate plasmonic platforms in situ and on demand, without requiring substrate nanostructuration and with minimal interference on the chemistry of the system. The importance of the proof-of-concept herein described stems from the numerous potential applications, spanning over a variety of fields such as microfluidics and biosensing.

9.
Nanoscale ; 7(7): 3189-95, 2015 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-25615699

RESUMEN

Here, we report a new synthetic route for spherical small copper nanoparticles (CuNPs) with size ranging from 3.5 nm to 11 nm and with an unprecedented associated monodispersity (<10%). This synthesis is based on the reduction of an organometallic precursor (CuCl(PPh3)3) by tert-butylamine borane in the presence of dodecylamine (DDA) at a moderate temperature (50 to 100 °C). Because of their narrow size distribution, the CuNPs form long-range 2D organizations (several µm(2)). The wide range of CuNPs sizes is obtained by controlling the reaction temperature and DDA-to-copper phosphine salt ratio during the synthesis process. The addition of oleic acid (OA) after the synthesis stabilizes the CuNPs (no coalescence) for several weeks under a nitrogen atmosphere. The nature and the reactivity of the ligands were studied by IR and UV-visible spectroscopy. We thus show that just after synthesis the nanoparticles are coated by phosphine and DDA. After adding OA, a clear exchange between phosphine and OA is evidenced. This exchange is possible thanks to an acid-base reaction between the free alkylamine in excess in the solution and OA. OA is then adsorbed on the NPs surface in the form of carboxylate. Furthermore, the use of oleylamine (OYA) instead of DDA as the capping agent allows one to obtain other NP shapes (nanorods, triangles and nanodisks). We get evidence that OYA allows the selective adsorption of chloride ions derived from the copper precursor on the different crystallographic faces during the growth of CuNPs that induces the formation of anisotropic shapes such nanorods or triangles.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda