Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 533
Filtrar
1.
Cytokine ; 183: 156756, 2024 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-39284260

RESUMEN

The most destructive period the world has experienced seems to be behind us. Not a single nation was spared by this disease, and many continue to struggle today. Even after recovering from COVID, patient may continue to experience some post-COVID effects, such as heart irregularities or a decline in lung vitality. In the past three years (2019-2022), the world has witnessed the power of a small entity, a single peculiar virus. Science initially appeared to be helpless in this regard, but due to the emergence of disease, pharmaceutics (the development of anti-covid drugs), immunology (the rapid antigen test), microbiology (the isolation of viruses from infected people), biotechnology (the development of recombinant vaccines), biochemistry (the blood profile, the D-dimer test), and biochemistry (blood profile, D-dimer test), biophysics (PCR, RT-PCR, CT Scan, MRI) had worked together to fight the disease. The results of these efforts are the development of new diagnostic techniques, possible treatment and finally the availability of vaccines against COVID-19. However, it is not proven that the treatment through the traditional medical system is directly active on SARS-CoV-2 but is instead indirectly acting on SARS-CoV-2 effects by improving symptoms derived from the viral disease. In India, the traditional system of medicine and tradition knowledge together worked in the pandemic and proved effective strategies in prevention and treatment of SARS-CoV-2. The use of effective masks, PPE kits, plasma therapy, yoga, lockdowns and social seclusion, use of modern antiviral drugs, monoclonal antibodies, herbal remedies, homoeopathy, hygienic practice, as well as the willpower of people, are all contributing to the fight against COVID. Which methods or practices will be effective against COVID nobody is aware since medical professionals who wear PPE kits do not live longer, and some people in India who remained unprotected and roamed freely were not susceptible to infection. The focus of this review is on the mode of transmission, diagnosis, preventive measures, vaccines currently under development, modern medicine developed against SARS-CoV-2, ayurvedic medicine used during pandemic, homoeopathic medicine used during pandemic, and specific yoga poses that can be used to lessen COVID-related symptoms.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , COVID-19/prevención & control , COVID-19/epidemiología , COVID-19/terapia , India/epidemiología , SARS-CoV-2/inmunología , Vacunas contra la COVID-19/uso terapéutico , Medicina Ayurvédica , Tratamiento Farmacológico de COVID-19 , Antivirales/uso terapéutico
2.
Microb Pathog ; 190: 106608, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38503396

RESUMEN

The occurrence of bacterial resistance has been increasing, compromising the treatment of various infections. The high virulence of Staphylococcus aureus allows for the maintenance of the infectious process, causing many deaths and hospitalizations. The MepA and NorA efflux pumps are transporter proteins responsible for expelling antimicrobial agents such as fluoroquinolones from the bacterial cell. Coumarins are phenolic compounds that have been studied for their diverse biological actions, including against bacteria. A pharmacokinetic in silico characterization of compounds C10, C11, C13, and C14 was carried out according to the principles of Lipinski's Rule of Five, in addition to searching for similarity in ChemBL and subsequent search for publications in CAS SciFinder. All compounds were evaluated for their in vitro antibacterial and modulatory activity against standard and multidrug-resistant Gram-positive and Gram-negative strains. The effect of coumarins C9, C10, C11, C13, and C14 as efflux pump inhibitors in Staphylococcus aureus strains was evaluated using the microdilution method (MepA or NorA) and fluorimetry (NorA). The behavior of coumarins regarding the efflux pump was determined from their interaction properties with the membrane and coumarin-protein using molecular docking and molecular dynamics simulations. Only the isolated coumarin compound C13 showed antibacterial activity against standard strains of Staphylococcus aureus and Escherichia coli. However, the other tested coumarins showed modulatory capacity for fluoroquinolone and aminoglycoside antibacterials. Compounds C10, C13, and C14 were effective in reducing the MIC of both antibiotics for both multidrug-resistant strains, while C11 potentiated the effect of norfloxacin and gentamicin for Gram-positive and Gram-negative bacteria and only norfloxacin for Gram-negative. Only coumarin C14 produced synergistic effects when associated with ciprofloxacin in MepA-carrying strains. All tested coumarins have the ability to inhibit the NorA efflux pump present in Staphylococcus aureus, both in reducing the MIC and inducing increased ethidium bromide fluorescence emission in fluorimetry. The findings of this study offer an atomistic perspective on the potential of coumarins as active inhibitors of the NorA pump, highlighting their specific mode of action mainly targeting protein inhibition. In molecular docking, it was observed that coumarins are capable of interacting with various amino acid residues of the NorA pump. The simulation showed that coumarin C10 can cross the bilayer; however, the other coumarins interacted with the membrane but were unable to cross it. Coumarins demonstrated their potentiating role in the effect of norfloxacin through a dual mechanism: efflux pump inhibition through direct interaction with the protein (C9, C10, C11, and C13) and increased interaction with the membrane (C10 and C13). In the context of pharmacokinetic prediction studies, the studied structures have a suitable chemical profile for possible oral use. We suggest that coumarin derivatives may be an interesting alternative in the future for the treatment of resistant bacterial infections, with the possibility of a synergistic effect with other antibacterials, although further studies are needed to characterize their therapeutic effects and toxicity.


Asunto(s)
Antibacterianos , Proteínas Bacterianas , Cumarinas , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Simulación de Dinámica Molecular , Proteínas Asociadas a Resistencia a Múltiples Medicamentos , Staphylococcus aureus , Cumarinas/farmacología , Cumarinas/química , Cumarinas/metabolismo , Staphylococcus aureus/efectos de los fármacos , Antibacterianos/farmacología , Antibacterianos/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/antagonistas & inhibidores , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Farmacorresistencia Bacteriana Múltiple , Bacterias Gramnegativas/efectos de los fármacos , Proteínas de Transporte de Membrana/metabolismo
3.
Arch Microbiol ; 206(9): 368, 2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39107625

RESUMEN

This study investigated crotamine (CTA), a peptide derived from the venom of the South American rattlesnake Crotalus durissus terrificus, known for its exceptional cell penetration potential. The objective was to explore the antibacterial and antifungal activity of CTA, its ability to inhibit efflux pumps and evaluate the effectiveness of its pharmacological combination with antibiotics and antifungals. In microbiological assays, CTA in combination with antibiotics was tested against strains of S. aureus and the inhibition of NorA, Tet(K) and MepA efflux pumps was also evaluated. CTA alone did not present clinically relevant direct antibacterial action, presenting MIC > 209.7 µM against strains S. aureus 1199B, IS-58, K2068. The standard efflux pump inhibitor CCCP showed significant effects in all negative relationships to assay reproducibility. Against the S. aureus 1199B strain, CTA (20.5 µM) associated with norfloxacin diluted 10 × (320.67 µM) showed a potentiating effect, in relation to the control. Against the S. aureus IS-58 strain, the CTA associated with tetracycline did not show a significant combinatorial effect, either with 2304 or 230.4 µM tetracycline. CTA at a concentration of 2.05 µM associated with ciprofloxacin at a concentration of 309.4 µM showed a significant potentiating effect. In association with EtBr, CTA at concentrations of 2.05 and 20.5 µM potentiated the effect in all strains tested, reducing the prevention of NorA, Tet(K) and MepA efflux pumps. In the C. albicans strain, a potentiating effect of fluconazole (334.3 µM) was observed when combined with CTA (2.05 µM). Against the C. tropicalis strain, a significant effect was also observed in the association of fluconazole 334.3 µM, where CTA 2.05 µM considerably reduced fungal growth and decreased the potentiation of fluconazole. Against the C. krusei strain, no significant potentiating effect of fluconazole was obtained by CTA. Our results indicate that CTA in pharmacological combination potentiates the effects of antibiotics and antifungal. This represents a new and promising antimicrobial strategy for treating a wide variety of infections.


Asunto(s)
Antibacterianos , Antifúngicos , Venenos de Crotálidos , Crotalus , Pruebas de Sensibilidad Microbiana , Antifúngicos/farmacología , Antifúngicos/química , Antibacterianos/farmacología , Venenos de Crotálidos/farmacología , Animales , Staphylococcus aureus/efectos de los fármacos , Sinergismo Farmacológico , Candida albicans/efectos de los fármacos , Serpientes Venenosas
4.
Bioorg Chem ; 150: 107576, 2024 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-38901278

RESUMEN

Inflammation and associated disorders have been a major contributing factor to mortality worldwide. The augmented mortality rate and emerging resistance against the approved therapeutics necessitate the discovery of novel chemistries destined for multiple clinical settings. Cellular factories including endophytic fungi have been tapped for chemical diversity with therapeutic potential. The emerging evidence has suggested the potential of bioactive compounds isolated from the endophytic fungi as putative agents to combat inflammation-associated disorders. The review summarizesand assists the readers in comprehending the structural and functional aspects of the medicinal chemistries identified from endophytic fungi as anticancer, antiobesity, antigout, and immunomodulatory agents.


Asunto(s)
Hongos , Humanos , Hongos/química , Antineoplásicos/farmacología , Antineoplásicos/química , Animales , Endófitos/química , Endófitos/metabolismo , Estructura Molecular , Fármacos Antiobesidad/farmacología , Fármacos Antiobesidad/química , Fármacos Antiobesidad/aislamiento & purificación , Productos Biológicos/química , Productos Biológicos/farmacología , Productos Biológicos/aislamiento & purificación , Factores Inmunológicos/farmacología , Factores Inmunológicos/química
5.
Environ Res ; 252(Pt 3): 118950, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38704008

RESUMEN

This study investigated the sediment geochemistry of a fish farming area in net cage tanks in the Rosário reservoir, Brazil. Three areas were investigated: reference (RA), fish farming (FFA), and dispersion (DA). The results were analyzed through correlation, similarity, principal component analysis, comparison with legislation, sediment quality guidelines, and sediment pollution indices. The mean concentrations for RA, FFA, and DA areas were respectively: Cu (mg.kg-1) 37.74, 62.23, and 71.83; Mn (mg.kg-1) 22.55, 66.48, and 55.90; Zn (mg.kg-1) 9.13, 114.83, and 94.27; Fe (%) 0.28, 0.40, and 0.43; OM (%) 15.84, 21.95, and 18.45; TOC (%) 1.86, 3.69, and 6.05; TN (mg.kg-1) 2365.00, 5015.00, and 3447.51; TP (mg.kg-1) 780.00, 6896.00, and 2585.50; ORP (mV) -95.50, -135.20, and -127.10; pH 6.60, 6.58, and 6.05; <63 µm 90.59, 78.68, and 87.30. Statistically, the influence of fish farming on sediment, organic matter, and pollutant sedimentation was demonstrated. Cu and Zn concentrations were below sediment quality guidelines. Regarding legal limits (resolution 454/2012/CONAMA), nutrients in the FFA area exceeded by 60% (TN) and 100% (TP), while in DA and RA areas they were 100% lower. TOC was 100% lower in all areas. Organic matter exceeded the limit by 100% in all areas. Pollution indices resulted in: low contamination factor 78%; unpolluted for 87% of pollution load and 83% of combined pollution; moderately polluted for 75% of the Nemerow index. The greatest impacts and influence of farming on pollutant sedimentation were more concentrated in the fish farming area. In terms of legal aspects and pollution indices, fish farming produced low levels of trace metal pollution and nutrient concentrations exceeded legal limits.


Asunto(s)
Acuicultura , Monitoreo del Ambiente , Sedimentos Geológicos , Tilapia , Contaminantes Químicos del Agua , Brasil , Sedimentos Geológicos/análisis , Sedimentos Geológicos/química , Animales , Contaminantes Químicos del Agua/análisis
6.
Curr Microbiol ; 81(5): 113, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38472456

RESUMEN

During this coronavirus pandemic, when a lot of people are already severely afflicted with SARS-CoV-19, the dispersion of black fungus is making it worse, especially in the Indian subcontinent. Considering this situation, the idea for an in silico study to identify the potential inhibitor against black fungal infection is envisioned and computational analysis has been conducted with isatin derivatives that exhibit considerable antifungal activity. Through this in silico study, several pharmacokinetics properties like absorption, distribution, metabolism, excretion, and toxicity (ADMET) are estimated for various derivatives. Lipinski rules have been used to observe the drug likeliness property, and to study the electronic properties of the molecules, quantum mechanism was analyzed using the density functional theory (DFT). After applying molecular docking of the isatin derivatives with sterol 14-alpha demethylase enzyme of black fungus, a far higher docking affinity score has been observed for the isatin sulfonamide-34 (derivative 1) than the standard fluconazole. Lastly, molecular dynamic (MD) simulation has been performed for 100 ns to examine the stability of the proposed drug complex by estimating Root Mean Square Deviation (RMSD), Radius of gyration (Rg), Solvent accessible surface area (SASA), Root Mean Square Fluctuation (RMSF), as well as hydrogen bond. Listed ligands have precisely satisfied every pharmacokinetics requirement for a qualified drug candidate and they are non-toxic, non-carcinogenic, and have high stability. This natural molecule known as isatin derivative 1 has shown the potential of being a drug for fungal treatment. However, the impact of the chemicals on living cells requires more investigation and research.


Asunto(s)
Infecciones por Coronavirus , Isatina , Humanos , Simulación del Acoplamiento Molecular , Antifúngicos , Hongos
7.
Curr Microbiol ; 81(10): 325, 2024 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-39182011

RESUMEN

Antimicrobials fight microorganisms, preventing and treating infectious diseases. However, antimicrobial resistance (AMR) is a growing concern due to the inappropriate and excessive use of these drugs. Several mechanisms can lead to resistance, including efflux pumps such as the NorA pump in Staphylococcus aureus, which reduces the effectiveness of fluoroquinolones. Thiadiazines are heterocyclic compounds whose chemical structure resembles that of cephalosporins. Therefore, these compounds and their derivatives have been studied for their potential in combating increased bacterial resistance. To analyze this hypothesis, direct activity assays, antibiotic action-modifying activity, fluorescence assays to evaluate the retention of ethidium bromide inside bacteria, and molecular docking were carried out. These experiments involved serial dilutions in microplates against Staphylococcus aureus strain 1199B under the influence of six thiadiazine derivatives (IJ10, IJ11, IJ21, IJ22, IJ23, and IJ25). The tests revealed that, despite not showing effective direct activity, some thiadiazine derivatives (IJ11, IJ21, and IJ22) inhibited the function of the bromide pump both in microdilution tests and in fluorescence and docking assays. Particularly, the IJ11 compound stood out for its activity similar to efflux inhibitors, as well as its inhibition of the norfloxacin pump of this bacterium. Among the results of this study, it deserves to be highlighted for anchoring future experiments, as it represents the first investigation of this group of thiadiazine derivatives against the NorA pump.


Asunto(s)
Antibacterianos , Proteínas Bacterianas , Pruebas de Sensibilidad Microbiana , Simulación del Acoplamiento Molecular , Proteínas Asociadas a Resistencia a Múltiples Medicamentos , Staphylococcus aureus , Tiadiazinas , Antibacterianos/farmacología , Antibacterianos/química , Staphylococcus aureus/efectos de los fármacos , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/antagonistas & inhibidores , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/metabolismo , Proteínas Asociadas a Resistencia a Múltiples Medicamentos/química , Tiadiazinas/farmacología , Tiadiazinas/química , Simulación por Computador
8.
Chem Biodivers ; : e202400537, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-39008435

RESUMEN

To assess the antibacterial effectiveness of Lippia macrophylla essential oil (LMEO) against multidrug-resistant Acinetobacter baumannii isolates, both as a standalone treatment and in combination with conventional antibiotics. LMEO demonstrated a significant inhibitory effect on the growth of A. baumannii, with a minimum inhibitory concentration (MIC) below 500µg/mL. Notably, LMEO was capable of reversing the antibiotic resistance of clinical isolates or reducing their MIC values when used in combination with antibiotics, showing synergistic (FICI ≤ 0.5) or additive effects. The combination of LMEO and imipenem was particularly effective, displaying synergistic interactions for most isolates. Ultrastructural analyses supported these findings, revealing that the combination of LMEO + ceftazidime compromised the membrane integrity of the Acb35 isolate, leading to cytoplasmic leakage and increased formation of Outer Membrane Vesicles (OMVs). Taken together our results point for the use of LMEO alone or in combination as an antibacterial agent against A. baumannii. These findings offer promising avenues for utilizing LMEO as a novel antibacterial strategy against drug-resistant infections in healthcare settings, underscoring the potential of essential oils in enhancing antibiotic efficacy.

9.
Chem Biodivers ; 21(5): e202301615, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38506600

RESUMEN

Fruits and vegetables serve not only as sources of nutrition but also as medicinal agents for the treatment of diverse diseases and maladies. These dietary components are significant resources of phytochemicals that demonstrate therapeutic properties against many illnesses. Fraxin is a naturally occurring coumarin glycoside mainly present in various species of Fraxinus genera, having a multitude of therapeutic uses against various diseases and disorders. This study focuses to investigate the pharmacological activities, botanical sources, and biopharmaceutical profile of the phytochemical fraxin based on different preclinical and non-clinical studies to show the scientific evidence and to evaluate the underlying molecular mechanisms of the therapeutic effects against various ailments. For this, data was searched and collected (as of February 15, 2024) in a variety of credible electronic databases, including PubMed/Medline, Scopus, Springer Link, ScienceDirect, Wiley Online, Web of Science, and Google Scholar. The findings demonstrated favorable outcomes in relation to a range of diseases or medical conditions, including inflammation, neurodegenerative disorders such as cerebral ischemia-reperfusion (I/R) and depression, viral infection, as well as diabetic nephropathy. The phytochemical also showed protective effects such as osteoprotective, renoprotective, pulmoprotective, hepatoprotective, and gastroprotective effects due to its antioxidant capacity. Fraxin has a great capability to diminish oxidative stress-related damage in different organs by stimulating the antioxidant enzymes, downregulating nuclear factor kappa B and NLRP3, and triggering the Nrf2/ARE signaling pathways. Fraxin exhibited poor oral bioavailability because of reduced absorption and a wide distribution into tissues of different organs. However, extensive research is required to decipher the biopharmaceutical profiles, and clinical studies are necessary to establish the efficacy of the natural compound as a reliable therapeutic agent.


Asunto(s)
Fitoquímicos , Humanos , Animales , Fitoquímicos/farmacología , Fitoquímicos/química , Fitoquímicos/aislamiento & purificación , Furocumarinas/farmacología , Furocumarinas/química , Furocumarinas/aislamiento & purificación , Antioxidantes/farmacología , Antioxidantes/química
10.
Chem Biodivers ; 21(7): e202400443, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38757848

RESUMEN

Ferulic acid (FA) is a naturally occurring phenolic compound commonly found in the plant Ferula communis. This study aims to investigate the hepatoprotective effect of FA and its derivatives (methyl ferulic acid and trans-ferulic acid) against oxidative stress and inflammation-related hepatotoxicity due to toxicants based on the results of different non-clinical and preclinical tests. For this, data was collected from different reliable electronic databases such as PubMed, Google Scholar, and ScienceDirect, etc. The results of this investigation demonstrated that FA and its derivatives have potent hepatoprotective effects against oxidative stress and inflammation-related damage. The findings also revealed that these protective effects are due to the antioxidant and anti-inflammatory effects of the chemical compound. FA and its analogues significantly inhibit free radical generation and hinder the effects of proinflammatory markers and inflammatory enzymes, resulting in diminished cytotoxic and apoptotic hepatocyte death. The compounds also prevent intracellular lipid accumulation and provide protective effects.


Asunto(s)
Ácidos Cumáricos , Inflamación , Estrés Oxidativo , Ácidos Cumáricos/farmacología , Ácidos Cumáricos/química , Estrés Oxidativo/efectos de los fármacos , Humanos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Animales , Antioxidantes/farmacología , Antioxidantes/química , Hígado/efectos de los fármacos , Hígado/metabolismo , Hígado/patología , Sustancias Protectoras/farmacología , Sustancias Protectoras/química , Antiinflamatorios/farmacología , Antiinflamatorios/química , Enfermedad Hepática Inducida por Sustancias y Drogas/tratamiento farmacológico , Enfermedad Hepática Inducida por Sustancias y Drogas/metabolismo , Enfermedad Hepática Inducida por Sustancias y Drogas/patología
11.
Chem Biodivers ; : e202401073, 2024 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-39258811

RESUMEN

This work describes the evaluation the potentiating activity of antibiotics by campesterol (1) and its derivatives (2-11) against multiresistant strains of Staphylococcusaureus 10, Escherichia coli 06 and Pseudomonas aeruginosa 24 employing the microdilution test. When subjected to the in vitro potentiating activity bioassay, all compounds showed a potentiating effect associated with norfloxacin against E. coli and P. aeruginosa with a reduction in the MIC of the antibiotic of up to 75%. These compounds also reduced the MIC of gentamicin by 37% to 87% in S. aureus and E. coli. Additionally, molecular docking studies were conducted to gain a deeper understanding of the interactions between the appropriate proteins and the most effective compounds (2, 4, 9, and 10 against E. coli; 1, 2, 3, 5, 8, and 9 against S. aureus), including antibiotics. This paper registers for the first time the in vitro and in silico studies on the action of compounds 1-11 in antibiotic potentiation.

12.
Chem Biodivers ; : e202402080, 2024 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-39325551

RESUMEN

The prevalence of bacterial and fungal infections is caused by S. aureus, S. mutans, E. faecalis, and Candida albicans are often associated with dental illnesses. In the present study, a unique strategy was used to combat these diseases by fabricating titanium dioxide nanoparticles (TiO2 NPs) conjugated with the plant-based molecule vanillic acid (VA). Molecular modeling investigations were performed to better understand the interactions among vanillic acid and dental pathogen receptors using the Autodock program. The findings indicated that VA-TiO2 NPs exhibited strong free radical scavenging activity. Additionally, they showed excellent antibacterial action towards dental pathogens, with a minimum inhibition level of 60 µg/mL. Furthermore, at doses of 15 µg/mL, 30 µg/mL, 60 µg/mL, and 120 µg/mL, VA-TiO2 NPs demonstrated concentration-dependent apoptotic impacts on human oral carcinoma cells. Apoptotic gene over-expression was identified by the molecular perspectives that revealed the anticancer mechanism of VA-TiO2 NPs on KB cells. This study highlights the promising suitability of VA-TiO2 NPs for dental applications due to their robust antioxidant, anticancer, and antimicrobial characteristics. These nanoparticles present an evident prospect for addressing oral pathogen challenges and improving overall oral health.

13.
Chem Biodivers ; 21(2): e202301522, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38085680

RESUMEN

INTRODUCTION: Studies prove that the use of medicinal plants is a custom carried out by man since ancient times, the evolution of the pharmaceutical industry makes more people consume more natural products. Currently, we can observe that mouthwashes containing natural compounds have shown a growth in demand in the markets and in the professional community. OBJECTIVE: The present study aims to carry out the chemical characterization and microbiological potential of Piper mikanianum (Kunth) Steud essential oil (EOPm), providing data that allows the development of a low-cost mouthwash formulation aimed at vulnerable communities. METHODS: The evaluation of the antibacterial activity and modulator of bacterial resistance was performed by the microdilution method to determine the minimum inhibitory concentration (MIC). The chemical components were characterized by gas chromatography coupled to mass spectrometry, identified 28 constituents, in which Safrole Phenylpropanoid is the major compound, representing 72.6 % of the total composition, followed by α-pinene (10.7 %), Limonene (2 %), ß-caryophyllene (2 %), E-nerolidol (1.9 %), spathulenol (1.3 %) and camphene (1.1 %). RESULTS: The EOPm showed a MIC minimum inhibitory concentration≥1024 µg/mL for all bacterial strains used in the tests. When the EOPm modulating activity combined with chlorhexidine, mouthwash, ampicillin, gentamicin and penicillin G was evaluated against bacterial resistance, the oil showed significant synergistic activity, reducing the MIC of the products tested in combination, in percentage between 20.6 % to 98 .4 %. CONCLUSIONS: We recommend the expansion of tests with greater variation of EOPm concentration combinations and the products used in this study, as well as toxicity evaluation and in vivo tests, seeking the development of a possible low-cost mouthwash formulation accessible to the most vulnerable population.


Asunto(s)
Aceites Volátiles , Piper , Humanos , Aceites Volátiles/farmacología , Aceites Volátiles/química , Antisépticos Bucales/farmacología , Piper/química , Cromatografía de Gases y Espectrometría de Masas , Antibacterianos/farmacología , Antibacterianos/química , Pruebas de Sensibilidad Microbiana
14.
Chem Biodivers ; 21(4): e202301962, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38415915

RESUMEN

Stingless bees belong to the Meliponini tribe and are widely distributed in the tropics and subtropics, where they perform important ecological services. Among the best distributed groups of stingless bees is the genus Scaptotrigona, which includes 22 species distributed throughout the neotropical region, including the area from Mexico to Argentina. Bees of this genus are responsible for the production of products such as honey, propolis, geopropolis and fermented pollen ("saburá"). This review aimed to provide an overview of the chemical composition and biological activities associated with derived products from stingless bees of the genus Scaptotrigona. The bibliographic review was carried out through searches in the Scopus, Web of Science, ScienceDirect and PubMed databases, including publications from 2003 to January 2023. The study of the chemodiversity of products derived from Scaptotrigona demonstrated the mainly presence of flavonoids, phenolic acids, terpenoids and alkaloids. It was also demonstrated that products derived from bees of the genus Scaptotrigona exhibit a wide range of biological effects, such as antibacterial, antioxidant, anti-inflammatory and antifungal activities, among other bioactivities. This review provides an overview of phytochemical and pharmacological investigations of the genus Scaptotrigona. However, it is essential to clarify the toxicity and food safety of these products.


Asunto(s)
Miel , Himenópteros , Própolis , Animales , Antibacterianos/farmacología , Abejas , México , Própolis/farmacología , Flavonoides/química , Flavonoides/aislamiento & purificación , Flavonoides/farmacología , Hidroxibenzoatos/química , Hidroxibenzoatos/aislamiento & purificación , Hidroxibenzoatos/farmacología , Terpenos/química , Terpenos/aislamiento & purificación , Terpenos/farmacología , Antiinflamatorios/química , Antiinflamatorios/aislamiento & purificación , Antiinflamatorios/farmacología
15.
Chem Biodivers ; 21(2): e202301407, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38116922

RESUMEN

Melipona subnitida (Ducke, 1911), a species of stingless bee, popularly known as Jandaíra, has a wide distribution in the Brazilian Northeast region, being an important pollinator of the Caatinga biome. This bee produces products such as honey, geopropolis, pollen (saburá) and wax that are traditionally used for therapeutic purposes and some studies report the biological properties, as well as its chemical composition. This review aimed to select, analyze and gather data published in the literature focusing on the chemical profile and bioactivities described for M. subnitida products. Data collection was carried out through the Capes Journal Portal platform, using the following databases: Web of Science, Scopus, and PubMed. Original articles published in English and Portuguese were included, with no time limitation. The chemical composition of M. subnitida products has been investigated through chromatographic analysis, demonstrating the presence of a variety of phenolic compounds, such as flavonoids and phenylpropanoids, among other classes of secondary metabolites. These products also have several biological activities, including antioxidant, healing, antinociceptive, anti-inflammatory, antidepressant, antidyslipidemic, antiobesity, antifungal, antibacterial and prebiotic. Among the biological activities reported, the antioxidant activity was the most investigated. These data show that products derived from the stingless bee M. subnitida have promising bioactive compounds. This review provides useful information about the bioactivities and chemical profile of Melipona subnitida bee products, and a direction for future research, which should focus on understanding the mechanisms of action associated with the already elucidated pharmacological activities, as well as the bioactive properties of the main isolate's constituents identified in the chemical composition of these products.


Asunto(s)
Miel , Abejas , Animales , Miel/análisis , Antibacterianos/farmacología , Antioxidantes/farmacología , Fenoles/análisis , Antifúngicos
16.
Chem Biodivers ; 21(3): e202302043, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38190232

RESUMEN

Wound healing is a natural regenerative response to tissue injury and the conventional treatments consists of the use wound dressings with local administration of medicines, but, in some cases, are only partially effective and limited by toxicity or ineffective anti-microbial protection. Medicinal plants such as Lippia sidoides and Myracrodruon urundeuva have shown interesting pharmacological activities, allied to this, the association of these medicinal plants and nanotechnology, could mean an advantage in relation to classical approach. This study investigated the effect of a nanogel loaded with Lippia sidoides essential oil and Myracrodruon urundeuva extract (NAA) in an excisional wound healing model in rats. Animals were anesthetized and skin wounds were made using a metal punch. The groups were treated with vehicle, NAA or collagenase gel, for 7, 14 or 21 days and then sacrificed for tissue analysis. NAA did not show acute dermal irritation, further significantly reduced (p<0.05) the final wound area, accelerated the wound contraction and organization of collagen in the group treated for 14 days. The data presented here demonstrate the therapeutic potential for the use of nanotechnology associated with medicinal plants and provides evidence that corroborate with the use of L. sidoides and M. urundeuva as healing medicinal plants.


Asunto(s)
Lippia , Aceites Volátiles , Plantas Medicinales , Polietilenglicoles , Polietileneimina , Ratas , Animales , Nanogeles , Cicatrización de Heridas , Aceites Volátiles/farmacología , Aceites Volátiles/uso terapéutico
17.
Chem Biodivers ; : e202400747, 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38808441

RESUMEN

Phyllanthus emblica L., or Amla, is known for its therapeutic properties and has been used as a medicinal plant. It is rich in vitamin C and other bioactive phytochemicals like polyphenols, gallic acid, chebulagic acid, leutolin, quercetin, etc. Different parts of this plant are used to treat various viral, bacterial, and fungal diseases. This review article summarizes the recent literature relevant to the antiviral, antibacterial, and antifungal effects of P. emblica. A variety of bacteria (Staphylococcus aureus, Bacillus subtillus, Enterococcus faecalis, Salmonella typhi, and Escherichia, etc.), fungi (Alternaria alternate Botroyodiplodia theobromae, Colletotrichum corcori, Curvularia lunata, Fusarium exquisite, Fusarium solanii, Aspergillus niger, Candida albicans, Colletotrichum gleosparoitis, and Macrophomina phaseolina) and viruses, like Influenza A virus strain H3N2, hepatitis B, Human Immunodeficiency virus type-1 (HIV-1), Simplex virus type 1 (HSV-1) and type 2 (HSV-2) have experimented. Different techniques were used based on the way of identification. 'For example, disc diffusion, dilution methods, sound diffusion, Immuno-peroxidase monolayer assay, serum HBV and HBsAg assay, enzyme immunoassay, etc. The present review analyzed and summarized the antimicrobial activities of P. emblica and possible mechanisms of action to provide future directions in translating these findings clinically.

18.
Chem Biodivers ; : e202401604, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-39145539

RESUMEN

This study aims to investigate the essential oil from leaves of E. pohliana (EOEP) in regard to its chemical composition, antimicrobial and drug-enhancing activity, as well as the reduction of fungal virulence capacity. Chemical characterization using GC-MS showed as major components the sesquiterpenes δ-cadinene, Epi-α-Muurolol, and bicyclogermacrene. The results of antibacterial tests indicated that Staphylococcus aureus was more sensitive to EOEP, that also enhanced the efficacy of gentamicin, erythromycin, and norfloxacin. EOEP exhibited antifungal properties against Candida albicans, in addition to potentiating the effectiveness of fluconazole against Candida tropicalis. It showed anti-virulence effects in all fungal strains. These findings underscore Eugenia pohliana as a potential candidate for the prospection of novel therapeutic agents to treat infectious diseases caused by resistant microbes.

19.
Chem Biodivers ; 21(8): e202400072, 2024 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-38780224

RESUMEN

The traditional use of the M. charantia L. plant to treat coughs, fever and expectoration is widely practiced in different cultures, but its effectiveness and safety still require scientific investigation. This study sought to perform a chemical analysis and evaluate the antitussive, expectorant and antipyretic effects of the ethanolic extract of M. charantia leaves (EEMc) in rats and mice. The EEMc was subjected to chemical analysis by HPLC-DAD, revealing the presence of the flavonoids astragalin and isoquercetin. Acute oral toxicity in mice did not result in deaths, although changes in liver weight and stool consistency were observed. EEMc demonstrated an antitussive effect at doses of 100 and 300 mg/kg in mice subjected to cough induction by citric acid nebulization. Furthermore, it showed expectorant activity at a dose of 300 mg/kg, assessed based on the elimination of the phenol red marker in bronchoalveolar lavage. In the evaluation of antipyretic activity in rats, fever induced by Saccharomyces cerevisiae was reduced at all doses tested during the first hour after treatment. This innovative study identified the presence of astragalin and isoquercetin in EEMc and indicated that the extract has antitussive, expectorant and antipyretic properties. Therefore, EEMc presents itself as a promising option in herbal medicine for the treatment of respiratory symptoms and fever.


Asunto(s)
Antipiréticos , Antitusígenos , Etanol , Expectorantes , Momordica charantia , Extractos Vegetales , Hojas de la Planta , Animales , Extractos Vegetales/química , Extractos Vegetales/farmacología , Extractos Vegetales/aislamiento & purificación , Ratones , Antitusígenos/farmacología , Antitusígenos/química , Antitusígenos/aislamiento & purificación , Hojas de la Planta/química , Ratas , Etanol/química , Antipiréticos/farmacología , Antipiréticos/química , Antipiréticos/aislamiento & purificación , Masculino , Momordica charantia/química , Expectorantes/farmacología , Expectorantes/aislamiento & purificación , Expectorantes/química , Tos/tratamiento farmacológico , Ratas Wistar , Relación Dosis-Respuesta a Droga , Saccharomyces cerevisiae/efectos de los fármacos , Fiebre/tratamiento farmacológico
20.
Chem Biodivers ; 21(7): e202400444, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38670923

RESUMEN

Fungal infections are a public health problem that mainly affects immunosuppressed people, Candida spp. have been responsible for most sources of contamination and invasive fungal infections described around the world. The need arises to find new therapeutic approaches to combat growing infections. Plants and natural products have been considered a valuable source for discovering new molecules with active ingredients. Diosgenin is a sapogenin found in the families of Leguminosae and Dioscoreaceae, it is obtained mainly from the dioscin saponin through the hydrolysis method, it is a phytochemical that has been highlighted in the treatment of various diseases, as well as in combating microbial resistance. The present study aimed to evaluate the susceptibility of fungal strains to diosgenin, as well as verify the association with the reference drug and evaluate the inhibition of the virulence factor through morphological changes in the yeast state to the filamentous form of hyphae and pseudohyphae in strains of Candida albicans, Candida tropicalis and Candida krusei using the broth microdilution method and microculture technique. Antifungal assays revealed that diosgenin was not able to inhibit the growth of the tested strains. However, it was able to inhibit the fungal dimorphism of the strains evaluated, however further studies are recommended to verify its effectiveness against other virulence factors.


Asunto(s)
Antifúngicos , Candida , Diosgenina , Pruebas de Sensibilidad Microbiana , Diosgenina/farmacología , Diosgenina/química , Diosgenina/análogos & derivados , Antifúngicos/farmacología , Antifúngicos/química , Candida/efectos de los fármacos , Virulencia/efectos de los fármacos , Candida albicans/efectos de los fármacos , Candida albicans/patogenicidad
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda