Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 159
Filtrar
1.
Infect Immun ; : e0022424, 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38975764

RESUMEN

Colonization of the human stomach with Helicobacter pylori strains producing active forms of the secreted toxin VacA is associated with an increased risk of peptic ulcer disease and gastric cancer, compared with colonization with strains producing hypoactive forms of VacA. Previous studies have shown that active s1m1 forms of VacA cause cell vacuolation and mitochondrial dysfunction. In this study, we sought to define the cellular metabolic consequences of VacA intoxication. Untargeted metabolomic analyses revealed that several hundred metabolites were significantly altered in VacA-treated gastroduodenal cells (AGS and AZ-521) compared with control cells. Pathway analysis suggested that VacA caused alterations in taurine and hypotaurine metabolism. Treatment of cells with the purified active s1m1 form of VacA, but not hypoactive s2m1 or Δ6-27 VacA-mutant proteins (defective in membrane channel formation), caused reductions in intracellular taurine and hypotaurine concentrations. Supplementation of the tissue culture medium with taurine or hypotaurine protected AZ-521 cells against VacA-induced cell death. Untargeted global metabolomics of VacA-treated AZ-521 cells or AGS cells in the presence or absence of extracellular taurine showed that taurine was the main intracellular metabolite significantly altered by extracellular taurine supplementation. These results indicate that VacA causes alterations in cellular taurine metabolism and that repletion of taurine is sufficient to attenuate VacA-induced cell death. We discuss these results in the context of previous literature showing the important role of taurine in cell physiology and the pathophysiology or treatment of multiple pathologic conditions, including gastric ulcers, cardiovascular disease, malignancy, inflammatory diseases, and other aging-related disorders.

2.
PLoS Pathog ; 18(8): e1010720, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35951533

RESUMEN

Bacterial type IV secretion systems (T4SSs) are a versatile group of nanomachines that can horizontally transfer DNA through conjugation and deliver effector proteins into a wide range of target cells. The components of T4SSs in gram-negative bacteria are organized into several large subassemblies: an inner membrane complex, an outer membrane core complex, and, in some species, an extracellular pilus. Cryo-electron tomography has been used to define the structures of T4SSs in intact bacteria, and high-resolution structural models are now available for isolated core complexes from conjugation systems, the Xanthomonas citri T4SS, the Helicobacter pylori Cag T4SS, and the Legionella pneumophila Dot/Icm T4SS. In this review, we compare the molecular architectures of these T4SSs, focusing especially on the structures of core complexes. We discuss structural features that are shared by multiple T4SSs as well as evolutionary strategies used for T4SS diversification. Finally, we discuss how structural variations among T4SSs may confer specialized functional properties.


Asunto(s)
Helicobacter pylori , Legionella pneumophila , Proteínas Bacterianas/metabolismo , Sistemas de Secreción Bacterianos/metabolismo , Tomografía con Microscopio Electrónico , Helicobacter pylori/metabolismo , Legionella pneumophila/metabolismo , Sistemas de Secreción Tipo IV/genética
3.
Nat Chem Biol ; 18(7): 698-705, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35332331

RESUMEN

Oxidative stress is a defining feature of most cancers, including those that stem from carcinogenic infections. Reactive oxygen species can drive tumor formation, yet the molecular oxidation events that contribute to tumorigenesis are largely unknown. Here we show that inactivation of a single, redox-sensitive cysteine in the host protease legumain, which is oxidized during infection with the gastric cancer-causing bacterium Helicobacter pylori, accelerates tumor growth. By using chemical proteomics to map cysteine reactivity in human gastric cells, we determined that H. pylori infection induces oxidation of legumain at Cys219. Legumain oxidation dysregulates intracellular legumain processing and decreases the activity of the enzyme in H. pylori-infected cells. We further show that the site-specific loss of Cys219 reactivity increases tumor growth and mortality in a xenograft model. Our findings establish a link between an infection-induced oxidation site and tumorigenesis while underscoring the importance of cysteine reactivity in tumor growth.


Asunto(s)
Cisteína Endopeptidasas , Infecciones por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Transformación Celular Neoplásica/metabolismo , Cisteína/metabolismo , Cisteína Endopeptidasas/metabolismo , Humanos , Oxidación-Reducción , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/microbiología , Neoplasias Gástricas/patología
4.
J Bacteriol ; 205(4): e0005223, 2023 04 25.
Artículo en Inglés | MEDLINE | ID: mdl-36971548

RESUMEN

The localization of lipoprotein (Lol) system is used by Gram-negative bacteria to export lipoproteins to the outer membrane. Lol proteins and models of how Lol transfers lipoproteins from the inner to the outer membrane have been extensively characterized in the model organism Escherichia coli, but in numerous bacterial species, lipoprotein synthesis and export pathways deviate from the E. coli paradigm. For example, in the human gastric bacterium Helicobacter pylori, a homolog of the E. coli outer membrane component LolB is not found, E. coli LolC and LolE correspond to a single inner membrane component (LolF), and a homolog of the E. coli cytoplasmic ATPase LolD has not been identified. In the present study, we sought to identify a LolD-like protein in H. pylori. We used affinity-purification mass spectrometry to identify interaction partners of the H. pylori ATP-binding cassette (ABC) family permease LolF and identified the ABC family ATP-binding protein HP0179 as its interaction partner. We engineered H. pylori to conditionally express HP0179 and showed that HP0179 and its conserved ATP binding and ATP hydrolysis motifs are essential for H. pylori growth. We then performed affinity purification-mass spectrometry using HP0179 as the bait and identified LolF as its interaction partner. These results indicate that H. pylori HP0179 is a LolD-like protein and provide a more complete understanding of lipoprotein localization processes in H. pylori, a bacterium in which the Lol system deviates from the E. coli paradigm. IMPORTANCE Lipoproteins are critical in Gram-negative-bacteria for cell surface assembly of LPS, insertion of outer membrane proteins, and sensing envelope stress. Lipoproteins also contribute to bacterial pathogenesis. For many of these functions, lipoproteins must localize to the Gram-negative outer membrane. Transporting lipoproteins to the outer membrane involves the Lol sorting pathway. Detailed analyses of the Lol pathway have been performed in the model organism Escherichia coli, but many bacteria utilize altered components or are missing essential components of the E. coli Lol pathway. Identifying a LolD-like protein in Helicobacter pylori is important to better understand the Lol pathway in diverse bacterial classes. This becomes particularly relevant as lipoprotein localization is targeted for antimicrobial development.


Asunto(s)
Proteínas de Escherichia coli , Helicobacter pylori , Humanos , Escherichia coli/metabolismo , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Proteínas de Escherichia coli/metabolismo , Transporte de Proteínas , Lipoproteínas/genética , Lipoproteínas/metabolismo , Bacterias Gramnegativas/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas de la Membrana Bacteriana Externa/metabolismo
5.
Infect Immun ; 91(9): e0015023, 2023 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-37638724

RESUMEN

Helicobacter pylori strains containing the cag pathogenicity island (PAI) are associated with the development of gastric adenocarcinoma and peptic ulcer disease. The cag PAI encodes a secreted effector protein (CagA) and a type IV secretion system (Cag T4SS). Cag T4SS activity is required for the delivery of CagA and non-protein substrates into host cells. The Cag T4SS outer membrane core complex (OMCC) contains a channel-like domain formed by helix-loop-helix elements (antenna projections, AP) from 14 copies of the CagY protein (a VirB10 ortholog). Similar VirB10 antenna regions are present in T4SS OMCCs from multiple bacterial species and are predicted to span the outer membrane. In this study, we investigated the role of the CagY antenna region in Cag T4SS OMCC assembly and Cag T4SS function. An H. pylori mutant strain with deletion of the entire CagY AP (∆AP) retained the capacity to produce CagY and assemble an OMCC, but it lacked T4SS activity (CagA translocation and IL-8 induction in AGS gastric epithelial cells). In contrast, a mutant strain with Gly-Ser substitutions in the unstructured CagY AP loop retained Cag T4SS activity. Mutants containing CagY AP loops with shortened lengths were defective in CagA translocation and exhibited reduced IL-8-inducing activity compared to control strains. These data indicate that the CagY AP region is required for Cag T4SS activity and that Cag T4SS activity can be modulated by altering the length of the CagY AP unstructured loop.


Asunto(s)
Helicobacter pylori , Helicobacter pylori/genética , Interleucina-8 , Sistemas de Secreción Tipo IV/genética , Células Epiteliales , Islas Genómicas
6.
Infect Immun ; 91(2): e0042022, 2023 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-36633416

RESUMEN

Both Helicobacter pylori infection and a high-salt diet are risk factors for gastric cancer. We previously showed that a mutation in fur (encoding the ferric uptake regulator variant Fur-R88H) was positively selected in H. pylori strains isolated from experimentally infected Mongolian gerbils receiving a high-salt diet. In the present study, we report that continuous H. pylori growth in high-salt conditions in vitro also leads to positive selection of the fur-R88H mutation. Competition experiments with strains containing wild-type fur or fur-R88H, each labeled with unique nucleotide barcodes, showed that the fur-R88H mutation enhances H. pylori fitness under high-salt conditions but reduces H. pylori fitness under routine culture conditions. The fitness advantage of the fur-R88H mutant under high-salt conditions was abrogated by the addition of supplemental iron. To test the hypothesis that the fur-R88H mutation alters the regulatory properties of Fur, we compared the transcriptional profiles of strains containing wild-type fur or fur-R88H. Increased transcript levels of fecA2, which encodes a predicted TonB-dependent outer membrane transporter, were detected in the fur-R88H variant compared to those in the strain containing wild-type fur under both high-salt and routine conditions. Competition experiments showed that fecA2 contributes to H. pylori fitness under both high-salt and routine conditions. These results provide new insights into mechanisms by which the fur-R88H mutation confers a selective advantage to H. pylori in high-salt environments.


Asunto(s)
Proteínas Bacterianas , Helicobacter pylori , Proteínas Represoras , Humanos , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Infecciones por Helicobacter , Helicobacter pylori/genética , Helicobacter pylori/fisiología , Mutación , Cloruro de Sodio/metabolismo , Proteínas Represoras/genética , Proteínas Represoras/metabolismo
7.
Respir Res ; 24(1): 178, 2023 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-37415170

RESUMEN

BACKGROUND: It has previously been shown that the Helicobacter pylori (H. pylori)-derived molecule vacuolating cytotoxin A (VacA) could be suitable for the treatment of allergic airway disease. The therapeutic activity of the protein, which acts through modulation of dendritic cells (DC) and regulatory T cells (Tregs), was demonstrated in murine short-term acute models. The aim of this study is to further evaluate the therapeutic potential of VacA by determining the effectiveness of different application routes and the suitability of the protein for treating the chronic phase of allergic airway disease. METHODS: VacA was administered by the intraperitoneal (i.p.), oral (p.o.) or intratracheal (i.t.) routes, and long-term therapeutic effectiveness, allergic airway disease hallmarks, and immune phenotype were analyzed in murine models of acute and chronic allergic airway disease. RESULTS: Administration of VacA via the i.p., p.o or i.t. routes was associated with a reduction in airway inflammation. The i.p. route showed the most consistent effect in reducing airway inflammation and i.p. treatment with VacA was the only treatment that significantly reduced mucus cell hyperplasia. In a murine model of chronic allergic airway disease, both short- and long-term treatment with VacA showed a therapeutic effect, with a reduction in a variety of asthma hallmarks, including bronchoalveolar lavage eosinophilia, lung inflammation and goblet cell metaplasia. Short-term treatment was associated with induction of Tregs, while repetitive long-term administration of VacA influenced immunological memory in the lung. CONCLUSIONS: In addition to showing therapeutic efficacy in short-term models, treatment with VacA also appeared to be effective in suppressing inflammation in a chronic airway disease model. The observation that treatment was effective after administration via several different routes highlights the potential of VacA as a therapeutic agent with different routes of administration in humans.


Asunto(s)
Asma , Helicobacter pylori , Humanos , Ratones , Animales , Proteínas Bacterianas , Citotoxinas , Asma/tratamiento farmacológico , Modelos Animales , Inflamación
8.
Proc Natl Acad Sci U S A ; 117(46): 29155-29165, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33139539

RESUMEN

LRRC8 family proteins on the plasma membrane play a critical role in cellular osmoregulation by forming volume-regulated anion channels (VRACs) necessary to prevent necrotic cell death. We demonstrate that intracellular LRRC8 proteins acting within lysosomes also play an essential role in cellular osmoregulation. LRRC8 proteins on lysosome membranes generate large lysosomal volume-regulated anion channel (Lyso-VRAC) currents in response to low cytoplasmic ionic strength conditions. When a double-leucine L706L707 motif at the C terminus of LRRC8A was mutated to alanines, normal plasma membrane VRAC currents were still observed, but Lyso-VRAC currents were absent. We used this targeting mutant, as well as pharmacological tools, to demonstrate that Lyso-VRAC currents are necessary for the formation of large lysosome-derived vacuoles, which store and then expel excess water to maintain cytosolic water homeostasis. Thus, Lyso-VRACs allow lysosomes of mammalian cells to act as the cell`s "bladder." When Lyso-VRAC current was selectively eliminated, the extent of necrotic cell death to sustained stress was greatly increased, not only in response to hypoosmotic stress, but also to hypoxic and hypothermic stresses. Thus Lyso-VRACs play an essential role in enabling cells to mount successful homeostatic responses to multiple stressors.


Asunto(s)
Lisosomas/metabolismo , Proteínas de la Membrana/metabolismo , Osmorregulación/fisiología , Estrés Fisiológico/fisiología , Animales , Aniones , Células COS , Supervivencia Celular/fisiología , Chlorocebus aethiops , Exocitosis , Técnicas de Inactivación de Genes , Células HEK293 , Homeostasis , Humanos , Proteínas de la Membrana/genética , Ratones , Transcriptoma , Vacuolas
9.
Infect Immun ; 90(7): e0000422, 2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-35652648

RESUMEN

To evaluate potential effects of gastric inflammation on Helicobacter pylori diversification and evolution within the stomach, we experimentally infected Mongolian gerbils with an H. pylori strain in which Cag type IV secretion system (T4SS) activity is controlled by a TetR/tetO system. Gerbils infected with H. pylori under conditions in which Cag T4SS activity was derepressed had significantly higher levels of gastric inflammation than gerbils infected under conditions with repressed Cag T4SS activity. Mutations in the 5' untranslated region (UTR) of katA (encoding catalase) were detected in strains cultured from 8 of the 17 gerbils infected with Cag T4SS-active H. pylori and none of the strains from 17 gerbils infected with Cag T4SS-inactive H. pylori. Catalase enzymatic activity, steady-state katA transcript levels, and katA transcript stability were increased in strains with these single nucleotide polymorphisms (SNPs) compared to strains in which these SNPs were absent. Moreover, strains harboring these SNPs exhibited increased resistance to bactericidal effects of hydrogen peroxide, compared to control strains. Experimental introduction of the SNPs into the wild-type katA 5' UTR resulted in increased katA transcript stability, increased katA steady-state levels, and increased catalase enzymatic activity. Based on site-directed mutagenesis and modeling of RNA structure, increased katA transcript levels were correlated with higher predicted thermal stability of the katA 5' UTR secondary structure. These data suggest that high levels of gastric inflammation positively select for H. pylori strains producing increased levels of catalase, which may confer survival advantages to the bacteria in an inflammatory gastric environment.


Asunto(s)
Gastritis , Infecciones por Helicobacter , Helicobacter pylori , Regiones no Traducidas 5'/genética , Animales , Catalasa/genética , Mucosa Gástrica/microbiología , Gastritis/microbiología , Gerbillinae/genética , Infecciones por Helicobacter/microbiología , Helicobacter pylori/genética , Inflamación/genética , Mutación
10.
Mol Microbiol ; 116(3): 724-728, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34250669

RESUMEN

Bacterial Type IV secretion systems (T4SSs) are a functionally heterogeneous group of nanomachines that can deliver substrates into a wide range of target cells. The Helicobacter pylori Cag T4SS has an important role in the pathogenesis of gastric cancer. CagA, the only effector protein known to be secreted by the H. pylori Cag T4SS, enters human gastric cells and causes alterations in intracellular signaling that are linked to cancer pathogenesis. Understanding the molecular mechanisms by which CagA is delivered into gastric cells has been hindered by the lack of robust methods for monitoring this process. A publication in this issue of Molecular Microbiology describes a split luciferase assay for monitoring T4SS-mediated translocation of CagA into host cells. The use of this translocation reporter allowed the quantification of CagA translocation in real-time assays, thereby facilitating the analysis of the kinetics of CagA delivery. This system also allowed the tracking of several types of CagA fusion proteins and confirmed that protein unfolding is important for secretion by the Cag T4SS. This commentary discusses T4SS-dependent delivery of H. pylori CagA into host cells and the use of the split luciferase system for monitoring bacterial protein secretion and delivery into target cells.


Asunto(s)
Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/metabolismo , Infecciones por Helicobacter/metabolismo , Helicobacter pylori/metabolismo , Helicobacter pylori/patogenicidad , Sistemas de Secreción Tipo IV/metabolismo , Transporte Biológico , Infecciones por Helicobacter/patología , Humanos , Transducción de Señal , Estómago/microbiología
11.
J Infect Dis ; 224(2): 360-365, 2021 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-33245103

RESUMEN

Helicobacter pylori is the strongest risk factor for gastric adenocarcinoma. The H. pylori cancer-associated cag pathogenicity island (cag-PAI) encodes a type IV secretion system (T4SS), which translocates microbial DNA and activates TLR9; however, most cag-PAI+-infected persons do not develop cancer and cag-PAI-independent regulators of pathogenesis, including strain-specific adhesins, remain understudied. We defined the relationships between H. pylori HopQ adhesin allelic type, gastric injury, and TLR9 activation. Type I hopQ alleles were significantly associated with magnitude of injury, cag-T4SS function, and TLR9 activation. Genetic deletion of hopQ significantly decreased H. pylori-induced TLR9 activation, implicating this adhesin in H. pylori-mediated disease.


Asunto(s)
Adhesinas Bacterianas , Infecciones por Helicobacter , Receptor Toll-Like 9/inmunología , Adhesinas Bacterianas/genética , Antígenos Bacterianos , Proteínas Bacterianas/genética , Islas Genómicas , Infecciones por Helicobacter/inmunología , Helicobacter pylori/genética , Humanos , Receptor Toll-Like 9/genética , Sistemas de Secreción Tipo IV/genética , Virulencia
12.
Infect Immun ; 89(12): e0034821, 2021 11 16.
Artículo en Inglés | MEDLINE | ID: mdl-34543122

RESUMEN

Helicobacter pylori VacA is a secreted toxin that assembles into water-soluble oligomeric structures and forms anion-selective membrane channels. Acidification of purified VacA enhances its activity in cell culture assays. Sites of protomer-protomer contact within VacA oligomers have been identified by cryoelectron microscopy, and in the current study, we validated several of these interactions by chemical cross-linking and mass spectrometry. We then mutated amino acids at these contact sites and analyzed the effects of the alterations on VacA oligomerization and activity. VacA proteins with amino acid charge reversals at interprotomer contact sites retained the capacity to assemble into water-soluble oligomers and retained cell-vacuolating activity. Introduction of paired cysteine substitutions at these sites resulted in formation of disulfide bonds between adjacent protomers. Negative-stain electron microscopy and single-particle two-dimensional class analysis revealed that wild-type VacA oligomers disassemble when exposed to acidic pH, whereas the mutant proteins with paired cysteine substitutions retain an oligomeric state at acidic pH. Acid-activated wild-type VacA caused vacuolation of cultured cells, whereas acid-activated mutant proteins with paired cysteine substitutions lacked cell-vacuolating activity. Treatment of these mutant proteins with both low pH and a reducing agent resulted in VacA binding to cells, VacA internalization, and cell vacuolation. Internalization of a nonoligomerizing mutant form of VacA by host cells was detected without a requirement for acid activation. Collectively, these results enhance our understanding of the molecular interactions required for VacA oligomerization and support a model in which toxin activity depends on interactions of monomeric VacA with host cells.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/química , Toxinas Bacterianas/metabolismo , Conformación Proteica , Multimerización de Proteína , Proteínas Bacterianas/genética , Toxinas Bacterianas/genética , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Relación Estructura-Actividad
13.
Infect Immun ; 89(10): e0072520, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34310886

RESUMEN

Helicobacter pylori genomes encode over 60 predicted outer membrane proteins (OMPs). Several OMPs in the Hop family act as adhesins, but the functions of most Hop proteins are unknown. To identify hop mutant strains exhibiting differential fitness in vivo compared to in vitro, we used a genetic barcoding method that allowed us to track changes in the proportional abundance of H. pylori strains within a mixed population. We generated a library of hop mutant strains, each containing a unique nucleotide barcode, as well as a library of control strains, each containing a nucleotide barcode in an intergenic region predicted to be a neutral locus unrelated to bacterial fitness. We orogastrically inoculated each of the libraries into mice and analyzed compositional changes in the populations over time in vivo compared to changes detected in the populations during library passage in vitro. The control library proliferated as a relatively stable community in vitro, but there was a reduction in the population diversity of this library in vivo and marked variation in the dominant strains recovered from individual animals, consistent with the existence of a nonselective bottleneck in vivo. We did not identify any OMP mutants exhibiting fitness defects exclusively in vivo without corresponding fitness defects in vitro. Conversely, a babA mutant exhibited a strong fitness advantage in vivo but not in vitro. These findings, when taken together with results of other studies, suggest that production of BabA may have differential effects on H. pylori fitness depending on the environmental conditions.


Asunto(s)
Adhesinas Bacterianas/genética , Infecciones por Helicobacter/microbiología , Helicobacter pylori/genética , Mutación/genética , Animales , Adhesión Bacteriana/genética , Proteínas de la Membrana Bacteriana Externa/genética , Modelos Animales de Enfermedad , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL
14.
Infect Immun ; 89(4)2021 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-33526561

RESUMEN

Helicobacter pylori encounters a wide range of pH within the human stomach. In a comparison of H. pylori cultured in vitro under neutral or acidic conditions, about 15% of genes are differentially expressed, and corresponding changes are detectable for many of the encoded proteins. The ArsRS two-component system (TCS), comprised of the sensor kinase ArsS and its cognate response regulator ArsR, has an important role in mediating pH-responsive changes in H. pylori gene expression. In this study, we sought to delineate the pH-responsive ArsRS regulon and further define the role of ArsR in pH-responsive gene expression. We compared H. pylori strains containing an intact ArsRS system with an arsS null mutant or strains containing site-specific mutations of a conserved aspartate residue (D52) in ArsR, which is phosphorylated in response to signals relayed by the cognate sensor kinase ArsS. We identified 178 genes that were pH-responsive in strains containing an intact ArsRS system but not in ΔarsS or arsR mutants. These constituents of the pH-responsive ArsRS regulon include genes involved in acid acclimatization (ureAB, amidases), oxidative stress responses (katA, sodB), transcriptional regulation related to iron or nickel homeostasis (fur, nikR), and genes encoding outer membrane proteins (including sabA, alpA, alpB, hopD [labA], and horA). When comparing H. pylori strains containing an intact ArsRS TCS with arsRS mutants, each cultured at neutral pH, relatively few genes are differentially expressed. Collectively, these data suggest that ArsRS-mediated gene regulation has an important role in H. pylori adaptation to changing pH conditions.


Asunto(s)
Regulación Bacteriana de la Expresión Génica , Helicobacter pylori/fisiología , Concentración de Iones de Hidrógeno , Elementos de Respuesta , Transactivadores/metabolismo , Biología Computacional/métodos , Perfilación de la Expresión Génica , Humanos , Mutación , Proteoma , Proteómica/métodos , Transcripción Genética
15.
Mol Cell Proteomics ; 18(2): 352-371, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30455363

RESUMEN

Helicobacter pylori is the strongest risk factor for gastric cancer. Initial interactions between H. pylori and its host originate at the microbial-gastric epithelial cell interface, and contact between H. pylori and gastric epithelium activates signaling pathways that drive oncogenesis. One microbial constituent that increases gastric cancer risk is the cag pathogenicity island, which encodes a type IV secretion system that translocates the effector protein, CagA, into host cells. We previously demonstrated that infection of Mongolian gerbils with a carcinogenic cag+H. pylori strain, 7.13, recapitulates many features of H. pylori-induced gastric cancer in humans. Therefore, we sought to define gastric proteomic changes induced by H. pylori that are critical for initiation of the gastric carcinogenic cascade. Gastric cell scrapings were harvested from H. pylori-infected and uninfected gerbils for quantitative proteomic analyses using isobaric tags for relative and absolute quantitation (iTRAQ). Quantitative proteomic analysis of samples from two biological replicate experiments quantified a total of 2764 proteins, 166 of which were significantly altered in abundance by H. pylori infection. Pathway mapping identified significantly altered inflammatory and cancer-signaling pathways that included Rab/Ras signaling proteins. Consistent with the iTRAQ results, RABEP2 and G3BP2 were significantly up-regulated in vitro, ex vivo in primary human gastric monolayers, and in vivo in gerbil gastric epithelium following infection with H. pylori strain 7.13 in a cag-dependent manner. Within human stomachs, RABEP2 and G3BP2 expression in gastric epithelium increased in parallel with the severity of premalignant and malignant lesions and was significantly elevated in intestinal metaplasia and dysplasia, as well as gastric adenocarcinoma, compared with gastritis alone. These results indicate that carcinogenic strains of H. pylori induce dramatic and specific changes within the gastric proteome in vivo and that a subset of altered proteins within pathways with oncogenic potential may facilitate the progression of gastric carcinogenesis in humans.


Asunto(s)
Proteínas Portadoras/metabolismo , Infecciones por Helicobacter/complicaciones , Helicobacter pylori/patogenicidad , Neoplasias Gástricas/microbiología , Proteínas de Transporte Vesicular/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Línea Celular , Modelos Animales de Enfermedad , Regulación Neoplásica de la Expresión Génica , Gerbillinae , Infecciones por Helicobacter/microbiología , Humanos , Mucosa Intestinal/metabolismo , Mucosa Intestinal/microbiología , Masculino , Mapas de Interacción de Proteínas , Proteómica , Proteínas de Unión al ARN , Neoplasias Gástricas/metabolismo , Regulación hacia Arriba
16.
Infect Immun ; 88(6)2020 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-32284370

RESUMEN

Helicobacter pylori colonizes the gastric mucosa and secretes a pore-forming toxin (VacA). Two main types of VacA, m1 and m2, can be distinguished by phylogenetic analysis. Type m1 forms of VacA have been extensively studied, but there has been relatively little study of m2 forms. In this study, we generated H. pylori strains producing chimeric proteins in which VacA m1 segments of a parental strain were replaced by corresponding m2 sequences. In comparison to the parental m1 VacA protein, a chimeric protein (designated m2/m1) containing m2 sequences in the N-terminal portion of the m region was less potent in causing vacuolation of HeLa cells, AGS gastric cells, and AZ-521 duodenal cells and had reduced capacity to cause membrane depolarization or death of AZ-521 cells. Consistent with the observed differences in activity, the chimeric m2/m1 VacA protein bound to cells at reduced levels compared to the binding levels of the parental m1 protein. The presence of two strain-specific insertions or deletions within or adjacent to the m region did not influence toxin activity. Experiments with human gastric organoids grown as monolayers indicated that m1 and m2/m1 forms of VacA had similar cell-vacuolating activities. Interestingly, both forms of VacA bound preferentially to the basolateral surface of organoid monolayers and caused increased cell vacuolation when interacting with the basolateral surface compared to the apical surface. These data provide insights into functional correlates of sequence variation in the VacA midregion (m region).


Asunto(s)
Proteínas Bacterianas/genética , Toxinas Bacterianas/genética , Variación Genética , Infecciones por Helicobacter/microbiología , Helicobacter pylori/fisiología , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Toxinas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Humanos , Dominios Proteicos , Multimerización de Proteína , Transporte de Proteínas , Vacuolas/metabolismo , Vacuolas/ultraestructura
17.
Infect Immun ; 88(2)2020 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-31712269

RESUMEN

Helicobacter pylori colonizes the stomach in about half of the world's population. H. pylori strains containing the cag pathogenicity island (cag PAI) are associated with a higher risk of gastric adenocarcinoma or peptic ulcer disease than cag PAI-negative strains. The cag PAI encodes a type IV secretion system (T4SS) that mediates delivery of the CagA effector protein as well as nonprotein bacterial constituents into gastric epithelial cells. H. pylori-induced nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) activation and interleukin-8 (IL-8) secretion are attributed to T4SS-dependent delivery of lipopolysaccharide metabolites and peptidoglycan into host cells, and Toll-like receptor 9 (TLR9) activation is attributed to delivery of bacterial DNA. In this study, we analyzed the bacterial energetic requirements associated with these cellular alterations. Mutant strains lacking Cagα, Cagß, or CagE (putative ATPases corresponding to VirB11, VirD4, and VirB4 in prototypical T4SSs) were capable of T4SS core complex assembly but defective in CagA translocation into host cells. Thus, the three Cag ATPases are not functionally redundant. Cagα and CagE were required for H. pylori-induced NF-κB activation, IL-8 secretion, and TLR9 activation, but Cagß was dispensable for these responses. We identified putative ATP-binding motifs (Walker-A and Walker-B) in each of the ATPases and generated mutant strains in which these motifs were altered. Each of the Walker box mutant strains exhibited properties identical to those of the corresponding deletion mutant strains. These data suggest that Cag T4SS-dependent delivery of nonprotein bacterial constituents into host cells occurs through mechanisms different from those used for recruitment and delivery of CagA into host cells.


Asunto(s)
Antígenos Bacterianos/genética , Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Células Epiteliales/microbiología , Helicobacter pylori/genética , Helicobacter pylori/metabolismo , Sistemas de Secreción Tipo IV/genética , Sistemas de Secreción Tipo IV/metabolismo , Transporte Biológico , ADN Bacteriano/metabolismo , Humanos , Interleucina-8/metabolismo , Lipopolisacáridos/metabolismo , FN-kappa B/metabolismo , Peptidoglicano/metabolismo , Receptor Toll-Like 9/metabolismo , Factores de Virulencia/genética , Factores de Virulencia/metabolismo
18.
Gastroenterology ; 156(1): 175-186.e2, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30296434

RESUMEN

BACKGROUND & AIMS: Previous studies reported an association of the bacteria Helicobacter pylori, the primary cause of gastric cancer, and risk of colorectal cancer (CRC). However, these findings have been inconsistent, appear to vary with population characteristics, and may be specific for virulence factor VacA. To more thoroughly evaluate the potential association of H pylori antibodies with CRC risk, we assembled a large consortium of cohorts representing diverse populations in the United States. METHODS: We used H pylori multiplex serologic assays to analyze serum samples from 4063 incident cases of CRC, collected before diagnosis, and 4063 matched individuals without CRC (controls) from 10 prospective cohorts for antibody responses to 13 H pylori proteins, including virulence factors VacA and CagA. The association of seropositivity to H pylori proteins, as well as protein-specific antibody level, with odds of CRC was determined by conditional logistic regression. RESULTS: Overall, 40% of controls and 41% of cases were H pylori-seropositive (odds ratio [OR], 1.09; 95% CI, 0.99-1.20). H pylori VacA-specific seropositivity was associated with an 11% increased odds of CRC (OR, 1.11; 95% CI, 1.01-1.22), and this association was particularly strong among African Americans (OR, 1.45; 95% CI, 1.08-1.95). Additionally, odds of CRC increased with level of VacA antibody in the overall cohort (P = .008) and specifically among African Americans (P = .007). CONCLUSIONS: In an analysis of a large consortium of cohorts representing diverse populations, we found serologic responses to H pylori VacA to associate with increased risk of CRC risk, particularly for African Americans. Future studies should seek to understand whether this marker is related to virulent H pylori strains carried in these populations.


Asunto(s)
Anticuerpos Antibacterianos/inmunología , Proteínas Bacterianas/inmunología , Neoplasias Colorrectales/microbiología , Infecciones por Helicobacter/microbiología , Helicobacter pylori/inmunología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Anticuerpos Antibacterianos/sangre , Biomarcadores/sangre , Estudios de Casos y Controles , Neoplasias Colorrectales/sangre , Neoplasias Colorrectales/epidemiología , Femenino , Infecciones por Helicobacter/sangre , Infecciones por Helicobacter/epidemiología , Helicobacter pylori/patogenicidad , Interacciones Huésped-Patógeno , Humanos , Incidencia , Masculino , Persona de Mediana Edad , Estudios Prospectivos , Factores de Riesgo , Estudios Seroepidemiológicos , Estados Unidos/epidemiología , Virulencia , Adulto Joven
19.
J Allergy Clin Immunol ; 143(4): 1496-1512.e11, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30240703

RESUMEN

BACKGROUND: Transmaternal exposure to tobacco, microbes, nutrients, and other environmental factors shapes the fetal immune system through epigenetic processes. The gastric microbe Helicobacter pylori represents an ancestral constituent of the human microbiota that causes gastric disorders on the one hand and is inversely associated with allergies and chronic inflammatory conditions on the other. OBJECTIVE: Here we investigate the consequences of transmaternal exposure to H pylori in utero and/or during lactation for susceptibility to viral and bacterial infection, predisposition to allergic airway inflammation, and development of immune cell populations in the lungs and lymphoid organs. METHODS: We use experimental models of house dust mite- or ovalbumin-induced airway inflammation and influenza A virus or Citrobacter rodentium infection along with metagenomics analyses, multicolor flow cytometry, and bisulfite pyrosequencing, to study the effects of H pylori on allergy severity and immunologic and microbiome correlates thereof. RESULTS: Perinatal exposure to H pylori extract or its immunomodulator vacuolating cytotoxin confers robust protective effects against allergic airway inflammation not only in first- but also second-generation offspring but does not increase susceptibility to viral or bacterial infection. Immune correlates of allergy protection include skewing of regulatory over effector T cells, expansion of regulatory T-cell subsets expressing CXCR3 or retinoic acid-related orphan receptor γt, and demethylation of the forkhead box P3 (FOXP3) locus. The composition and diversity of the gastrointestinal microbiota is measurably affected by perinatal H pylori exposure. CONCLUSION: We conclude that exposure to H pylori has consequences not only for the carrier but also for subsequent generations that can be exploited for interventional purposes.


Asunto(s)
Infecciones por Helicobacter/inmunología , Efectos Tardíos de la Exposición Prenatal/inmunología , Efectos Tardíos de la Exposición Prenatal/microbiología , Hipersensibilidad Respiratoria/inmunología , Hipersensibilidad Respiratoria/microbiología , Linfocitos T Reguladores/inmunología , Animales , Femenino , Tolerancia Inmunológica/inmunología , Ratones Endogámicos C57BL , Embarazo
20.
Infect Immun ; 87(2)2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30510104

RESUMEN

Helicobacter pylori CagA is a secreted effector protein that contributes to gastric carcinogenesis. Previous studies showed that there is variation among H. pylori strains in the steady-state levels of CagA and that a strain-specific motif downstream of the cagA transcriptional start site (the +59 motif) is associated with both high levels of CagA and premalignant gastric histology. The cagA 5' untranslated region contains a predicted stem-loop-forming structure adjacent to the +59 motif. In the current study, we investigated the effect of the +59 motif and the adjacent stem-loop on cagA transcript levels and cagA mRNA stability. Using site-directed mutagenesis, we found that mutations predicted to disrupt the stem-loop structure resulted in decreased steady-state levels of both the cagA transcript and the CagA protein. Additionally, these mutations resulted in a decreased cagA mRNA half-life. Mutagenesis of the +59 motif without altering the stem-loop structure resulted in reduced steady-state cagA transcript and CagA protein levels but did not affect cagA transcript stability. cagA transcript stability was not affected by increased sodium chloride concentrations, an environmental factor known to augment cagA transcript levels and CagA protein levels. These results indicate that both a predicted stem-loop structure and a strain-specific +59 motif in the cagA 5' untranslated region influence the levels of cagA expression.


Asunto(s)
Antígenos Bacterianos/genética , Proteínas Bacterianas/genética , ADN Bacteriano/ultraestructura , Infecciones por Helicobacter/genética , Helicobacter pylori/genética , Estabilidad del ARN/genética , ARN Mensajero/ultraestructura , Antígenos Bacterianos/metabolismo , Proteínas Bacterianas/metabolismo , Humanos , Mutagénesis Sitio-Dirigida
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda