Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 125
Filtrar
1.
Am J Primatol ; 86(7): e23630, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38655843

RESUMEN

The marmoset is a fundamental nonhuman primate model for the study of aging, neurobiology, and many other topics. Genetic management of captive marmoset colonies is complicated by frequent chimerism in the blood and other tissues, a lack of tools to enable cost-effective, genome-wide interrogation of variation, and historic mergers and migrations of animals between colonies. We implemented genotype-by-sequencing (GBS) of hair follicle derived DNA (a minimally chimeric DNA source) of 82 marmosets housed at the Southwest National Primate Research Center (SNPRC). Our primary goals were the genetic characterization of our marmoset population for pedigree verification and colony management and to inform the scientific community of the functional genetic makeup of this valuable resource. We used the GBS data to reconstruct the genetic legacy of recent mergers between colonies, to identify genetically related animals whose relationships were previously unknown due to incomplete pedigree information, and to show that animals in the SNPRC colony appear to exhibit low levels of inbreeding. Of the >99,000 single-nucleotide variants (SNVs) that we characterized, >9800 are located within gene regions known to harbor pathogenic variants of clinical significance in humans. Overall, we show the combination of low-resolution (sparse) genotyping using hair follicle DNA is a powerful strategy for the genetic management of captive marmoset colonies and for identifying potential SNVs for the development of biomedical research models.


Asunto(s)
Callithrix , Genotipo , Linaje , Animales , Callithrix/genética , Masculino , Femenino , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN , Endogamia , Folículo Piloso , Técnicas de Genotipaje/métodos , Técnicas de Genotipaje/veterinaria
2.
FASEB J ; 36(12): e22644, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36415994

RESUMEN

Maternal obesity (MO) during pregnancy is linked to increased and premature risk of age-related metabolic diseases in the offspring. However, the underlying molecular mechanisms still remain not fully understood. Using a well-established nonhuman primate model of MO, we analyzed tissue biopsies and plasma samples obtained from post-pubertal offspring (3-6.5 y) of MO mothers (n = 19) and from control animals born to mothers fed a standard diet (CON, n = 13). All offspring ate a healthy chow diet after weaning. Using untargeted gas chromatography-mass spectrometry metabolomics analysis, we quantified a total of 351 liver, 316 skeletal muscle, and 423 plasma metabolites. We identified 58 metabolites significantly altered in the liver and 46 in the skeletal muscle of MO offspring, with 8 metabolites shared between both tissues. Several metabolites were changed in opposite directions in males and females in both liver and skeletal muscle. Several tissue-specific and 4 shared metabolic pathways were identified from these dysregulated metabolites. Interestingly, none of the tissue-specific metabolic changes were reflected in plasma. Overall, our study describes characteristic metabolic perturbations in the liver and skeletal muscle in MO offspring, indicating that metabolic programming in utero persists postnatally, and revealing potential novel mechanisms that may contribute to age-related metabolic diseases later in life.


Asunto(s)
Obesidad Materna , Humanos , Animales , Masculino , Femenino , Embarazo , Destete , Obesidad/metabolismo , Dieta , Músculo Esquelético/metabolismo , Hígado/metabolismo , Estilo de Vida , Pubertad
3.
PLoS Biol ; 18(8): e3000838, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32804933

RESUMEN

In humans, most germline mutations are inherited from the father. This observation has been widely interpreted as reflecting the replication errors that accrue during spermatogenesis. If so, the male bias in mutation should be substantially lower in a closely related species with similar rates of spermatogonial stem cell divisions but a shorter mean age of reproduction. To test this hypothesis, we resequenced two 3-4 generation nuclear families (totaling 29 individuals) of olive baboons (Papio anubis), who reproduce at approximately 10 years of age on average, and analyzed the data in parallel with three 3-generation human pedigrees (26 individuals). We estimated a mutation rate per generation in baboons of 0.57×10-8 per base pair, approximately half that of humans. Strikingly, however, the degree of male bias in germline mutations is approximately 4:1, similar to that of humans-indeed, a similar male bias is seen across mammals that reproduce months, years, or decades after birth. These results mirror the finding in humans that the male mutation bias is stable with parental ages and cast further doubt on the assumption that germline mutations track cell divisions. Our mutation rate estimates for baboons raise a further puzzle, suggesting a divergence time between apes and Old World monkeys of 65 million years, too old to be consistent with the fossil record; reconciling them now requires not only a slowdown of the mutation rate per generation in humans but also in baboons.


Asunto(s)
Mutación de Línea Germinal , Hominidae/genética , Tasa de Mutación , Papio/genética , Reproducción/genética , Espermatozoides/metabolismo , Factores de Edad , Animales , Evolución Biológica , División Celular , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Masculino , Modelos Genéticos , Linaje , Factores Sexuales , Especificidad de la Especie , Espermatogénesis/genética , Espermatozoides/citología
4.
Int J Mol Sci ; 24(20)2023 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-37894873

RESUMEN

Intra-uterine growth restriction (IUGR) is a common cause of fetal/neonatal morbidity and mortality and is associated with increased offspring predisposition for cardiovascular disease (CVD) development. Mitochondria are essential organelles in maintaining cardiac function, and thus, fetal cardiac mitochondria could be responsive to the IUGR environment. In this study, we investigated whether in utero fetal cardiac mitochondrial programming can be detectable in an early stage of IUGR pregnancy. Using a well-established nonhuman IUGR primate model, we induced IUGR by reducing by 30% the maternal diet (MNR), both in males (MNR-M) and in female (MNR-F) fetuses. Fetal cardiac left ventricle (LV) tissue and blood were collected at 90 days of gestation (0.5 gestation, 0.5 G). Blood biochemical parameters were determined and heart LV mitochondrial biology assessed. MNR fetus biochemical blood parameters confirm an early fetal response to MNR. In addition, we show that in utero cardiac mitochondrial MNR adaptations are already detectable at this early stage, in a sex-divergent way. MNR induced alterations in the cardiac gene expression of oxidative phosphorylation (OXPHOS) subunits (mostly for complex-I, III, and ATP synthase), along with increased protein content for complex-I, -III, and -IV subunits only for MNR-M in comparison with male controls, highlight the fetal cardiac sex-divergent response to MNR. At this fetal stage, no major alterations were detected in mitochondrial DNA copy number nor markers for oxidative stress. This study shows that in 90-day nonhuman primate fetuses, a 30% decrease in maternal nutrition generated early in utero adaptations in fetal blood biochemical parameters and sex-specific alterations in cardiac left ventricle gene and protein expression profiles, affecting predominantly OXPHOS subunits. Since the OXPHOS system is determinant for energy production in mitochondria, our findings suggest that these early IUGR-induced mitochondrial adaptations play a role in offspring's mitochondrial dysfunction and can increase predisposition to CVD in a sex-specific way.


Asunto(s)
Enfermedades Cardiovasculares , Desarrollo Fetal , Embarazo , Humanos , Animales , Masculino , Femenino , Feto/metabolismo , Retardo del Crecimiento Fetal/metabolismo , Primates , Nutrientes , Enfermedades Cardiovasculares/metabolismo
5.
Physiol Genomics ; 54(11): 443-454, 2022 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-36062883

RESUMEN

Blood pressure (BP) is influenced by genetic variation and sodium intake with sex-specific differences; however, studies to identify renal molecular mechanisms underlying the influence of sodium intake on BP in nonhuman primates (NHP) have focused on males. To address the gap in our understanding of molecular mechanisms regulating BP in female primates, we studied sodium-naïve female baboons (n = 7) fed a high-sodium (HS) diet for 6 wk. We hypothesized that in female baboons variation in renal transcriptional networks correlates with variation in BP response to a high-sodium diet. BP was continuously measured for 64-h periods throughout the study by implantable telemetry devices. Sodium intake, blood samples for clinical chemistries, and ultrasound-guided kidney biopsies were collected before and after the HS diet for RNA-Seq and bioinformatic analyses. We found that on the LS diet but not the HS diet, sodium intake and serum 17 ß-estradiol concentration correlated with BP. Furthermore, kidney transcriptomes differed by diet-unbiased weighted gene coexpression network analysis revealed modules of genes correlated with BP on the HS diet but not the LS diet. Our results showed variation in BP on the HS diet correlated with variation in novel kidney gene networks regulated by ESR1 and MYC; i.e., these regulators have not been associated with BP regulation in male humans or rodents. Validation of the mechanisms underlying regulation of BP-associated gene networks in female NHP will inform better therapies toward greater precision medicine for women.


Asunto(s)
Hipertensión , Sodio en la Dieta , Animales , Femenino , Masculino , Humanos , Presión Sanguínea/genética , Transcriptoma/genética , Riñón , Corteza Renal , Dieta , Sodio , Papio , Cloruro de Sodio Dietético
6.
J Physiol ; 600(13): 3169-3191, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35545608

RESUMEN

Obesity in pregnant women causes fetal cardiac dysfunction and increases offspring cardiovascular disease risk, but its effect on myocardial metabolism is unknown. We hypothesized that maternal obesity alters fetal cardiac expression of metabolism-related genes and shifts offspring myocardial substrate preference from glucose towards lipids. Female mice were fed control or obesogenic diets before and during pregnancy. Fetal hearts were studied in late gestation (embryonic day (E) 18.5; term ≈ E21), and offspring were studied at 3, 6, 9 or 24 months postnatally. Maternal obesity increased heart weight and peroxisome proliferator activated receptor gamma (Pparg) expression in female and male fetuses and caused left ventricular diastolic dysfunction in the adult offspring. Cardiac dysfunction worsened progressively with age in female, but not male, offspring of obese dams, in comparison to age-matched control animals. In 6-month-old offspring, exposure to maternal obesity increased cardiac palmitoyl carnitine-supported mitochondrial respiration in males and reduced myocardial 18 F-fluorodeoxyglucose uptake in females. Cardiac Pparg expression remained higher in adult offspring of obese dams than control dams and was correlated with contractile and metabolic function. Maternal obesity did not affect cardiac palmitoyl carnitine respiration in females or 18 F-fluorodeoxyglucose uptake in males and did not alter cardiac 3 H-oleic acid uptake, pyruvate respiration, lipid content or fatty acid/glucose transporter abundance in offspring of either sex. The results support our hypothesis and show that maternal obesity affects offspring cardiac metabolism in a sex-dependent manner. Persistent upregulation of Pparg expression in response to overnutrition in utero might underpin programmed cardiac impairments mechanistically and contribute to cardiovascular disease risk in children of women with obesity. KEY POINTS: Obesity in pregnant women causes cardiac dysfunction in the fetus and increases lifelong cardiovascular disease risk in the offspring. In this study, we showed that maternal obesity in mice induces hypertrophy of the fetal heart in association with altered expression of genes related to nutrient metabolism. Maternal obesity also alters cardiac metabolism of carbohydrates and lipids in the adult offspring. The results suggest that overnutrition in utero might contribute to increased cardiovascular disease risk in children of women with obesity.


Asunto(s)
Enfermedades Cardiovasculares , Cardiopatías , Obesidad Materna , Hipernutrición , Efectos Tardíos de la Exposición Prenatal , Hijos Adultos , Animales , Cardiomegalia/etiología , Carnitina , Femenino , Corazón Fetal , Humanos , Lípidos , Masculino , Ratones , Obesidad/metabolismo , Obesidad Materna/complicaciones , PPAR gamma/genética , Embarazo
7.
BMC Genomics ; 23(1): 496, 2022 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-35804317

RESUMEN

BACKGROUND: Reliable and effective label-free quantification (LFQ) analyses are dependent not only on the method of data acquisition in the mass spectrometer, but also on the downstream data processing, including software tools, query database, data normalization and imputation. In non-human primates (NHP), LFQ is challenging because the query databases for NHP are limited since the genomes of these species are not comprehensively annotated. This invariably results in limited discovery of proteins and associated Post Translational Modifications (PTMs) and a higher fraction of missing data points. While identification of fewer proteins and PTMs due to database limitations can negatively impact uncovering important and meaningful biological information, missing data also limits downstream analyses (e.g., multivariate analyses), decreases statistical power, biases statistical inference, and makes biological interpretation of the data more challenging. In this study we attempted to address both issues: first, we used the MetaMorphues proteomics search engine to counter the limits of NHP query databases and maximize the discovery of proteins and associated PTMs, and second, we evaluated different imputation methods for accurate data inference. We used a generic approach for missing data imputation analysis without distinguising the potential source of missing data (either non-assigned m/z or missing values across runs). RESULTS: Using the MetaMorpheus proteomics search engine we obtained quantitative data for 1622 proteins and 10,634 peptides including 58 different PTMs (biological, metal and artifacts) across a diverse age range of NHP brain frontal cortex. However, among the 1622 proteins identified, only 293 proteins were quantified across all samples with no missing values, emphasizing the importance of implementing an accurate and statiscaly valid imputation method to fill in missing data. In our imputation analysis we demonstrate that Single Imputation methods that borrow information from correlated proteins such as Generalized Ridge Regression (GRR), Random Forest (RF), local least squares (LLS), and a Bayesian Principal Component Analysis methods (BPCA), are able to estimate missing protein abundance values with great accuracy. CONCLUSIONS: Overall, this study offers a detailed comparative analysis of LFQ data generated in NHP and proposes strategies for improved LFQ in NHP proteomics data.


Asunto(s)
Algoritmos , Proteómica , Animales , Teorema de Bayes , Primates , Proteómica/métodos , Programas Informáticos
8.
Am J Physiol Endocrinol Metab ; 323(4): E336-E353, 2022 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-35858246

RESUMEN

Infants born to obese mothers are more likely to develop metabolic disease, including glucose intolerance and hepatic steatosis, in adult life. We examined the effects of maternal obesity on the transcriptome of skeletal muscle and liver tissues of the near-term fetus and 3-mo-old offspring in mice born to dams fed a high-fat and -sugar diet. Previously, we have shown that male, but not female, offspring develop glucose intolerance, insulin resistance, and liver steatosis at 3 mo old. Female C57BL6/J mice were fed normal chow or an obesogenic high-calorie diet before mating and throughout pregnancy. RNAseq was performed on the liver and gastrocnemius muscle following collection from fetuses on embryonic day 18.5 (E18.5) as well as from 3-mo-old offspring from obese dams and control dams. Significant genes were generated for each sex, queried for enrichment, and modeled to canonical pathways. RNAseq was corroborated by protein quantification in offspring. The transcriptomic response to maternal obesity in the liver was more marked in males than females. However, in both male and female offspring of obese dams, we found significant enrichment for fatty acid metabolism, mitochondrial transport, and oxidative stress in the liver transcriptomes as well as decreased protein concentrations of electron transport chain members. In skeletal muscle, pathway analysis of gene expression revealed sexual dimorphic patterns, including metabolic processes of fatty acids and glucose, as well as PPAR, AMPK, and PI3K-Akt signaling pathways. Transcriptomic responses to maternal obesity in skeletal muscle were more marked in female offspring than males. Female offspring had greater expression of genes associated with glucose uptake, and protein abundance reflected greater activation of mTOR signaling. Skeletal muscle and livers in mice born to obese dams had sexually dimorphic transcriptomic responses that changed from the fetus to the adult offspring. These data provide insights into mechanisms underpinning metabolic programming in maternal obesity.NEW & NOTEWORTHY Transcriptomic data support that fetuses of obese mothers modulate metabolism in both muscle and liver. These changes were strikingly sexually dimorphic in agreement with published findings that male offspring of obese dams exhibit pronounced metabolic disease earlier. In both males and females, the transcriptomic responses in the fetus were different than those at 3 mo, implicating adaptive mechanisms throughout adulthood.


Asunto(s)
Hígado Graso , Intolerancia a la Glucosa , Obesidad Materna , Efectos Tardíos de la Exposición Prenatal , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Dieta Alta en Grasa , Ácidos Grasos/metabolismo , Hígado Graso/metabolismo , Femenino , Glucosa/metabolismo , Intolerancia a la Glucosa/metabolismo , Humanos , Insulina/metabolismo , Hígado/metabolismo , Masculino , Ratones , Ratones Obesos , Músculo Esquelético/metabolismo , Obesidad/genética , Obesidad/metabolismo , Receptores Activados del Proliferador del Peroxisoma/genética , Fosfatidilinositol 3-Quinasas/metabolismo , Embarazo , Efectos Tardíos de la Exposición Prenatal/genética , Efectos Tardíos de la Exposición Prenatal/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Transcriptoma
9.
Genome Res ; 29(5): 848-856, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30926611

RESUMEN

Baboons (genus Papio) are broadly studied in the wild and in captivity. They are widely used as a nonhuman primate model for biomedical studies, and the Southwest National Primate Research Center (SNPRC) at Texas Biomedical Research Institute has maintained a large captive baboon colony for more than 50 yr. Unlike other model organisms, however, the genomic resources for baboons are severely lacking. This has hindered the progress of studies using baboons as a model for basic biology or human disease. Here, we describe a data set of 100 high-coverage whole-genome sequences obtained from the mixed colony of olive (P. anubis) and yellow (P. cynocephalus) baboons housed at the SNPRC. These data provide a comprehensive catalog of common genetic variation in baboons, as well as a fine-scale genetic map. We show how the data can be used to learn about ancestry and admixture and to correct errors in the colony records. Finally, we investigated the consequences of inbreeding within the SNPRC colony and found clear evidence for increased rates of infant mortality and increased homozygosity of putatively deleterious alleles in inbred individuals.


Asunto(s)
Papio anubis/genética , Papio cynocephalus/genética , Alelos , Animales , Femenino , Variación Genética , Genotipo , Endogamia , Masculino , Recombinación Genética , Secuenciación Completa del Genoma
10.
J Med Primatol ; 51(6): 329-344, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35855511

RESUMEN

BACKGROUND: Poor nutrition during fetal development programs postnatal kidney function. Understanding postnatal consequences in nonhuman primates (NHP) is important for translation to our understanding the impact on human kidney function and disease risk. We hypothesized that intrauterine growth restriction (IUGR) in NHP persists postnatally, with potential molecular mechanisms revealed by Western-type diet challenge. METHODS: IUGR juvenile baboons were fed a 7-week Western diet, with kidney biopsies, blood, and urine collected before and after challenge. Transcriptomics and metabolomics were used to analyze biosamples. RESULTS: Pre-challenge IUGR kidney transcriptome and urine metabolome differed from controls. Post-challenge, sex and diet-specific responses in urine metabolite and renal signaling pathways were observed. Dysregulated mTOR signaling persisted postnatally in female pre-challenge. Post-challenge IUGR male response showed uncoordinated signaling suggesting proximal tubule injury. CONCLUSION: Fetal undernutrition impacts juvenile offspring kidneys at the molecular level suggesting early-onset blood pressure dysregulation.


Asunto(s)
Retardo del Crecimiento Fetal , Riñón , Humanos , Animales , Femenino , Masculino , Retardo del Crecimiento Fetal/etiología , Retardo del Crecimiento Fetal/veterinaria , Riñón/patología , Papio , Presión Sanguínea
11.
J Physiol ; 599(18): 4309-4320, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34387378

RESUMEN

At the molecular level, cellular ageing involves changes in multiple gene pathways. Cellular senescence is both an important initiator and a consequence of natural ageing. Senescence results in changes in multiple cellular mechanisms that result in a natural decrease in cell cycle activity. Liver senescence changes impair hepatic function. Given the well-established sexual dimorphism in ageing, we hypothesized that the natural hepatic ageing process is driven by sex-dependent gene mechanisms. We studied our well-characterized normal, chow-fed rat ageing model, lifespan ∼850 days, in which we have reported ageing of metabolism, reproduction and endocrine function. We performed liver RNA-seq on males and females at 110 and 650 days to determine changes in the cell cycle and cellular senescence signalling pathways. We found that natural liver ageing shows sexual dimorphism in these pathways. RNA-seq revealed more male (3967) than female (283) differentially expressed genes between 110 and 650 days. Cell cycle pathway signalling changes in males showed decreased protein and expression of key genes (Cdk2, Cdk4, Cycd and PCNA) and increased expression ofp57 at 650 vs 110 days. In females, protein and gene expression of cell growth regulators, e.g. p15 and p21, which inhibit cell cycle G1 progression, were increased. The cell senescence pathway also showed sexual dimorphism. Igfbp3, mTOR and p62 gene and protein expression decreased in males while those ofTgfb3 increased in females. Understanding the involvement of cell cycling and cellular senescence pathways in natural ageing will advance evaluation of mechanisms associated with altered ageing and frailty trajectories. KEY POINTS: In rats RNA-seq analysis showed sexual dimorphism in gene expression across the life-course between 110 and 650 days of life. Fourteen times more liver transcriptome and six times more pathway changes were observed in males compared with females. Significant changes were observed in several signalling pathways during ageing. Bioinformatic analysis were focused on changes in genes and protein products related to cell cycle and cellular senescence pathways. Males showed decreased protein product and expression of the key genes Cdk2 and Cdk4 responsible for cell cycle progression while females increased protein product and expression of p21 and p15, key genes responsible for cell cycle arrest. In conclusion, normative rat hepatic ageing involves changes in cellular pathways that control cell cycle arrest but through changes in different genes in males and females. These findings identify mechanisms that underlie the well-established sexual dimorphism in ageing.


Asunto(s)
Caracteres Sexuales , Transducción de Señal , Animales , Ciclo Celular , Senescencia Celular , Femenino , Hígado , Masculino , Ratas , Transcriptoma
12.
BMC Genomics ; 22(1): 870, 2021 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-34861817

RESUMEN

BACKGROUND: Dietary high fructose (HFr) is a known metabolic disruptor contributing to development of obesity and diabetes in Western societies. Initial molecular changes from exposure to HFr on liver metabolism may be essential to understand the perturbations leading to insulin resistance and abnormalities in lipid and carbohydrate metabolism. We studied vervet monkeys (Clorocebus aethiops sabaeus) fed a HFr (n=5) or chow diet (n=5) for 6 weeks, and obtained clinical measures of liver function, blood insulin, cholesterol and triglycerides. In addition, we performed untargeted global transcriptomics, proteomics, and metabolomics analyses on liver biopsies to determine the molecular impact of a HFr diet on coordinated pathways and networks that differed by diet. RESULTS: We show that integration of omics data sets improved statistical significance for some pathways and networks, and decreased significance for others, suggesting that multiple omics datasets enhance confidence in relevant pathway and network identification. Specifically, we found that sirtuin signaling and a peroxisome proliferator activated receptor alpha (PPARA) regulatory network were significantly altered in hepatic response to HFr. Integration of metabolomics and miRNAs data further strengthened our findings. CONCLUSIONS: Our integrated analysis of three types of omics data with pathway and regulatory network analysis demonstrates the usefulness of this approach for discovery of molecular networks central to a biological response. In addition, metabolites aspartic acid and docosahexaenoic acid (DHA), protein ATG3, and genes ATG7, and HMGCS2 link sirtuin signaling and the PPARA network suggesting molecular mechanisms for altered hepatic gluconeogenesis from consumption of a HFr diet.


Asunto(s)
Resistencia a la Insulina , Sirtuinas , Animales , Chlorocebus aethiops , Dieta , Fructosa , Hígado
13.
J Pediatr ; 235: 138-143.e5, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-33831442

RESUMEN

OBJECTIVE: To evaluate sex differences in microRNA (miRNA) expression, anthropometric measures, and cardiometabolic risk factors in Hispanic adolescents with obesity. STUDY DESIGN: Cross-sectional study of 68 (60% male) Hispanic adolescents with obesity, aged 13-17 years, recruited from a pediatric weight management clinic. We used small RNA sequencing to identify differentially expressed circulating miRNAs. We used ingenuity pathway analysis and David bioinformatic resource tools to identify target genes for these miRNAs and enriched pathways. We used standard procedures to measure anthropometric and cardiometabolic factors. RESULTS: We identified 5 miRNAs (miR-24-3p, miR-361-3p, miR-3605-5p, miR-486-5p, and miR-199b-3p) that differed between females and males. miRNA targets-enriched pathways included phosphatidylinositol 3-kinase-protein, 5' AMP-activated protein kinase, insulin resistance, sphingolipid, transforming growth factor-ß, adipocyte lipolysis regulation, and oxytocin signaling pathways. In addition, there were sex differences in blood pressure, skeletal muscle mass, lean body mass, and percent body fat. CONCLUSIONS: We have identified sex differences in miRNA expression in Hispanic adolescents relevant to cardiometabolic health. Future studies should focus on sex-specific mechanistic roles of miRNAs on gene pathways associated with obesity pathophysiology to support development of precision cardiometabolic interventions.


Asunto(s)
Factores de Riesgo Cardiometabólico , MicroARN Circulante/sangre , Hispánicos o Latinos , Obesidad Infantil/sangre , Adolescente , Presión Sanguínea , Distribución de la Grasa Corporal , Índice de Masa Corporal , Estudios Transversales , Impedancia Eléctrica , Femenino , Humanos , Masculino , Músculo Esquelético/anatomía & histología , Factores Sexuales
14.
Am J Physiol Regul Integr Comp Physiol ; 320(3): R226-R235, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-33206559

RESUMEN

Type 2 diabetes (T2D) development may be mediated by skeletal muscle (SkM) function, which is responsible for >80% of circulating glucose uptake. The goals of this study were to assess changes in global- and location-level gene expression, remodeling proteins, fibrosis, and vascularity of SkM with worsening glycemic control, through RNA sequencing, immunoblotting, and immunostaining. We evaluated SkM samples from health-diverse African green monkeys (Cholorcebus aethiops sabaeus) to investigate these relationships. We assessed SkM remodeling at the molecular level by evaluating unbiased transcriptomics in age-, sex-, weight-, and waist circumference-matched metabolically healthy, prediabetic (PreT2D) and T2D monkeys (n = 13). Our analysis applied novel location-specific gene differences and shows that extracellular facing and cell membrane-associated genes and proteins are highly upregulated in metabolic disease. We verified transcript patterns using immunohistochemical staining and protein analyses of matrix metalloproteinase 16 (MMP16), tissue inhibitor of metalloproteinase 2 (TIMP2), and VEGF. Extracellular matrix (ECM) functions to support intercellular communications, including the coupling of capillaries to muscle cells, which was worsened with increasing blood glucose. Multiple regression modeling from age- and health-diverse monkeys (n = 33) revealed that capillary density was negatively predicted by only fasting blood glucose. The loss of vascularity in SkM co-occurred with reduced expression of hypoxia-sensing genes, which is indicative of a disconnect between altered ECM and reduced endothelial cells, and known perfusion deficiencies present in PreT2D and T2D. This report supports that rising blood glucose values incite ECM remodeling and reduce SkM capillarization, and that targeting ECM would be a rational approach to improve health with metabolic disease.


Asunto(s)
Glucemia/metabolismo , Diabetes Mellitus Tipo 2/sangre , Proteínas de la Matriz Extracelular/metabolismo , Matriz Extracelular/metabolismo , Estado Prediabético/sangre , Músculo Cuádriceps/irrigación sanguínea , Músculo Cuádriceps/metabolismo , Animales , Biomarcadores/sangre , Chlorocebus aethiops , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/patología , Modelos Animales de Enfermedad , Matriz Extracelular/genética , Matriz Extracelular/patología , Proteínas de la Matriz Extracelular/genética , Femenino , Fibrosis , Regulación de la Expresión Génica , Redes Reguladoras de Genes , Densidad Microvascular , Estado Prediabético/genética , Estado Prediabético/patología , Mapas de Interacción de Proteínas , Músculo Cuádriceps/patología , Transducción de Señal , Transcriptoma
15.
Clin Sci (Lond) ; 135(9): 1103-1126, 2021 05 14.
Artículo en Inglés | MEDLINE | ID: mdl-33899910

RESUMEN

Poor maternal nutrition in pregnancy affects fetal development, predisposing offspring to cardiometabolic diseases. The role of mitochondria during fetal development on later-life cardiac dysfunction caused by maternal nutrient reduction (MNR) remains unexplored. We hypothesized that MNR during gestation causes fetal cardiac bioenergetic deficits, compromising cardiac mitochondrial metabolism and reserve capacity. To enable human translation, we developed a primate baboon model (Papio spp.) of moderate MNR in which mothers receive 70% of control nutrition during pregnancy, resulting in intrauterine growth restriction (IUGR) offspring and later exhibiting myocardial remodeling and heart failure at human equivalent ∼25 years. Term control and MNR baboon offspring were necropsied following cesarean-section, and left ventricle (LV) samples were collected. MNR adversely impacted fetal cardiac LV mitochondria in a sex-dependent fashion. Increased maternal plasma aspartate aminotransferase, creatine phosphokinase (CPK), and elevated cortisol levels in MNR concomitant with decreased blood insulin in male fetal MNR were measured. MNR resulted in a two-fold increase in fetal LV mitochondrial DNA (mtDNA). MNR resulted in increased transcripts for several respiratory chain (NDUFB8, UQCRC1, and cytochrome c) and adenosine triphosphate (ATP) synthase proteins. However, MNR fetal LV mitochondrial complex I and complex II/III activities were significantly decreased, possibly contributing to the 73% decreased ATP content and increased lipid peroxidation. MNR fetal LV showed mitochondria with sparse and disarranged cristae dysmorphology. Conclusion: MNR disruption of fetal cardiac mitochondrial fitness likely contributes to the documented developmental programming of adult cardiac dysfunction, indicating a programmed mitochondrial inability to deliver sufficient energy to cardiac tissues as a chronic mechanism for later-life heart failure.


Asunto(s)
Trastornos Nutricionales en el Feto/metabolismo , Fenómenos Fisiologicos Nutricionales Maternos , Mitocondrias Cardíacas/metabolismo , Nucleótidos de Adenina/metabolismo , Animales , Femenino , Trastornos Nutricionales en el Feto/patología , Mitocondrias Cardíacas/ultraestructura , Estrés Oxidativo , Papio , Embarazo
16.
J Med Primatol ; 50(3): 176-181, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33876458

RESUMEN

BACKGROUND: Whole-exome sequencing (WES) can expedite research on genetic variation in non-human primate (NHP) models of human diseases. However, NHP-specific reagents for exome capture are not available. This study reports the use of human-specific capture reagents in WES for olive baboons, marmosets, and vervet monkeys. METHODS: Exome capture was carried out using the SureSelect Human All Exon V6 panel from Agilent Technologies, followed by high-throughput sequencing. Capture of protein-coding genes and detection of single nucleotide variants were evaluated. RESULTS: Exome capture and sequencing results showed that more than 97% of old world and 93% of new world monkey protein coding genes were detected. Single nucleotide variants were detected across the genomes and missense variants were found in genes associated with human diseases. CONCLUSIONS: A cost-effective approach based on commercial, human-specific reagents can be used to perform WES for the discovery of genetic variants in these NHP species.


Asunto(s)
Exoma , Secuenciación de Nucleótidos de Alto Rendimiento , Animales , Chlorocebus aethiops , Exoma/genética , Humanos , Indicadores y Reactivos , Primates , Secuenciación del Exoma
17.
J Med Primatol ; 49(1): 3-9, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31709573

RESUMEN

INTRODUCTION: The baboon is a well-characterized model of human early stage atherosclerosis. However, histological and morphological changes involved in atherogenesis in baboons are not known. Previously, we challenged baboons with a high-cholesterol, high-fat diet for two years and observed fatty streak and plaque lesions in iliac arteries (RCIA). METHODS: We evaluated histological and morphological changes of baboon arterial lesions and control arteries. In addition, we evaluated the vascular expression of CD68 and SMαA markers with progression of atherosclerosis. RESULTS: We observed changes that correlated with extent of atherosclerosis, including increased maximum intimal thickness. We demonstrated at molecular level the infiltration of smooth muscle cells and macrophages into the intimal layer. Further, we observed histological and morphological discordancy between the affected and adjacent areas of the same RCIA. CONCLUSION: Atherogenesis in baboons is accompanied by histological, morphological, and molecular changes, as in humans, providing insights to evaluate the mechanisms underlying early stage atherosclerosis in target tissues.


Asunto(s)
Aterosclerosis/patología , Colesterol/efectos adversos , Dieta Alta en Grasa/efectos adversos , Arteria Ilíaca/patología , Animales , Aterosclerosis/etiología , Papio hamadryas
18.
J Med Primatol ; 48(2): 90-98, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30569595

RESUMEN

BACKGROUND: Non-human primate models of developmental programming by maternal obesity (MO) are needed for translation to human programming outcomes. We present baboon offspring (F1) morphometry, blood cortisol, and adrenocorticotropic hormone (ACTH) from 0.9 gestation to 0-2 years. METHODS: Control mothers ate chow; MO mothers ate high-fat high-energy diet pre-pregnancy through lactation. RESULTS: Maternal obesity mothers weighed more than controls pre-pregnancy. Maternal obesity gestational weight gain was lower with no correlation with fetal or placenta weights. At 0.9 gestation, MO and control F1 morphometry and ACTH were similar. MO-F1 0.9 gestation male cortisol was lower, rising slower from 0-2 years vs control-F1. At birth, male MO-F1 and control-F1 weights were similar, but growth from 0-2 years was steeper in MO-F1; newborn female MO-F1 weighed more than control-F1 but growth from 0-2 years was similar. ACTH did not change in either sex. CONCLUSIONS: Maternal obesity produced sexually dimorphic fetal and postnatal growth and hormonal phenotypes.


Asunto(s)
Hormona Adrenocorticotrópica/sangre , Hidrocortisona/sangre , Obesidad Materna/complicaciones , Papio , Efectos Tardíos de la Exposición Prenatal/metabolismo , Animales , Animales Recién Nacidos/fisiología , Femenino , Feto/fisiopatología , Fenotipo , Embarazo , Suero
19.
Int J Mol Sci ; 20(19)2019 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-31561483

RESUMEN

Recent advances in omics technologies have led to unprecedented efforts characterizing the molecular changes that underlie the development and progression of a wide array of complex human diseases, including cancer. As a result, multi-omics analyses-which take advantage of these technologies in genomics, transcriptomics, epigenomics, proteomics, metabolomics, and other omics areas-have been proposed and heralded as the key to advancing precision medicine in the clinic. In the field of precision oncology, genomics approaches, and, more recently, other omics analyses have helped reveal several key mechanisms in cancer development, treatment resistance, and recurrence risk, and several of these findings have been implemented in clinical oncology to help guide treatment decisions. However, truly integrated multi-omics analyses have not been applied widely, preventing further advances in precision medicine. Additional efforts are needed to develop the analytical infrastructure necessary to generate, analyze, and annotate multi-omics data effectively to inform precision medicine-based decision-making.


Asunto(s)
Biomarcadores , Genómica , Metabolómica , Medicina de Precisión , Proteómica , Biología Computacional/métodos , Epigenómica/métodos , Genómica/métodos , Humanos , Metabolómica/métodos , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/metabolismo , Medicina de Precisión/métodos , Proteómica/métodos
20.
J Physiol ; 596(19): 4611-4628, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-29972240

RESUMEN

KEY POINTS: Maternal high-fat diet consumption predisposes to metabolic dysfunction in male and female offspring at young adulthood. Maternal obesity programs non-alcoholic fatty liver disease (NAFLD) in a sex-dependent manner. We demonstrate sex-dependent liver transcriptome profiles in rat offspring of obese mothers. In this study, we focused on pathways related to insulin, glucose and lipid signalling. These results improve understanding of the mechanisms by which a maternal high-fat diet affects the offspring. ABSTRACT: Maternal obesity (MO) predisposes offspring (F1) to obesity, insulin resistance (IR) and non-alcoholic fatty liver disease (NAFLD). MO's effects on the F1 liver transcriptome are poorly understood. We used RNA-seq to determine the liver transcriptome of male and female F1 of MO and control-fed mothers. We hypothesized that MO-F1 are predisposed to sex-dependent adult liver dysfunction. Female Wistar rat mothers ate a control (C) or obesogenic (MO) diet from the time they were weaned through breeding at postnatal day (PND) 120, delivery and lactation. After weaning, all male and female F1 ate a control diet. At PND 110, F1 serum, liver and fat were collected to analyse metabolites, histology and liver differentially expressed genes. Male and female MO-F1 showed increased adiposity index, triglycerides, insulin and homeostatic model assessment vs. C-F1 with similar body weight and glucose serum concentrations. MO-F1 males presented greater physiological and histological NAFLD characteristics than MO-F1 females. RNA-seq revealed 1365 genes significantly changed in male MO-F1 liver and only 70 genes in female MO-F1 compared with controls. GO and KEGG analysis identified differentially expressed genes related to metabolic processes. Male MO-F1 liver showed the following altered pathways: insulin signalling (22 genes), phospholipase D signalling (14 genes), NAFLD (13 genes) and glycolysis/gluconeogenesis (7 genes). In contrast, few genes were altered in these pathways in MO-F1 females. In summary, MO programs sex-dependent F1 changes in insulin, glucose and lipid signalling pathways, leading to liver dysfunction and insulin resistance.


Asunto(s)
Glucosa/metabolismo , Insulina/metabolismo , Lípidos/análisis , Enfermedad del Hígado Graso no Alcohólico/genética , Obesidad/fisiopatología , Efectos Tardíos de la Exposición Prenatal/genética , Transcriptoma , Animales , Animales Recién Nacidos , Biomarcadores/análisis , Dieta Alta en Grasa/efectos adversos , Femenino , Secuenciación de Nucleótidos de Alto Rendimiento , Incidencia , Masculino , Fenómenos Fisiologicos Nutricionales Maternos , Enfermedad del Hígado Graso no Alcohólico/epidemiología , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Embarazo , Efectos Tardíos de la Exposición Prenatal/epidemiología , Efectos Tardíos de la Exposición Prenatal/metabolismo , Ratas , Ratas Wistar , Factores Sexuales
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda