Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Phys Rev Lett ; 131(17): 177001, 2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37955468

RESUMEN

The rainbow trapping phenomenon of graded metamaterials can be combined with the fractal spectra of quasiperiodic waveguides to give a metamaterial that performs fractal rainbow trapping. This is achieved through a graded cut-and-project algorithm that yields a geometry for which the effective projection angle is graded along its length. As a result, the fractal structure of local band gaps varies with position, leading to broadband "fractal" rainbow trapping. We demonstrate this principle by designing an acoustic waveguide, which is characterised using theory, simulation and experiments.

2.
Phys Rev Lett ; 128(6): 064301, 2022 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-35213169

RESUMEN

We identify that flexural guided elastic waves in elastic pipes carry a well-defined orbital angular momentum associated with the compressional dilatational potential. This enables the transfer of elastic orbital angular momentum, that we numerically demonstrate, through the coupling of the compressional potential in a pipe to the acoustic pressure field in a surrounding fluid in contact with the pipe.

3.
Phys Rev Lett ; 128(25): 259902, 2022 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-35802457

RESUMEN

This corrects the article DOI: 10.1103/PhysRevLett.128.064301.

4.
Philos Trans A Math Phys Eng Sci ; 377(2156): 20190104, 2019 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-31474211

RESUMEN

Energy amplification in square-lattice arrays of C-shaped low-frequency resonators, where the resonator radii are graded with distance, is investigated in the two-dimensional linear acoustics setting for both infinite (in one dimension) and finite arrays. Large amplifications of the incident energy are shown in certain array locations. The phenomenon is analysed using: (i) band diagrams for doubly-periodic arrays; (ii) numerical simulations for infinite and finite arrays; and (iii) eigenvalue analysis of transfer matrices operating over individual columns of the array. It is shown that the locations of the large amplifications are predicted by propagation cut-offs in the modes associated with the transfer-matrix eigenvalues. For the infinite array, the eigenvalues form a countable set, and for the low frequencies considered, only a single propagating mode exists for a given incident wave, which cuts off within the array, leading to predictive capabilities for the amplification location. For the finite array, it is shown that (in addition to a continuous spectrum of modes) multiple discrete propagating modes can be excited, with the grading generating new modes, as well as cutting others off, leading to complicated amplification patterns. The numerical simulations reveal that the largest amplifications are achieved for a single row array, with amplifications an order of magnitude smaller for the corresponding infinite array. This article is part of the theme issue 'Modelling of dynamic phenomena and localization in structured media (part 1)'.

5.
Phys Rev Lett ; 118(25): 254302, 2017 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-28696750

RESUMEN

Periodic structures can be engineered to exhibit unique properties observed at symmetry points, such as zero group velocity, Dirac cones, and saddle points; identifying these and the nature of the associated modes from a direct reading of the dispersion surfaces is not straightforward, especially in three dimensions or at high frequencies when several dispersion surfaces fold back in the Brillouin zone. A recently proposed asymptotic high-frequency homogenization theory is applied to a challenging time-domain experiment with elastic waves in a pinned metallic plate. The prediction of a narrow high-frequency spectral region where the effective medium tensor dramatically switches from positive definite to indefinite is confirmed experimentally; a small frequency shift of the pulse carrier results in two distinct types of highly anisotropic modes. The underlying effective equation mirrors this behavior with a change in form from elliptic to hyperbolic exemplifying the high degree of wave control available and the importance of a simple and effective predictive model.

6.
J Acoust Soc Am ; 141(1): 406, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28147584

RESUMEN

Multilayered plate and shell structures play an important role in many engineering settings where, for instance, coated pipes are commonplace such as in the petrochemical, aerospace, and power generation industries. There are numerous demands, and indeed requirements, on nondestructive evaluation (NDE) to detect defects or to measure material properties using guided waves; to choose the most suitable inspection approach, it is essential to know the properties of the guided wave solutions for any given multilayered system and this requires dispersion curves computed reliably, robustly, and accurately. Here, the circumstances are elucidated, and possible layer combinations, under which guided wave solutions, in multilayered systems composed of generally anisotropic layers in flat and cylindrical geometries, have specific properties of coupling and parity; the partial wave decomposition of the wave field is utilised to unravel the behaviour. A classification into five families is introduced and the authors claim that this is the fundamental way to approach generally anisotropic waveguides. This coupling and parity provides information to be used in the design of more efficient and robust dispersion curve tracing algorithms. A critical benefit is that the analysis enables the separation of solutions into categories for which dispersion curves do not cross; this allows the curves to be calculated simply and without ambiguity.

7.
Soft Matter ; 12(48): 9604-9615, 2016 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-27853798

RESUMEN

Molecular dynamics simulations are employed to develop a theoretical model to predict the fluid-solid contact angle as a function of wall-sliding speed incorporating thermal fluctuations. A liquid bridge between counter-sliding walls is studied, with liquid-vapour interface-tracking, to explore the impact of wall-sliding speed on contact angle. The behaviour of the macroscopic contact angle varies linearly over a range of capillary numbers beyond which the liquid bridge pinches off, a behaviour supported by experimental results. Nonetheless, the liquid bridge provides an ideal test case to study molecular scale thermal fluctuations, which are shown to be well described by Gaussian distributions. A Langevin model for contact angle is parametrised to incorporate the mean, fluctuation and auto-correlations over a range of sliding speeds and temperatures. The resulting equations can be used as a proxy for the fully-detailed molecular dynamics simulation allowing them to be integrated within a continuum-scale solver.

8.
Soft Matter ; 12(4): 1009-13, 2016 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-26610693

RESUMEN

A comparison of the kinetics of spreading of aqueous solutions of two different surfactants on an identical substrate and their short time adsorption kinetics at the water/air interface has shown that the surfactant which adsorbs slower provides a higher spreading rate. This observation indicates that Marangoni flow should be an important part of the spreading mechanism enabling surfactant solutions to spread much faster than pure liquids with comparable viscosities and surface tensions.


Asunto(s)
Tensión Superficial , Tensoactivos/química , Adsorción , Cinética , Viscosidad , Agua/química
9.
J Acoust Soc Am ; 137(3): 1180-94, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25786933

RESUMEN

Guided waves are now well established for some applications in the non-destructive evaluation of structures and offer potential for deployment in a vast array of other cases. For their development, it is important to have reliable and accurate information about the modes that propagate for particular waveguide structures. Essential information that informs choices of mode transducer, operating frequencies, and interpretation of signals, among other issues, is provided by the dispersion curves of different modes within various combinations of geometries and materials. In this paper a spectral collocation method is successfully used to handle the more complicated and realistic waveguide problems that are required in non-destructive evaluation; many pitfalls and limitations found in root-finding routines based on the partial wave method are overcome by using this approach. The general cases presented cover anisotropic homogeneous perfectly elastic materials in flat and cylindrical geometry. Non-destructive evaluation applications include complex waveguide structures, such as single or multi-layered fiber composites, lined, bonded and buried structures. For this reason, arbitrarily multi-layered systems with both solid and fluid layers are also addressed as well as the implementation of interface models of imperfect boundary conditions between layers.

10.
Langmuir ; 25(24): 14174-81, 2009 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-19731944

RESUMEN

We study the surfactant-enhanced spreading of drops on the surfaces of solid substrates. This work is performed in connection with the unique ability of aqueous trisiloxane solutions to wet highly hydrophobic substrates effectively, which has been studied for nearly two decades. We couple a lubrication model to advection-diffusion equations for surfactant transport. We allow for micelle formation and breakup in the bulk and adsorptive flux at both the gas-liquid and liquid-solid interfaces and use appropriate equations of state to model variations in surface tension and wettability. Our numerical results show the effect of basal adsorption, kinetic rates, and the availability of surfactant on the deformation of the droplet and its spreading rate. We demonstrate that this rate is maximized for intermediate rates of basal adsorption and the total mass of surfactant.


Asunto(s)
Siloxanos/química , Tensoactivos/química , Humectabilidad , Cinética , Modelos Químicos , Tensión Superficial
11.
J R Soc Interface ; 15(139)2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29445040

RESUMEN

Graphene oxide (GO) is increasingly used for controlling mass diffusion in hydrogel-based drug delivery applications. On the macro-scale, the density of GO in the hydrogel is a critical parameter for modulating drug release. Here, we investigate the diffusion of a peptide drug through a network of GO membranes and GO-embedded hydrogels, modelled as porous matrices resembling both laminated and 'house of cards' structures. Our experiments use a therapeutic peptide and show a tunable nonlinear dependence of the peptide concentration upon time. We establish models using numerical simulations with a diffusion equation accounting for the photo-thermal degradation of fluorophores and an effective percolation model to simulate the experimental data. The modelling yields an interpretation of the control of drug diffusion through GO membranes, which is extended to the diffusion of the peptide in GO-embedded agarose hydrogels. Varying the density of micron-sized GO flakes allows for fine control of the drug diffusion. We further show that both GO density and size influence the drug release rate. The ability to tune the density of hydrogel-like GO membranes to control drug release rates has exciting implications to offer guidelines for tailoring drug release rates in hydrogel-based therapeutic delivery applications.


Asunto(s)
Sistemas de Liberación de Medicamentos , Grafito/química , Hidrogeles/química , Membranas Artificiales , Modelos Químicos , Liberación de Fármacos
12.
Phys Rev E Stat Nonlin Soft Matter Phys ; 76(5 Pt 2): 056301, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18233750

RESUMEN

The nonlinear stability and dynamic behavior of falling fluid films is studied for flow over a flexible substrate. We use asymptotic methods to deduce governing equations valid in various limits. Long-wave theory is used to derive Benney-like coupled equations for the film thickness and substrate deflection. Weakly nonlinear equations are then derived from these equations that, in the limit of large wall damping and/or large wall tension, reduce to the Kuramoto-Sivashinsky equation. These models break down when inertia becomes more significant, so we also use a long-wave approximation in conjunction with integral theory to derive three strongly coupled nonlinear evolution equations for the film thickness, substrate deflection, and film volumetric flow rate valid at higher Reynolds numbers. These equations, accounting for inertia, capillary, viscous, wall tension, and damping effects, are solved over a wide range of parameters. Our results suggest that decreasing wall damping and/or wall tension can promote the development of chaos in the weakly nonlinear regime and lead to severe substrate deformations in the strongly nonlinear regime; these can give rise to situations in which the free surface and underlying substrate come into contact in finite time.

13.
Phys Rev E Stat Nonlin Soft Matter Phys ; 76(5 Pt 2): 056315, 2007 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-18233764

RESUMEN

Recent experiments and models for the spreading of liquids laden with nanoparticles have demonstrated particle layering at the three-phase contact line; this is associated with the structural component of the disjoining pressure. Effects driven by structural disjoining pressures occur on scales longer than the diameter of a particle, below which other disjoining pressure components such as van der Waals and electrostatic forces are dominant. Motivated by these experimental observations, we investigate the dynamic spreading of a droplet laden with nanoparticles in the presence of structural disjoining pressure effects. We use lubrication theory to derive evolution equations for the interfacial location and the concentration of particles. These equations account for the presence of the structural component of the disjoining pressure for film thicknesses exceeding the diameter of a nanoparticle; below such thicknesses, van der Waals forces are assumed to be operative. The resulting evolution equations, for the particle motion and free surface position, are solved allowing for the viscosity to vary as a function of nanoparticle concentration. The results of our numerical simulations demonstrate qualitative agreement with experimental observations of a "step" emerging from the contact line. The results are also relevant to a wide range of other phenomena involving layering, or terraced spreading of nanodroplets, or stepwise thinning of micellar thin films.

14.
J Colloid Interface Sci ; 306(2): 368-78, 2007 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-17109875

RESUMEN

We study the dynamics of a slender drop sandwiched between two electrodes using lubrication theory. A coupled system of evolution equations for the film thickness and interfacial charge density is derived and simplified for the case of a highly conducting fluid. The contact line singularity is relieved by postulating the existence of a wetting precursor film, which is stabilised by intermolecular forces. We examine the motion of the drop as a function of system parameters: the electrode separation, beta, an electric capillary number, C, and a spatio-temporally varying bottom electrode potential. The possibility of drop manipulation and surgery, which include drop spreading, translation, splitting and recombination, is demonstrated using appropriate tuning of the properties of the bottom potential; these results could have potential implications for drop manipulation schemes in various microfluidic applications. For relatively small beta and/or large C values, the drop assumes cone-like structures as it approaches the top electrode; the latter stages of this approach are found to be self-similar and a power-law exponent has been extracted for this case.


Asunto(s)
Microfluídica , Modelos Químicos , Electrodos
15.
J Colloid Interface Sci ; 303(2): 503-16, 2006 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-16949093

RESUMEN

The spreading of a lens of one liquid on the surface of another liquid is examined. Lubrication theory is used to derive a coupled system of equations for the air-liquid and liquid-liquid interfaces. In the case of highly viscous lenses, extensional stresses are promoted and an additional equation for the lens velocity is derived. The potential singularity at the three-phase line is relieved by a microscopic precursor layer of the spreading fluid assumed to be present ahead of the macroscopic lens. This layer is stabilised via the inclusion of disjoining pressure effects in the lens. The results of our full parametric study show that, for weak gravitational forces, the shape of the lens at equilibrium depends solely on the surface tension ratio for sufficiently deep substrate thicknesses. For thin substrates, the underlying liquid film deforms severely near the point of deposition exhibiting flattening and dimpling.

16.
J Colloid Interface Sci ; 293(1): 222-9, 2006 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-16019012

RESUMEN

We consider the flow of a thin liquid film coating an inclined plane in the presence of a soluble surfactant. A two-dimensional three-equation model is derived using lubrication theory in the rapid diffusion limit and then used to investigate the stability of the fluid height and the surfactant surface and bulk concentrations. We present solutions for an insoluble surfactant system, which are then contrasted with those obtained for a system containing a soluble surfactant; both transient growth and fully nonlinear two-dimensional simulation results are discussed. Our results indicate that the characteristics of the fingering phenomena which accompany the flow are altered by the effects of solubility. In particular, we find that these effects de-stabilise the system further over an intermediate range of surfactant solubility.

17.
Proc Math Phys Eng Sci ; 472(2191): 20160103, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-27493564

RESUMEN

We investigate eigenvalue problems for the planar Helmholtz equation in open systems with a high order of rotational symmetry. The resulting solutions have similarities with the whispering gallery modes exploited in photonic micro-resonators and elsewhere, but unlike these do not necessarily require a surrounding material boundary, with confinement instead resulting from the geometry of a series of inclusions arranged in a ring. The corresponding fields exhibit angular quasi-periodicity reminiscent of Bloch waves, and hence we refer to them as whispering Bloch modes (WBMs). We show that if the geometry of the system is slightly perturbed such that the rotational symmetry is broken, modes with asymmetric field patterns can be observed, resulting in field enhancement and other potentially desirable effects. We investigate the WBMs of two specific geometries first using expansion methods and then by applying a two-scale asymptotic scheme.

18.
Proc Math Phys Eng Sci ; 472(2186): 20150658, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27118892

RESUMEN

The paper presents new results on the localization and transmission of flexural waves in a structured plate containing a semi-infinite two-dimensional array of rigid pins. In particular, localized waves are identified and studied at the interface boundary between the homogeneous part of the flexural plate and the part occupied by rigid pins. A formal connection has been made with the dispersion properties of flexural Bloch waves in an infinite doubly periodic array of rigid pins. Special attention is given to regimes corresponding to standing waves of different types as well as Dirac-like points that may occur on the dispersion surfaces. A single half-grating problem, hitherto unreported in the literature, is also shown to bring interesting solutions.

19.
J Colloid Interface Sci ; 287(1): 261-72, 2005 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-15914174

RESUMEN

We consider the flow of a thin liquid film coating an inclined plane in the presence of an insoluble surfactant. A fully non-linear two-dimensional system of governing equations is formulated using lubrication theory to describe the dynamics. Numerical simulations of this system highlight a fingering instability present at the main fluid front and elucidate the role of surfactant in the destabilizing mechanism. A full parametric study is undertaken which reveals the dependence of the fingering characteristics on system parameters. Numerical solutions at low angles of inclination are also obtained in order to illustrate the connection between gravitationally driven fingering and the instability induced by surfactant on a flat substrate. The similarities and differences between the destabilizing mechanisms in each case are discussed.

20.
Proc Math Phys Eng Sci ; 471(2173): 20140465, 2015 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-25568616

RESUMEN

Rayleigh-Bloch (RB) waves in elasticity, in contrast to those in scalar wave systems, appear to have had little attention. Despite the importance of RB waves in applications, their connections to trapped modes and the ubiquitous nature of diffraction gratings, there has been no investigation of whether such waves occur within elastic diffraction gratings for the in-plane vector elastic system. We identify boundary conditions that support such waves and numerical simulations confirm their presence. An asymptotic technique is also developed to generate effective medium homogenized equations for the grating that allows us to replace the detailed microstructure by a continuum representation. Further numerical simulations confirm that the asymptotic scheme captures the essential features of these waves.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda