Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 254
Filtrar
1.
Prostate ; 84(3): 254-268, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37905842

RESUMEN

BACKGROUND: Even though prostate cancer (PCa) patients initially respond to androgen deprivation therapy, some will eventually develop castration resistant prostate cancer (CRPC). Androgen receptor (AR) mediated cell signaling is a major driver in the progression of CRPC while only a fraction of PCa becomes AR negative. This study aimed to understand the regulation of AR levels by N-myristoyltransferase in PCa cells. METHODS: Two enantiomers, (1S,2S)- d-NMAPPD and (1R,2R)- d-NMAPPD (LCL4), were characterized by various methods (1 H and 13 C NMR, UHPLC, high-resolution mass spectra, circular dichroism) and evaluated for the ability to bind to N-myristoyltransferase 1 (NMT1) using computational docking analysis. structure-activity relationship analysis of these compounds led to the synthesis of (1R,2R)-LCL204 and evaluation as a potential NMT1 inhibitor utilizing the purified full length NMT1 enzyme. The NMT inhibitory activity wase determined by Click chemistry and immunoblotting. Regulation of NMT1 on tumor growth was evaluated in a xenograft tumor model. RESULTS: (1R,2R)- d-NMAPPD, but not its enantiomer (1S,2S)- d-NMAPPD, inhibited NMT1 activity and reduced AR protein levels. (1R,2R)-LCL204, a derivative of (1R,2R)- d-NMAPPD, inhibited global protein myristoylation. It also suppressed protein levels, nuclear translocation, and transcriptional activity of AR full-length or variants in PCa cells. This was due to enhanced ubiquitin and proteasome-mediated degradation of AR. Knockdown of NMT1 levels inhibited tumor growth and proliferation of cancer cells. CONCLUSION: Inhibitory efficacy on N-myristoyltransferase activity by d-NMAPPD is stereospecific. (1R,2R)-LCL204 reduced global N-myristoylation and androgen receptor protein levels at low micromolar concentrations in prostate cancer cells. pharmacological inhibition of NMT1 enhances ubiquitin-mediated proteasome degradation of AR. This study illustrates a novel function of N-myristoyltransferase and provides a potential strategy for treatment of CRPC.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Receptores Androgénicos , Masculino , Humanos , Receptores Androgénicos/metabolismo , Andrógenos , Neoplasias de la Próstata Resistentes a la Castración/patología , Antagonistas de Andrógenos , Complejo de la Endopetidasa Proteasomal , Ubiquitinas , Línea Celular Tumoral
2.
J Org Chem ; 89(6): 4225-4231, 2024 03 15.
Artículo en Inglés | MEDLINE | ID: mdl-38427951

RESUMEN

We describe the gram-scale synthesis of (-)-(1R,2S,3R,4R,5S,6S)-1,3-di(diamino)-1,3-diazido-2,5,6-tri-O-benzylstreptamine from streptomycin by (i) hydrolysis of the two streptomycin guanidine residues, (ii) reprotection of the amines as azides, (iii) protection of all alcohols as benzyl ethers, and (iv) glycosidic bond cleavage with HCl in methanol. Protocols for regioselective monodebenzylation and regioselective reduction of a single azide in the product are also described, providing four optically pure building blocks for exploitation in novel aminoglycoside synthesis.


Asunto(s)
Metanol , Estreptomicina , Estereoisomerismo , Aminas
3.
Eur J Clin Microbiol Infect Dis ; 43(5): 821-828, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38388739

RESUMEN

PURPOSE: Single doses of gentamicin have demonstrated clinical efficacy in the treatment of urogenital gonorrhea, but lower cure rates for oropharyngeal and anorectal gonorrhea. Formulations selectively enriched in specific gentamicin C congeners have been proposed as a less toxic alternative to gentamicin, potentially permitting higher dosing to result in increased plasma exposures at the extragenital sites of infection. The purpose of the present study was to compare the antibacterial activity of individual gentamicin C congeners against Neisseria gonorrhoeae to that of other aminoglycoside antibiotics. METHODS: Antimicrobial susceptibility of three N. gonorrhoeae reference strains and 152 clinical isolates was assessed using standard disk diffusion, agar dilution, and epsilometer tests. RESULTS: Gentamicin C1, C2, C1a, and C2a demonstrated similar activity against N. gonorrhoeae. Interestingly, susceptibility to the 1-N-ethylated aminoglycosides etimicin and netilmicin was significantly higher than the susceptibility to their parent compounds gentamicin C1a and sisomicin, and to any other of the 25 aminoglycosides assessed in this study. Propylamycin, a 4'-propylated paromomycin analogue, was significantly more active against N. gonorrhoeae than its parent compound, too. CONCLUSION: Selectively enriched gentamicin formulations hold promise for a less toxic but equally efficacious alternative to gentamicin. Our study warrants additional consideration of the clinically established netilmicin and etimicin for treatment of genital and perhaps extragenital gonorrhea. Additional studies are required to elucidate the mechanism behind the advantage of alkylated aminoglycosides.


Asunto(s)
Aminoglicósidos , Antibacterianos , Gentamicinas , Gonorrea , Pruebas de Sensibilidad Microbiana , Neisseria gonorrhoeae , Neisseria gonorrhoeae/efectos de los fármacos , Gentamicinas/farmacología , Antibacterianos/farmacología , Humanos , Aminoglicósidos/farmacología , Gonorrea/tratamiento farmacológico , Gonorrea/microbiología , Netilmicina/farmacología
4.
J Org Chem ; 88(19): 13883-13893, 2023 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-37677151

RESUMEN

When generated in a mass spectrometer bridged bicyclic 1,3-dioxenium ions derived from 4-O-acylgalactopyranosyl, donors can be observed by infrared spectroscopy at cryogenic temperatures, but they are not seen in the solution phase in contrast to the fused bicyclic 1,3-dioxalenium ions of neighboring group participation. The inclusion of a 4-C-methyl group into a 4-O-benzoyl galactopyranosyl donor enables nuclear magnetic resonance observation of the bicyclic ion arising from participation by the distal ester, with the methyl group influence attributed to ester ground state conformation destabilization. We show that a 4-C-methyl group also influences the side-chain conformation, enforcing a gauche,trans conformation in gluco and galactopyranosides. Competition experiments reveal that the 4-C-methyl group has only a minor influence on the rate of reaction of 4-O-benzoyl or 4-O-benzyl-galacto and glucopyranosyl donors and, consequently, that participation by the distal ester does not result in kinetic acceleration (anchimeric assistance). We demonstrate that the stereoselectivity of the 4-O-benzoyl-4-C-methyl galactopyranosyl donor depends on reaction concentration and additive (diphenyl sulfoxide) stoichiometry and hence that participation by the distal ester is a borderline phenomenon in competition with standard glycosylation mechanisms. An analysis of a recent paper affirming participation by a remote pivalate ester is presented with alternative explanations for the observed phenomena.

5.
J Org Chem ; 88(6): 3678-3696, 2023 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-36877600

RESUMEN

The use of a phenylthio group (SPh) as a dummy ligand at the 6-position to control the side-chain conformation of a series of hexopyranosyl donors is described. The SPh group limits side-chain conformation in a configuration-specific manner, which parallels that seen in the heptopyranosides, and so influences glycosylation selectivity. With both d- and l-glycero-d-galacto-configured donors, the equatorial products are highly favored as they are with an l-glycero-d-gluco donor. For the d-glycero-d-gluco donor, on the other hand, modest axial selectivity is observed. Selectivity patterns are discussed in terms of the side-chain conformation of the donors in combination with the electron-withdrawing effect of the thioacetal group. After glycosylation, removal of the thiophenyl moiety and hydrogenolytic deprotection is achieved in a single step with Raney nickel.

6.
Tetrahedron ; 1352023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-37035443

RESUMEN

The design, synthesis and antiribosomal and antibacterial activity of two novel glycosides of the aminoglycoside antibiotic paromomycin are described. The first carries of 4-amino-4-deoxy-ß-D-xylopyranosyl moiety at the paromomycin 4'-position and is approximately two-fold more active than the corresponding ß-D-xylopyranosyl derivative. The second is a 4'-(ß-D-xylopyranosylthio) derivative of 4'-deoxyparomomycin that is unexpectedly less active than the simple ß-D-xylopyranosyl derivative, perhaps because of the insertion of the conformationally more mobile thioglycosidic linkage.

7.
Int J Mol Sci ; 24(5)2023 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-36901828

RESUMEN

Papain-like protease (PLpro) is critical to COVID-19 infection. Therefore, it is a significant target protein for drug development. We virtually screened a 26,193 compound library against the PLpro of SARS-CoV-2 and identified several drug candidates with convincing binding affinities. The three best compounds all had better estimated binding energy than those of the drug candidates proposed in previous studies. By analyzing the docking results for the drug candidates identified in this and previous studies, we demonstrate that the critical interactions between the compounds and PLpro proposed by the computational approaches are consistent with those proposed by the biological experiments. In addition, the predicted binding energies of the compounds in the dataset showed a similar trend as their IC50 values. The predicted ADME and drug-likeness properties also suggested that these identified compounds can be used for COVID-19 treatment.


Asunto(s)
COVID-19 , Humanos , Evaluación Preclínica de Medicamentos , SARS-CoV-2 , Tratamiento Farmacológico de COVID-19 , Papaína , Simulación del Acoplamiento Molecular , Inhibidores de Proteasas , Antivirales , Simulación de Dinámica Molecular
8.
Molecules ; 28(6)2023 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-36985788

RESUMEN

As an underrepresented functional group in bioorganic and medicinal chemistry, the hydroxylamine unit has historically received little attention from the synthetic community. Recent developments, however, suggest that hydroxylamines may have broader applications such that a review covering recent developments in the synthesis of this functional group is timely. With this in mind, this review primarily covers developments in the past 15 years in the preparation of di- and trisubstituted hydroxylamines. The mechanism of the reactions and key features and shortcomings are discussed throughout the review.

9.
Angew Chem Int Ed Engl ; 62(8): e202217809, 2023 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-36573850

RESUMEN

Substrate side chain conformation impacts reactivity during glycosylation and glycoside hydrolysis and is restricted by many glycosidases and glycosyltransferases during catalysis. We show that the side chains of gluco and manno iminosugars can be restricted to predominant conformations by strategic installation of a methyl group. Glycosidase inhibition studies reveal that iminosugars with the gauche,gauche side chain conformations are 6- to 10-fold more potent than isosteric compounds with the gauche,trans conformation; a manno-configured iminosugar with the gauche,gauche conformation is a 27-fold better inhibitor than 1-deoxymannojirimycin. The results are discussed in terms of the energetic benefits of preorganization, particularly when in synergy with favorable hydrophobic interactions. The demonstration that inhibitor side chain preorganization can favorably impact glycosidase inhibition paves the way for improved inhibitor design through conformational preorganization.


Asunto(s)
1-Desoxinojirimicina , Glicósido Hidrolasas , Conformación Molecular , Glicósido Hidrolasas/metabolismo , Glicósidos , Inhibidores Enzimáticos/química
10.
J Org Chem ; 87(1): 316-339, 2022 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-34905382

RESUMEN

We describe the synthesis and side chain conformational analysis of a series of four 6-deoxy-2,3,5-tri-O-benzyl hexofuranosyl donors with the d-gluco, l-ido, d-altro, and l-galacto configurations. The conformation of the exocyclic bond of these compounds depends on the relative configuration of the point of attachment of the side chain to the ring and of the two flanking centers and can be predicted on that basis analogously to the heptopyranose analogs. Variable-temperature nuclear magnetic resonance (VT NMR) spectroscopy of the activated donors reveals complex, configuration-dependent mixtures of intermediates that we interpret in terms of fused and bridged oxonium ions arising from participation by the various benzyl ethers. The increased importance of ether participation in the furanoside series compared to the pyranosides is discussed in terms of the reduced stabilization afforded to furanosyl oxocarbenium ions by covalent triflate formation. The stereoselectivities of the four donors are discussed on the basis of the benzyl ether participation model.


Asunto(s)
Carbono , Éteres , Conformación de Carbohidratos , Glicosilación , Espectroscopía de Resonancia Magnética , Conformación Molecular
11.
Chem Rev ; 120(15): 7104-7151, 2020 08 12.
Artículo en Inglés | MEDLINE | ID: mdl-32627532

RESUMEN

This review is the counterpart of a 2018 Chemical Reviews article (Adero, P. O.; Amarasekara, H.; Wen, P.; Bohé, L.; Crich, D. Chem. Rev. 2018, 118, 8242-8284) that examined the mechanisms of chemical glycosylation in the absence of stereodirecting participation. Attention is now turned to a critical review of the evidence in support of stereodirecting participation in glycosylation reactions by esters from either the vicinal or more remote positions. As participation by esters is often accompanied by ester migration, the mechanism(s) of migration are also reviewed. Esters are central to the entire review, which accordingly opens with an overview of their structure and their influence on the conformations of six-membered rings. Next the structure and relative energetics of dioxacarbeniun ions are covered with emphasis on the influence of ring size. The existing kinetic evidence for participation is then presented followed by an overview of the various intermediates either isolated or characterized spectroscopically. The evidence supporting participation from remote or distal positions is critically examined, and alternative hypotheses for the stereodirecting effect of such esters are presented. The mechanisms of ester migration are first examined from the perspective of glycosylation reactions and then more broadly in the context of partially acylated polyols.


Asunto(s)
Ésteres/química , Glicósidos/química , Conformación de Carbohidratos , Ésteres/metabolismo , Glicósidos/metabolismo , Glicosilación , Cinética , Conformación Molecular , Estereoisomerismo , Relación Estructura-Actividad , Alcoholes del Azúcar/química , Alcoholes del Azúcar/metabolismo , Termodinámica
12.
European J Org Chem ; 2022(20)2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-36340645

RESUMEN

The influence on glycosyl selectivity of substituting oxygen for sulfur at the 3-position of 4,6-O-benzylidene-protected mannopyranosyl thioglycosides is reported and varies considerably according to the protecting group employed at the 3-position. The substitution of a thioether at the 3-position for the more usual 3-O-benzyl ether results in a significant loss of selectivity. The installation of a 3-S-picolinyl thioether results in a complex reaction mixture, from which a stable seven-membered bridged bicyclic pyridinium ion is isolated, while the corresponding 3-O-picolinyl ether affords a highly α-selective coupling reaction. A 3-O-picolyl ester provides excellent ß-selectivity, while the analogous 3-S-picolyl thioester gives a highly α-selective reaction. The best ß-selectivity is seen with a 3-deoxy-3-(2-pyridinyldisulfanyl) system. These observations are discussed in terms of the influence of the various substituents on the central glycosyl triflate - ion pair equilibrium.

13.
J Am Chem Soc ; 143(1): 17-34, 2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33350830

RESUMEN

Carbohydrate chemistry is an essential component of the glycosciences and is fundamental to their progress. This Perspective takes the position that carbohydrate chemistry, or glycochemistry, has reached three crossroads on the path to the transformation of the glycosciences, and illustrates them with examples from the author's and other laboratories. The first of these potential inflexion points concerns the mechanism of the glycosylation reaction and the role of protecting groups. It is argued that the experimental evidence supports bimolecular SN2-like mechanisms for typical glycosylation reactions over unimolecular ones involving stereoselective attack on naked glycosyl oxocarbenium ions. Similarly, it is argued that the experimental evidence does not support long-range stereodirecting participation of remote esters through bridged bicyclic dioxacarbenium ions in organic solution in the presence of typical counterions. Rational design and improvement of glycosylation reactions must take into account the roles of the counterion and of concentration. A second crossroads is that between mainstream organic chemistry and glycan synthesis. The case is made that the only real difference between glycan and organic synthesis is the formation of C-O rather than C-C bonds, with diastereocontrol, strategy, tactics, and elegance being of critical importance in both areas: mainstream organic chemists should feel comfortable taking this fork in the road, just as carbohydrate chemists should traveling in the opposite direction. A third crossroads is that between carbohydrate chemistry and medicinal chemistry, where there are equally many opportunities for traffic in either direction. The glycosciences have advanced enormously in the past decade or so, but creativity, input, and ingenuity of scientists from all fields is needed to address the many sophisticated challenges that remain, not the least of which is the development of a broader and more general array of stereospecific glycosylation reactions.


Asunto(s)
Carbohidratos/síntesis química , Química Orgánica/métodos , Química Farmacéutica/métodos , Glicosilación , Estereoisomerismo
14.
J Org Chem ; 86(17): 12199-12225, 2021 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-34343001

RESUMEN

The preparation of four per-O-benzyl-d- or l-glycero-d-galacto and d- or l-glycero-d-gluco heptopyranosyl sulfoxides and the influence of their side-chain conformations on reactivity and stereoselectivity in glycosylation reactions are described. The side-chain conformation in these donors is determined by the relative configuration of its point of attachment to the pyranoside ring and the two flanking centers in agreement with a recent model. In the d- and l-glycero-d-galacto glycosyl donors, the d-glycero-d-galacto isomer with the more electron-withdrawing trans,gauche conformation of its side chain was the more equatorially selective isomer. In the d- and l-glycero-d-gluco glycosyl donors, the l-glycero-d-gluco isomer with the least disarming gauche,gauche side-chain conformation was the most equatorially selective donor. Variable temperature NMR studies, while supporting the formation of intermediate glycosyl triflates at -80 °C in all cases, were inconclusive owing to a change in the decomposition mechanism with the change in configuration. It is suggested that the equatorial selectivity of the l-glycero-d-gluco isomer arises from H-bonding between the glycosyl acceptor and O6 of the donor, which is poised to deliver the acceptor antiperiplanar to the glycosyl triflate, resulting in a high degree of SN2 character in the displacement reaction.


Asunto(s)
Conformación Molecular , Glicosilación , Isomerismo , Espectroscopía de Resonancia Magnética
15.
Molecules ; 26(24)2021 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-34946521

RESUMEN

An increasing number of studies have demonstrated the antiviral nature of polyphenols, and many polyphenols have been proposed to inhibit SARS-CoV or SARS-CoV-2. Our previous study revealed the inhibitory mechanisms of polyphenols against DNA polymerase α and HIV reverse transcriptase to show that polyphenols can block DNA elongation by competing with the incoming NTPs. Here we applied computational approaches to examine if some polyphenols can also inhibit RNA polymerase (RdRp) in SARS-CoV-2, and we identified some better candidates than remdesivir, the FDA-approved drug against RdRp, in terms of estimated binding affinities. The proposed compounds will be further examined to develop new treatments for COVID-19.


Asunto(s)
Antivirales/farmacología , Polifenoles/farmacología , SARS-CoV-2/efectos de los fármacos , Antocianinas/química , Antocianinas/farmacología , Antivirales/aislamiento & purificación , Simulación de Dinámica Molecular , Estructura Molecular , Polifenoles/química , ARN Polimerasa Dependiente del ARN , SARS-CoV-2/enzimología , Tratamiento Farmacológico de COVID-19
16.
Angew Chem Int Ed Engl ; 60(48): 25397-25403, 2021 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-34543505

RESUMEN

Low-temperature NMR studies with a 4-C-methyl-4-O-benzoyl galactopyranosyl donor enable the observation and characterization of a bridged bicyclic dioxacarbenium ion arising from participation by a distal ester. Variable-temperature NMR studies reveal this bridged ion to decompose at temperatures above ≈-30 °C. In the absence of the methyl group, the formation of a bicyclic ion is not observed. It is concluded that participation by typical secondary distal esters in glycosylation reactions is disfavored in the ground state conformation of the ester from which it is stereoelectronically impossible. Methylation converts the secondary ester to a conformationally more labile tertiary ester, removes this barrier, and renders participation more favorable. Nevertheless, the minor changes in selectivity in model glycosylation reactions on going from the secondary to the tertiary esters at both low and room temperature argue against distal group participation being a major stereodirecting factor even for the tertiary system.


Asunto(s)
Compuestos Bicíclicos Heterocíclicos con Puentes/química , Ésteres/química , Glicósidos/química , Conformación de Carbohidratos , Espectroscopía de Resonancia Magnética con Carbono-13 , Glicosilación , Iones/química , Espectroscopía de Protones por Resonancia Magnética , Estereoisomerismo
17.
J Am Chem Soc ; 142(17): 7760-7764, 2020 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-32275429

RESUMEN

The pseudosymmetric relationship of the bacterial sialic acid, pseudaminic acid, and 3-deoxy-d-manno-oct-2-ulosonic acid (KDO) affords the hypothesis that suitably protected KDO donors will adopt the trans, gauche conformation of their side chain and consequently be highly equatorially selective in their coupling reactions conducted at low temperature. This hypothesis is borne out by the synthesis, conformational analysis, and excellent equatorial selectivity seen on coupling of per-O-acetyl or benzyl-protected KDO donors in dichloromethane at -78 °C. Mechanistic understanding of glycosylation reactions is advancing to a stage at which predictions of selectivity can be made. In this instance, predictions of selectivity provide the first highly selective entry into KDO equatorial glycosides such as are found in the capsular polysaccharides of numerous pathogenic bacteria.


Asunto(s)
Glicósidos/síntesis química , Conformación Molecular , Procesamiento Proteico-Postraduccional , Estereoisomerismo
18.
J Am Chem Soc ; 142(40): 16965-16973, 2020 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-32877175

RESUMEN

Carbohydrate side chain conformation confers a significant influence on reactivity during glycosylation and anomeric bond hydrolysis due to stabilization of the oxocarbenium-like transition state. By analysis of 513 pyranoside-bound glycoside hydrolase (GH) crystal structures, we determine that most glucosidases and ß-mannosidases preferentially bind their substrates in the most reactive gauche,gauche (gg) conformation, thereby maximizing stabilization of the corresponding oxocarbenium ion-like transition state during hydrolysis. α-Galactoside hydrolases mostly show a preference for the second most activating gauche,trans (gt) conformation to avoid the energy penalty that would arise from imposing the gg conformation on galacto-configured ligands. These preferences stand in stark contrast to the side chain populations observed for these sugars both in free solution and bound to nonhydrolytic proteins, where for the most part a much greater diversity of side chain conformations is observed. Analysis of sequences of GH-ligand complexes reveals that side chain restriction begins with the enzyme-substrate complex and persists through the transition state until release of the hydrolysis product, despite changes in ring conformation along the reaction coordinate. This work will inform the design of new generations of glycosidase inhibitors with restricted side chains that confer higher selectivity and/or affinity.


Asunto(s)
Carbohidratos/química , Inhibidores Enzimáticos/química , Glicósido Hidrolasas/química , 1-Desoxinojirimicina/química , Conformación de Carbohidratos , Cristalografía por Rayos X , Glicósido Hidrolasas/antagonistas & inhibidores , Glicosilación , Hidrólisis , Indolizinas/química , Ligandos , Modelos Moleculares , Ácidos Neuramínicos/química , Transición de Fase , Unión Proteica , Estabilidad Proteica
19.
J Am Chem Soc ; 142(35): 14820-14825, 2020 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-32803971

RESUMEN

Magnesium dialkylamides react with alcohol-derived 2-methyl-2-tetrahydropyranyl alkyl peroxides (MTHPs) in tetrahydrofuran at 0 °C to give N,N,O-trisubstituted hydroxylamines suitable for medicinal chemistry purposes in good to excellent yields. A wide range of secondary alkyl and aryl amines and primary and secondary alcohol-derived MTHPs are compatible with the described reaction which, coupled with the enormous diversity of commercially available alcohols and secondary amines, suggests broad applicability of the reaction in fragment-based library design.

20.
J Am Chem Soc ; 142(20): 9147-9151, 2020 05 20.
Artículo en Inglés | MEDLINE | ID: mdl-32364709

RESUMEN

We describe the synthesis of 10-aza-9-oxakalkitoxin, an N,N,O-trisubstituted hydroxylamine-based analog, or hydroxalog, of the cytotoxic marine natural product kalkitoxin in which the -NMe-O- moiety replaces a -CHMe-CH2- unit in the backbone of the natural product. 10-Aza-9-oxakalkitoxin displays potent and selective cytotoxicity (IC50 2.4 ng mL-1) comparable to that of kalkitoxin itself (IC50 3.2 ng mL-1) against the human hepato-carcinoma cell line HepG2 over both the human leukemia cell line CEM and the normal hematopoietic CFU-GM. Like kalkitoxin, and contrary to the common expectation for hydroxylamines, 10-aza-9-oxakalkitoxin is not mutagenic.


Asunto(s)
Antineoplásicos/farmacología , Productos Biológicos/farmacología , Antineoplásicos/síntesis química , Antineoplásicos/química , Productos Biológicos/síntesis química , Productos Biológicos/química , Línea Celular , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Ensayos de Selección de Medicamentos Antitumorales , Humanos , Estructura Molecular
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda