Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Med Res Rev ; 2024 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-38678582

RESUMEN

Alzheimer's disease (AD) is the most prevalent neurodegenerative disease and is a major health threat globally. Its prevalence is forecasted to exponentially increase during the next 30 years due to the global aging population. Currently, approved drugs are merely symptomatic, being ineffective in delaying or blocking the relentless disease advance. Intensive AD research describes this disease as a highly complex multifactorial disease. Disclosure of novel pathological pathways and their interconnections has had a major impact on medicinal chemistry drug development for AD over the last two decades. The complex network of pathological events involved in the onset of the disease has prompted the development of multitarget drugs. These chemical entities combine pharmacological activities toward two or more drug targets of interest. These multitarget-directed ligands are proposed to modify different nodes in the pathological network aiming to delay or even stop disease progression. Here, we review the multitarget drug development strategy for AD during the last decade.

2.
Med Res Rev ; 43(1): 237-287, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36086898

RESUMEN

The transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) is considered the master regulator of the phase II antioxidant response. It controls a plethora of cytoprotective genes related to oxidative stress, inflammation, and protein homeostasis, among other processes. Activation of these pathways has been described in numerous pathologies including cancer, cardiovascular, respiratory, renal, digestive, metabolic, autoimmune, and neurodegenerative diseases. Considering the increasing interest of discovering novel NRF2 activators due to its clinical application, initial efforts were devoted to the development of electrophilic drugs able to induce NRF2 nuclear accumulation by targeting its natural repressor protein Kelch-like ECH-associated protein 1 (KEAP1) through covalent modifications on cysteine residues. However, off-target effects of these drugs prompted the development of an innovative strategy, the search of KEAP1-NRF2 protein-protein interaction (PPI) inhibitors. These innovative activators are proposed to target NRF2 in a more selective way, leading to potentially improved drugs with the application for a variety of diseases that are currently under investigation. In this review, we summarize known KEAP1-NRF2 PPI inhibitors to date and the bases of their design highlighting the most important features of their respective interactions. We also discuss the preclinical pharmacological properties described for the most promising compounds.


Asunto(s)
Proteína 1 Asociada A ECH Tipo Kelch , Factor 2 Relacionado con NF-E2 , Enfermedades Neurodegenerativas , Humanos , Inflamación/tratamiento farmacológico , Proteína 1 Asociada A ECH Tipo Kelch/antagonistas & inhibidores , Proteína 1 Asociada A ECH Tipo Kelch/metabolismo , Factor 2 Relacionado con NF-E2/antagonistas & inhibidores , Factor 2 Relacionado con NF-E2/metabolismo , Estrés Oxidativo
3.
Chembiochem ; 21(1-2): 129-140, 2020 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-31095840

RESUMEN

CD22 (Siglec-2) is a B-cell surface inhibitory protein capable of selectively recognising sialylated glycans, thus dampening autoimmune responses against self-antigens. Here we have characterised the dynamic recognition of complex-type N-glycans by human CD22 by means of orthogonal approaches including NMR spectroscopy, computational methods and biophysical assays. We provide new molecular insights into the binding mode of sialoglycans in complex with h-CD22, highlighting the role of the sialic acid galactose moieties in the recognition process, elucidating the conformational behaviour of complex-type N-glycans bound to Siglec-2 and dissecting the formation of CD22 homo-oligomers on the B-cell surface. Our results could enable the development of additional therapeutics capable of modulating the activity of h-CD22 in autoimmune diseases and malignancies derived from B-cells.


Asunto(s)
Simulación de Dinámica Molecular , Polisacáridos/química , Lectina 2 Similar a Ig de Unión al Ácido Siálico/química , Linfocitos B/química , Conformación de Carbohidratos , Galactosa/química , Humanos
4.
Antioxidants (Basel) ; 11(2)2022 Jan 27.
Artículo en Inglés | MEDLINE | ID: mdl-35204129

RESUMEN

Parkinson's disease (PD) is the second most prevalent neurodegenerative disease. It is characterized by a complex network of physiopathological events where oxidative stress plays a central role among other factors such as neuroinflammation and protein homeostasis. Nuclear factor-erythroid 2 p45-related factor 2 (NRF2) has a multitarget profile itself as it controls a plethora of cellular processes involved in the progression of the disease. In this line, we designed a novel family of 2-(1H-indol-3-yl)ethan-1-amine derivatives as NRF2 inducers with complementary activities. Novel compounds are based on melatonin scaffold and include, among other properties, selective monoamine oxidase B (MAO-B) inhibition activity. Novel multitarget compounds exhibited NRF2 induction activity and MAO-B selective inhibition, combined with anti-inflammatory, antioxidant, and blood-brain barrier permeation properties. Furthermore, they exert neuroprotective properties against oxidative stress toxicity in PD-related in vitro. Hit compound 14 reduced oxidative stress markers and exerted neuroprotection in rat striatal slices exposed to 6-hydroxydopamine or rotenone. In conclusion, we developed a promising family of dual NRF2 inducers and selective MAO-B inhibitors that could serve as a novel therapeutic strategy for PD treatment.

5.
Antioxidants (Basel) ; 11(1)2022 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-35052616

RESUMEN

Hybrids based on an aza-analogue of CGP37157, a mitochondrial Na+/Ca2+ exchanger antagonist, and lipoic acid were obtained in order to combine in a single molecule the antioxidant and NRF2 induction properties of lipoic acid and the neuroprotective activity of CGP37157. The four possible enantiomers of the hybrid structure were synthesized by using as the key step a fully diastereoselective reduction induced by Ellman's chiral auxiliary. After computational druggability studies that predicted good ADME profiles and blood-brain permeation for all compounds, the DPPH assay showed moderate oxidant scavenger capacity. Following a cytotoxicity evaluation that proved the compounds to be non-neurotoxic at the concentrations tested, they were assayed for NRF2 induction capacity and for anti-inflammatory properties and measured by their ability to inhibit nitrite production in the lipopolysaccharide-stimulated BV2 microglial cell model. Moreover, the compounds were studied for their neuroprotective effect in a model of oxidative stress achieved by treatment of SH-SY5Y neuroblastoma cells with the rotenone-oligomycin combination and also in a model of hyperphosphorylation induced by treatment with okadaic acid. The stereocenter configuration showed a critical influence in NRF2 induction properties, and also in the neuroprotection against oxidative stress experiment, leading to the identification of the compound with S and R configuration as an interesting hit with a good neuroprotective profile against oxidative stress and hyperphosphorylation, together with a relevant anti-neuroinflammatory activity. This interesting multitarget profile will be further characterized in future work.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda