Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
País como asunto
Tipo del documento
Publication year range
1.
Sci Total Environ ; 726: 138426, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32320873

RESUMEN

A detailed study of groundwater and surface water nitrate over four seasons across an area of varied landuse provided insights into the mechanisms that underlie accumulation and transport of nitrate. High nitrate concentrations found in a significant percentage of surface water and shallow groundwater samples are due to anthropogenic contamination. Statistics (PCA, ANOVA, parsimonious model and general linear regression) were used to explore the relationship between NO3- and land use, and confirmed that areas of high NO3- concentration are associated with dairy pasture and horticulture. Seasonally, NO3- levels are greater during winter, the wettest part of the year. Values of δ15N showed that most nitrate is sourced from livestock waste, with a smaller contribution from synthetic fertilizer. Direct wash-off of animal waste from dairy farms results in higher NO3- concentrations in surface water than in groundwater. Denitrification is an important NO3- attenuation mechanism which reduces NO3- to NH4, as demonstrated by the PCA analysis, which showed positive correlation of NO3- concentrations with dissolved oxygen and negative correlations with NH4+, Fe2+and Mn2+; the latter two species may act as the electron donors necessary for reduction of NO3-. The often high NO3- concentrations in shallow groundwater are decreased by denitrification, which can occur at relatively shallow depths (<3 m). The relatively small NO3- concentrations in deeper groundwater are due partly to denitrification, but more to originally lower NO3- concentrations, as the age of deeper groundwater shows that it was recharged before agriculture was established in the study area. Overall, the study demonstrates the usefulness of hydrogeochemical characterisation and multivariate statistics in the evaluation of impacts of agricultural land-use on regional N cycling. In particular, the results show that efforts to mitigate NO3- pollution from farms should concentrate more on wash-off of animal waste than the contribution of nitrogenous synthetic fertilizer.

2.
Environ Sci Pollut Res Int ; 23(6): 5881-91, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26593725

RESUMEN

Water and sediment samples were collected from up to 17 sites in waterways entering the Corner Inlet Marine National Park monthly between November 2009 and April 2010, with the Chemcatcher passive sampler system deployed at these sites in November 2009 and March 2010. Trace metal concentrations were low, with none occurring at concentrations with the potential for adverse ecological effects. The agrochemical residues data showed the presence of a small number of pesticides at very low concentration (ng/L) in the surface waters of streams entering the Corner Inlet, and as widespread, but still limited contamination of sediments. Concentrations of pesticides detected were relatively low and several orders of magnitude below reported ecotoxicological effect and hazardous concentration values. The low levels of pesticides detected in this study indicate that agricultural industries were responsible agrochemical users. This research project is a rarity in aligning both agrochemical usage data obtained from chemical resellers in the target catchment with residue analysis of environmental samples. Based on frequency of detection and concentrations, prometryn is the priority chemical of concern for both the water and sediments studied, but this chemical was not listed in reseller data. Consequently, the risks may be greater than the field data would suggest, and priorities for monitoring different since some commonly used herbicides (such as glyphosate, phenoxy acid herbicides, and sulfonyl urea herbicides) were not screened. Therefore, researchers, academia, industry, and government need to identify ways to achieve a more coordinated land use approach for obtaining information on the use of chemicals in a catchment, their presence in waterways, and the longer term performance of chemicals, particularly where they are used multiple times in a year.


Asunto(s)
Sedimentos Geológicos/química , Plaguicidas/análisis , Contaminantes Químicos del Agua/análisis , Bahías , Monitoreo del Ambiente , Herbicidas/análisis , Metales/análisis , Parques Recreativos , Ríos/química , Oligoelementos/análisis , Victoria
3.
Environ Sci Pollut Res Int ; 19(4): 1159-70, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22006507

RESUMEN

INTRODUCTION: Two emergent macrophytes, Arundo donax and Phragmites australis, were established in experimental subsurface flow, gravel-based constructed wetlands (CWs) receiving untreated recirculating aquaculture system wastewater. MATERIALS AND METHODS: The hydraulic loading rate was 3.75 cm day(-1). Many of the monitored water quality parameters (biological oxygen demand [BOD], total suspended solids [TSS], total phosphorus [TP], total nitrogen [TN], total ammoniacal nitrogen [TAN], nitrate nitrogen [NO(3)], and Escherichia coli) were removed efficiently by the CWs, to the extent that the CW effluent was suitable for use on human food crops grown for raw produce consumption under Victorian state regulations and also suitable for reuse within aquaculture systems. RESULTS AND DISCUSSION: The BOD, TSS, TP, TN, TAN, and E. coli removal in the A. donax and P. australis beds was 94%, 67%, 96%, 97%, 99.6%, and effectively 100% and 95%, 87%, 95%, 98%, 99.7%, and effectively 100%, respectively, with no significant difference (p > 0.007) in performance between the A. donax and P. australis CWs. In this study, as expected, the aboveground yield of A. donax top growth (stems + leaves) (15.0 ± 3.4 kg wet weight) was considerably more than the P. australis beds (7.4 ± 2.8 kg wet weight). The standing crop produced in this short (14-week) trial equates to an estimated 125 and 77 t ha(-1) year(-1) biomass (dry weight) for A. donax and P. australis, respectively (assuming that plant growth is similar across a 250-day (September-April) growing season and a single-cut, annual harvest). CONCLUSION: The similarity of the performance of the A. donax- and P. australis-planted beds indicates that either may be used in horizontal subsurface flow wetlands treating aquaculture wastewater, although the planting of A. donax provides additional opportunities for secondary income streams through utilization of the energy-rich biomass produced.


Asunto(s)
Poaceae/crecimiento & desarrollo , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/análisis , Calidad del Agua/normas , Humedales , Acuicultura , Biodegradación Ambiental , Análisis de la Demanda Biológica de Oxígeno , Escherichia coli/aislamiento & purificación , Especificidad de la Especie , Victoria , Movimientos del Agua , Contaminantes Químicos del Agua/química
4.
Environ Sci Pollut Res Int ; 19(8): 3525-37, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22573095

RESUMEN

Two emergent macrophytes, Arundo donax and Phragmites australis, were established in experimental horizontal subsurface flow (HSSF), gravel-based constructed wetlands (CWs) and challenged by treated dairy processing factory wastewater with a median electrical conductivity of 8.9 mS cm(-1). The hydraulic loading rate was tested at 3.75 cm day(-1). In general, the plants grew well during the 7-month study period, with no obvious signs of salt stress. The major water quality parameters monitored (biological oxygen demand (BOD), suspended solids (SS) and total nitrogen (TN) but not total phosphorus) were generally improved after the effluent had passed through the CWs. There was no significance different in removal efficiencies between the planted beds and unplanted gravel beds (p > 0.007), nor was there any significant difference in removal efficiencies between the A. donax and P. australis beds for most parameters. BOD, SS and TN removal in the A. donax and P. australis CWs was 69, 95 and 26 % and 62, 97 and 26 %, respectively. Bacterial removal was observed but only to levels that would allow reuse of the effluent for use on non-food crops under Victorian state regulations. As expected, the A. donax CWs produced considerably more biomass (37 ± 7.2 kg wet weight) than the P. australis CWs (11 ± 1.4 kg wet weight). This standing crop equates to approximately 179 and 68 tonnes ha(-1) year(-1) biomass (dry weight) for A. donax and P. australis, respectively (assuming a 250-day growing season and single-cut harvest). The performance similarity of the A. donax and P. australis planted CWs indicates that either may be used in HSSF wetlands treating dairy factory wastewater, although the planting of A. donax provides additional opportunities for secondary income streams through utilisation of the biomass produced.


Asunto(s)
Productos Lácteos , Residuos Industriales , Poaceae , Eliminación de Residuos Líquidos/métodos , Purificación del Agua/métodos , Humedales , Análisis de la Demanda Biológica de Oxígeno , Compuestos de Nitrógeno/análisis , Compuestos de Fósforo/análisis , Contaminantes Químicos del Agua/análisis , Calidad del Agua
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda