Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
PLoS Biol ; 21(1): e3001960, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36652440

RESUMEN

Membrane potential in bacterial systems has been shown to be dynamic and tightly related to survivability at the single-cell level. However, little is known about spatiotemporal patterns of membrane potential in bacterial colonies and biofilms. Here, we discovered a transition from uncorrelated to collective dynamics within colonies formed by the human pathogen Neisseria gonorrhoeae. In freshly assembled colonies, polarization is heterogeneous with instances of transient and uncorrelated hyper- or depolarization of individual cells. As colonies reach a critical size, the polarization behavior transitions to collective dynamics: A hyperpolarized shell forms at the center, travels radially outward, and halts several micrometers from the colony periphery. Once the shell has passed, we detect an influx of potassium correlated with depolarization. Transient hyperpolarization also demarks the transition from volume to surface growth. By combining simulations and the use of an alternative electron acceptor for the respiratory chain, we provide strong evidence that local oxygen gradients shape the collective polarization dynamics. Finally, we show that within the hyperpolarized shell, tolerance against aminoglycoside antibiotics increases. These findings highlight that the polarization pattern can signify the differentiation into distinct subpopulations with different growth rates and antibiotic tolerance.


Asunto(s)
Biopelículas , Neisseria gonorrhoeae , Humanos , Antibacterianos/farmacología , Transporte de Electrón , Aminoglicósidos
2.
PLoS Pathog ; 17(2): e1009251, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33524048

RESUMEN

Biofilm formation protects bacteria from antibiotics. Very little is known about the response of biofilm-dwelling bacteria to antibiotics at the single cell level. Here, we developed a cell-tracking approach to investigate how antibiotics affect structure and dynamics of colonies formed by the human pathogen Neisseria gonorrhoeae. Antibiotics targeting different cellular functions enlarge the cell volumes and modulate within-colony motility. Focusing on azithromycin and ceftriaxone, we identify changes in type 4 pilus (T4P) mediated cell-to-cell attraction as the molecular mechanism for different effects on motility. By using strongly attractive mutant strains, we reveal that the survivability under ceftriaxone treatment depends on motility. Combining our results, we find that sequential treatment with azithromycin and ceftriaxone is synergistic. Taken together, we demonstrate that antibiotics modulate T4P-mediated attractions and hence cell motility and colony fluidity.


Asunto(s)
Antibacterianos/farmacología , Azitromicina/farmacología , Ceftriaxona/farmacología , Neisseria gonorrhoeae/efectos de los fármacos , Fenómenos Fisiológicos Bacterianos/efectos de los fármacos , Biopelículas/efectos de los fármacos , Sinergismo Farmacológico , Fimbrias Bacterianas/efectos de los fármacos , Fimbrias Bacterianas/fisiología , Movimiento/efectos de los fármacos
3.
Biochem J ; 478(1): 63-78, 2021 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-33313751

RESUMEN

Multidrug resistant (MDR) bacteria have adapted to most clinical antibiotics and are a growing threat to human health. One promising type of candidates for the everlasting demand of new antibiotic compounds constitute antimicrobial peptides (AMPs). These peptides act against different types of microbes by permeabilizing pathogen cell membranes, whereas being harmless to mammalian cells. Contrarily, another class of membrane-active peptides, namely cell-penetrating peptides (CPPs), is known to translocate in eukaryotic cells without substantially affecting the cell membrane. Since CPPs and AMPs share several physicochemical characteristics, we hypothesized if we can rationally direct the activity of a CPP towards antimicrobial activity. Herein, we describe the screening of a synthetic library, based on the CPP sC18, including structure-based design to identify the active residues within a CPP sequence and to discover novel AMPs with high activity. Peptides with increased hydrophobicity were tested against various bacterial strains, and hits were further optimized leading to four generations of peptides, with the last also comprising fluorinated amino acid building blocks. Interestingly, beside strong antibacterial activities, we also detected activity in cancer cells, while non-cancerous cells remained unharmed. The results highlight our new candidates, particularly those from generation 4, as a valuable and promising source for the development of future therapeutics with antibacterial activity and beyond.


Asunto(s)
Antibacterianos/farmacología , Péptidos Catiónicos Antimicrobianos/química , Antineoplásicos/farmacología , Bacterias/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Péptidos de Penetración Celular/química , Péptidos Catiónicos Antimicrobianos/síntesis química , Péptidos Catiónicos Antimicrobianos/farmacología , Bacillus subtilis/efectos de los fármacos , Bacillus subtilis/ultraestructura , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Péptidos de Penetración Celular/síntesis química , Péptidos de Penetración Celular/farmacología , Dicroismo Circular , Corynebacterium glutamicum/efectos de los fármacos , Corynebacterium glutamicum/ultraestructura , Halogenación , Hemólisis/efectos de los fármacos , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Concentración 50 Inhibidora , Pruebas de Sensibilidad Microbiana , Micrococcus luteus/efectos de los fármacos , Microscopía Electrónica de Rastreo , Pseudomonas fluorescens/efectos de los fármacos , Pseudomonas fluorescens/ultraestructura
4.
Biophys J ; 120(16): 3418-3428, 2021 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-34214531

RESUMEN

Bacterial growth within colonies and biofilms is heterogeneous. Local reduction of growth rates has been associated with tolerance against various antibiotics. However, spatial gradients of growth rates are poorly characterized in three-dimensional bacterial colonies. Here, we report two spatially resolved methods for measuring growth rates in bacterial colonies. As bacteria grow and divide, they generate a velocity field that is directly related to the growth rates. We derive profiles of growth rates from the velocity field and show that they are consistent with the profiles obtained by single-cell-counting. Using these methods, we reveal that even small colonies initiated with a few thousand cells of the human pathogen Neisseria gonorrhoeae develop a steep gradient of growth rates within two generations. Furthermore, we show that stringent response decelerates growth inhibition at the colony center. Based on our results, we suggest that aggregation-related growth inhibition can protect gonococci from external stresses even at early biofilm stages.


Asunto(s)
Biopelículas , Neisseria gonorrhoeae , Antibacterianos , Humanos
5.
Biophys J ; 116(5): 938-947, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30739725

RESUMEN

Bacterial type 4 pili (T4P) are extracellular polymers that initiate the formation of microcolonies and biofilms. T4P continuously elongate and retract. These pilus dynamics crucially affect the local order, shape, and fluidity of microcolonies. The major pilin subunit of the T4P bears multiple post-translational modifications. By interfering with different steps of the pilin glycosylation and phosphoform modification pathways, we investigated the effect of pilin post-translational modification on the shape and dynamics of microcolonies formed by Neisseria gonorrhoeae. Deleting the phosphotransferase responsible for phosphoethanolamine modification at residue serine 68 inhibits shape relaxations of microcolonies after perturbation and causes bacteria carrying the phosphoform modification to segregate to the surface of mixed colonies. We relate these mesoscopic phenotypes to increased attractive forces generated by T4P between cells. Moreover, by deleting genes responsible for the pilin glycan structure, we show that the number of saccharides attached at residue serine 63 affects the ratio between surface tension and viscosity and cause sorting between bacteria carrying different pilin glycoforms. We conclude that different pilin post-translational modifications moderately affect the attractive forces between bacteria but have severe effects on the material properties of microcolonies.


Asunto(s)
Proteínas Fimbrias/metabolismo , Neisseria gonorrhoeae/metabolismo , Procesamiento Proteico-Postraduccional , Biopelículas/crecimiento & desarrollo , Glicoproteínas/metabolismo , Neisseria gonorrhoeae/citología , Neisseria gonorrhoeae/crecimiento & desarrollo , Neisseria gonorrhoeae/fisiología , Fosfoproteínas/metabolismo
6.
J Bacteriol ; 201(18)2019 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-30692169

RESUMEN

Bacterial type 4 pili (T4P) belong to the strongest molecular machines. The gonococcal T4P retraction ATPase PilT supports forces exceeding 100 pN during T4P retraction. Here, we address the question of whether gonococcal T4P retract in the absence of PilT. We show that pilT deletion strains indeed retract their T4P, but the maximum force is reduced to 5 pN. Similarly, the speed of T4P retraction is lower by orders of magnitude compared to that of T4P retraction driven by PilT. Deleting the pilT paralogue pilT2 further reduces the speed of T4P retraction, yet T4P retraction is detectable in the absence of all three pilT paralogues. Furthermore, we show that depletion of proton motive force (PMF) slows but does not inhibit pilT-independent T4P retraction. We conclude that the retraction ATPase is not essential for gonococcal T4P retraction. However, the force generated in the absence of PilT is too low to support important functions of T4P, including twitching motility, fluidization of colonies, and induction of host cell response.IMPORTANCE Bacterial type 4 pili (T4P) have been termed the "Swiss Army knives" of bacteria because they perform numerous functions, including host cell interaction, twitching motility, colony formation, DNA uptake, protein secretion, and surface sensing. The pilus fiber continuously elongates or retracts, and these dynamics are functionally important. Curiously, only a subset of T4P systems employ T4P retraction ATPases to power T4P retraction. Here, we show that one of the strongest T4P machines, the gonococcal T4P, retracts without a retraction ATPase. Biophysical characterization reveals strongly reduced force and speed compared to retraction with ATPase. We propose that bacteria encode retraction ATPases when T4P have to generate high-force-supporting functions like twitching motility, triggering host cell response, or fluidizing colonies.


Asunto(s)
Proteínas Bacterianas/metabolismo , Fimbrias Bacterianas/metabolismo , Proteínas Motoras Moleculares/metabolismo , Neisseria gonorrhoeae/metabolismo , Adenosina Trifosfatasas/metabolismo , Proteínas Fimbrias/metabolismo , Fuerza Protón-Motriz/fisiología
7.
Phys Rev Lett ; 121(11): 118102, 2018 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-30265121

RESUMEN

Bacteria can adjust the structure of colonies and biofilms to enhance their survival rate under external stress. Here, we explore the link between bacterial interaction forces and colony structure. We show that the activity of extracellular pilus motors enhances local ordering and accelerates fusion dynamics of bacterial colonies. The radial distribution function of mature colonies shows local fluidlike order. The degree and dynamics of ordering are dependent on motor activity. At a larger scale, the fusion dynamics of two colonies shows liquidlike behavior whereby motor activity strongly affects surface tension and viscosity.


Asunto(s)
Fimbrias Bacterianas/fisiología , Modelos Biológicos , Neisseria gonorrhoeae/fisiología , Adenosina Trifosfatasas/metabolismo , Fimbrias Bacterianas/metabolismo , Neisseria gonorrhoeae/enzimología
8.
Magn Reson Med ; 78(1): 280-284, 2017 07.
Artículo en Inglés | MEDLINE | ID: mdl-27484469

RESUMEN

PURPOSE: To investigate, if a train of spin-lock pulses (chemical exchange saturation transfer with spin-lock pulses = CESL) improves biochemical glycosaminoglycan imaging compared with conventional chemical exchange saturation transfer with Gaussian-shaped pulses (CEST) in lumbar intervertebral discs. METHODS: T2 , CEST, and CESL imaging was performed in lumbar intervertebral discs of 15 healthy volunteers at 3 Tesla. Mean and standard deviation of the asymmetric magnetization transfer ratio (MTRasym ), the asymmetric spin-lock ratio (SLRasym ) and T2 values were calculated for nucleus pulposus (NP) and annulus fibrosus (AF). Wilcoxon test was used to analyze differences between MTRasym and SLRasym . Pearson correlation was used to determine the relationship between MTRasym , SLRasym and T2 . RESULTS: Data showed no significant difference between MTRasym and SLRasym (NP: P = 0.35; AF: P = 0.34). MTRasym and SLRasym values differed significantly between NP and AF (MTRasym : P = 0.014, SLRasym : P = 0.005). T2 values correlated significantly with MTRasym (NP: ρ = 0.76, P < 0.001; AF: ρ = 0.60, P < 0.001) and SLRasym (NP: ρ = 0.73, P < 0.001; AF: ρ = 0.47, P < 0.001). CONCLUSION: CESL does not improve the chemical exchange asymmetry effect compared with conventional CEST, but leads to comparable results. Magn Reson Med 78:280-284, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Asunto(s)
Glicosaminoglicanos/metabolismo , Interpretación de Imagen Asistida por Computador/métodos , Disco Intervertebral/diagnóstico por imagen , Disco Intervertebral/metabolismo , Imagen por Resonancia Magnética/métodos , Imagen Molecular/métodos , Procesamiento de Señales Asistido por Computador , Adulto , Simulación por Computador , Interpretación Estadística de Datos , Humanos , Aumento de la Imagen/métodos , Persona de Mediana Edad , Modelos Estadísticos , Distribución Normal , Ondas de Radio , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Marcadores de Spin , Adulto Joven
9.
MAGMA ; 30(5): 505-516, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28569374

RESUMEN

OBJECTIVES: The goal of this study was to quantify CEST related parameters such as chemical exchange rate and fractional concentration of exchanging protons at a clinical 3T scanner. For this purpose, two CEST quantification approaches-the AREX metric (for 'apparent exchange dependent relaxation'), and the AREX-based Ω-plot method were used. In addition, two different pulsed RF irradiation schemes, using Gaussian-shaped and spin-lock pulses, were compared. MATERIALS AND METHODS: Numerical simulations as well as MRI measurements in phantoms were performed. For simulations, the Bloch-McConnell equations were solved using a two-pool exchange model. MR experiments were performed on a clinical 3T MRI scanner using a cylindrical phantom filled with creatine solution at different pH values and different concentrations. RESULTS: The validity of the Ω-plot method and the AREX approach using spin-lock preparation for determination of the quantitative CEST parameters was demonstrated. Especially promising results were achieved for the Ω-plot method when the spin-lock preparation was employed. CONCLUSION: Pulsed CEST at 3T could be used to quantify parameters such as exchange rate constants and concentrations of protons exchanging with free water. In the future this technique might be used to estimate the exchange rates and concentrations of biochemical substances in human tissues in vivo.


Asunto(s)
Imagen por Resonancia Magnética/métodos , Simulación por Computador , Humanos , Concentración de Iones de Hidrógeno , Campos Magnéticos , Imagen por Resonancia Magnética/estadística & datos numéricos , Fantasmas de Imagen , Protones , Ondas de Radio , Agua
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda