Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
EMBO J ; 38(7)2019 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-30609992

RESUMEN

Cryo-electron tomography and small-angle X-ray scattering were used to investigate the chromatin folding in metaphase chromosomes. The tomographic 3D reconstructions show that frozen-hydrated chromatin emanated from chromosomes is planar and forms multilayered plates. The layer thickness was measured accounting for the contrast transfer function fringes at the plate edges, yielding a width of ~ 7.5 nm, which is compatible with the dimensions of a monolayer of nucleosomes slightly tilted with respect to the layer surface. Individual nucleosomes are visible decorating distorted plates, but typical plates are very dense and nucleosomes are not identifiable as individual units, indicating that they are tightly packed. Two layers in contact are ~ 13 nm thick, which is thinner than the sum of two independent layers, suggesting that nucleosomes in the layers interdigitate. X-ray scattering of whole chromosomes shows a main scattering peak at ~ 6 nm, which can be correlated with the distance between layers and between interdigitating nucleosomes interacting through their faces. These observations support a model where compact chromosomes are composed of many chromatin layers stacked along the chromosome axis.


Asunto(s)
Cromatina/ultraestructura , Estructuras Cromosómicas/ultraestructura , Cromosomas Humanos/ultraestructura , Metafase , Nucleosomas/ultraestructura , Tomografía con Microscopio Electrónico , Secciones por Congelación , Células HeLa , Humanos
2.
J Synchrotron Radiat ; 24(Pt 1): 53-62, 2017 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-28009546

RESUMEN

Macromolecular crystallography (MX) and small-angle X-ray scattering (SAXS) studies on proteins at synchrotron light sources are commonly limited by the structural damage produced by the intense X-ray beam. Several effects, such as aggregation in protein solutions and global and site-specific damage in crystals, reduce the data quality or even introduce artefacts that can result in a biologically misguiding structure. One strategy to reduce these negative effects is the inclusion of an additive in the buffer solution to act as a free radical scavenger. Here the properties of uridine as a scavenger for both SAXS and MX experiments on lysozyme at room temperature are examined. In MX experiments, upon addition of uridine at 1 M, the critical dose D1/2 is increased by a factor of ∼1.7, a value similar to that obtained in the presence of the most commonly used scavengers such as ascorbate and sodium nitrate. Other figures of merit to assess radiation damage show a similar trend. In SAXS experiments, the scavenging effect of 40 mM uridine is similar to that of 5% v/v glycerol, and greater than 2 mM DTT and 1 mM ascorbic acid. In all cases, the protective effect of uridine is proportional to its concentration.


Asunto(s)
Dispersión del Ángulo Pequeño , Sincrotrones , Uridina/química , Proteínas/química , Difracción de Rayos X
3.
IUCrJ ; 9(Pt 6): 778-791, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-36381150

RESUMEN

Serial crystallography at conventional synchrotron light sources (SSX) offers the possibility to routinely collect data at room temperature using micrometre-sized crystals of biological macromolecules. However, SSX data collection is not yet as routine and currently takes significantly longer than the standard rotation series cryo-crystallography. Thus, its use for high-throughput approaches, such as fragment-based drug screening, where the possibility to measure at physio-logical temperatures would be a great benefit, is impaired. On the way to high-throughput SSX using a conveyor belt based sample delivery system - the CFEL TapeDrive - with three different proteins of biological relevance (Klebsiella pneumoniae CTX-M-14 ß-lactamase, Nectria haematococca xylanase GH11 and Aspergillus flavus urate oxidase), it is shown here that complete datasets can be collected in less than a minute and only minimal amounts of sample are required.

4.
Acta Crystallogr D Struct Biol ; 76(Pt 10): 971-981, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33021499

RESUMEN

The addition of compounds to scavenge the radical species produced during biological small-angle X-ray scattering (BioSAXS) experiments is a common strategy to reduce the effects of radiation damage and produce better quality data. As almost half of the experiments leading to structures deposited in the SASBDB database used scavengers, finding potent scavengers would be advantageous for many experiments. Here, four compounds, three nucleosides and one nitrogenous base, are presented which can act as very effective radical-scavenging additives and increase the critical dose by up to 20 times without altering the stability or reducing the contrast of the tested protein solutions. The efficacy of these scavengers is higher than those commonly used in the field to date, as verified for lysozyme solutions at various concentrations from 7.0 to 0.5 mg ml-1. The compounds are also very efficient at mitigating radiation damage to four proteins with molecular weights ranging from 7 to 240 kDa and pH values from 3 to 8, with the extreme case being catalase at 6.7 mg ml-1, with a scavenging factor exceeding 100. These scavengers can therefore be instrumental in expanding BioSAXS to low-molecular-weight and low-concentration protein samples that were previously inaccessible owing to poor data quality. It is also demonstrated that an increase in the critical dose in standard BioSAXS experiments leads to an increment in the retrieved information, in particular at higher angles, and thus to higher resolution of the model.


Asunto(s)
Modelos Moleculares , Proteínas/química , Dispersión del Ángulo Pequeño , Difracción de Rayos X/métodos , Animales , Bovinos , Embrión de Pollo , Exactitud de los Datos , Depuradores de Radicales Libres/química , Humanos , Peso Molecular
5.
Sci Rep ; 9(1): 3177, 2019 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-30816220

RESUMEN

Human aldose reductase (hAR, AKR1B1) has been explored as drug target since the 1980s for its implication in diabetic complications. An activated form of hAR was found in cells from diabetic patients, showing a reduced sensitivity to inhibitors in clinical trials, which may prevent its pharmacological use. Here we report the conversion of native hAR to its activated form by X-ray irradiation simulating oxidative stress conditions. Upon irradiation, the enzyme activity increases moderately and the potency of several hAR inhibitors decay before global protein radiation damage appears. The catalytic behavior of activated hAR is also reproduced as the KM increases dramatically while the kcat is not much affected. Consistently, the catalytic tetrad is not showing any modification. The only catalytically-relevant structural difference observed is the conversion of residue Cys298 to serine and alanine. A mechanism involving electron capture is suggested for the hAR activation. We propose that hAR inhibitors should not be designed against the native protein but against the activated form as obtained from X-ray irradiation. Furthermore, since the reactive species produced under irradiation conditions are the same as those produced under oxidative stress, the described irradiation method can be applied to other relevant proteins under oxidative stress environments.


Asunto(s)
Aldehído Reductasa/genética , Inhibidores Enzimáticos/farmacología , Estrés Oxidativo/efectos de la radiación , Alanina/genética , Aldehído Reductasa/antagonistas & inhibidores , Aldehído Reductasa/efectos de la radiación , Catálisis/efectos de los fármacos , Catálisis/efectos de la radiación , Microambiente Celular/efectos de la radiación , Activación Enzimática/efectos de la radiación , Inhibidores Enzimáticos/efectos de la radiación , Humanos , Oxidación-Reducción , Estrés Oxidativo/genética , Serina/genética , Rayos X
6.
IUCrJ ; 6(Pt 4): 714-728, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-31316815

RESUMEN

Efficient and reliable sample delivery has remained one of the bottlenecks for serial crystallography experiments. Compared with other methods, fixed-target sample delivery offers the advantage of significantly reduced sample consumption and shorter data collection times owing to higher hit rates. Here, a new method of on-chip crystallization is reported which allows the efficient and reproducible growth of large numbers of protein crystals directly on micro-patterned silicon chips for in-situ serial crystallography experiments. Crystals are grown by sitting-drop vapor diffusion and previously established crystallization conditions can be directly applied. By reducing the number of crystal-handling steps, the method is particularly well suited for sensitive crystal systems. Excessive mother liquor can be efficiently removed from the crystals by blotting, and no sealing of the fixed-target sample holders is required to prevent the crystals from dehydrating. As a consequence, 'naked' crystals are obtained on the chip, resulting in very low background scattering levels and making the crystals highly accessible for external manipulation such as the application of ligand solutions. Serial diffraction experiments carried out at cryogenic temperatures at a synchrotron and at room temperature at an X-ray free-electron laser yielded high-quality X-ray structures of the human membrane protein aquaporin 2 and two new ligand-bound structures of thermolysin and the human kinase DRAK2. The results highlight the applicability of the method for future high-throughput on-chip screening of pharmaceutical compounds.

7.
Nanoscale ; 9(19): 6427-6435, 2017 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-28463351

RESUMEN

Self-assembling proteins are gaining attention as building blocks for application-tailored nanoscale materials. This is mostly due to the biocompatibility, biodegradability, and functional versatility of peptide chains. Such a potential for adaptability is particularly high in the case of recombinant proteins, which are produced in living cells and are suitable for genetic engineering. However, how the cell factory itself and the particular protein folding machinery influence the architecture and function of the final material is still poorly explored. In this study we have used diverse analytical approaches, including small-angle X-ray scattering (SAXS) and field emission scanning electron microscopy (FESEM) to determine the fine architecture and geometry of recombinant, tumor-targeted protein nanoparticles of interest as drug carriers, constructed on a GFP-based modular scheme. A set of related oligomers were produced in alternative Escherichia coli strains with variant protein folding networks. This resulted in highly regular populations of morphometric types, ranging from 2.4 to 28 nm and from spherical- to rod-shaped materials. These differential geometric species, whose relative proportions were determined by the features of the producing strain, were found associated with particular fluorescence emission, cell penetrability and receptor specificity profiles. Then, nanoparticles with optimal properties could be analytically identified and further isolated from producing cells for use. The cell's protein folding machinery greatly modulates the final geometry reached by the constructs, which in turn defines the key parameters and biological performance of the material.


Asunto(s)
Portadores de Fármacos , Nanopartículas , Proteínas Recombinantes/química , Línea Celular Tumoral , Fluorescencia , Proteínas Fluorescentes Verdes/química , Células HeLa , Humanos , Microscopía Electrónica de Rastreo , Neoplasias/tratamiento farmacológico , Dispersión del Ángulo Pequeño , Difracción de Rayos X
8.
PLoS One ; 11(2): e0147948, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26828927

RESUMEN

The role of Decorin in organising the extracellular matrix was examined in normal human corneas and in corneas from patients with Congenital Stromal Corneal Dystrophy (CSCD). In CSCD, corneal clouding occurs due to a truncating mutation (c.967delT) in the decorin (DCN) gene. Normal human Decorin protein and the truncated one were reconstructed in silico using homology modelling techniques to explore structural changes in the diseased protein. Corneal CSCD specimens were also examined using 3-D electron tomography and Small Angle X-ray diffraction (SAXS), to image the collagen-proteoglycan arrangement and to quantify fibrillar diameters, respectively. Homology modelling showed that truncated Decorin had a different spatial geometry to the normal one, with the truncation removing a major part of the site that interacts with collagen, compromising its ability to bind effectively. Electron tomography showed regions of abnormal stroma, where collagen fibrils came together to form thicker fibrillar structures, showing that Decorin plays a key role in the maintenance of the order in the normal corneal extracellular matrix. Average diameter of individual fibrils throughout the thickness of the cornea however remained normal.


Asunto(s)
Colágeno/metabolismo , Distrofias Hereditarias de la Córnea/metabolismo , Decorina/metabolismo , Condroitinasas y Condroitín Liasas/metabolismo , Córnea/patología , Distrofias Hereditarias de la Córnea/patología , Decorina/química , Humanos , Imagenología Tridimensional , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Multimerización de Proteína , Dispersión del Ángulo Pequeño , Homología Estructural de Proteína , Tomografía , Difracción de Rayos X
9.
FEBS J ; 282(10): 1953-64, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25715111

RESUMEN

The yeast ζ-crystallin (Zta1p) is a quinone oxidoreductase belonging to the ζ-crystallin family, with activity in the reduction of alkenal/alkenone compounds. Various biological functions have been ascribed to the members of this protein family, such as their ability to interact specifically with AU-rich sequences in mRNA, and thus they have been proposed to act as AU-rich element-binding proteins (AREBPs). In this study, we evaluated the specificity of Zta1p for RNA versus DNA by means of a novel nonisotopic method for the in vitro quantitative detection of protein · RNA complexes. Through comparative transcriptomic analysis, we found that the lack of Zta1p negatively affects the expression of a group of genes involved in amino acid biosynthesis, the argininosuccinate lyase (ARG4) gene being one of them. Here, we propose that Zta1p participates in the post-transcriptional regulation of ARG4 expression by increasing the ARG4 mRNA half-life. In addition, expression of the ζ-crystallin gene (ZTA1) is itself regulated by nutrient availability through the general amino acid control and target of rapamycin pathways. Our results shed new light on the ζ-crystallin family members from yeast to humans as stress response proteins with a bifunctional role in the detoxification of alkenal and alkenone compounds, and the regulation of gene expression.


Asunto(s)
NADP/metabolismo , Quinona Reductasas/metabolismo , zeta-Cristalinas/metabolismo , Argininosuccinatoliasa/metabolismo , ADN/metabolismo , Galactoquinasa/metabolismo , Quinona Reductasas/genética , ARN/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , zeta-Cristalinas/genética
10.
Chem Biol Interact ; 191(1-3): 32-7, 2011 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-21276778

RESUMEN

ζ-Crystallins are a Zn(2+)-lacking enzyme group with quinone reductase activity, which belongs to the medium-chain dehydrogenase/reductase superfamily. It has been recently observed that human ζ-crystallin is capable of reducing the α,ß-double bond of alkenals and alkenones. Here we report that this activity is also shared by the homologous Zta1p enzyme from Saccharomyces cerevisiae. While the two enzymes show similar substrate specificity, human ζ-crystallin exhibits higher activity with lipid peroxidation products and Zta1p is more active with cinnamaldehyde. The presence of Zta1p has an in vivo protective effect on yeast strains exposed to the toxic substrate 3-penten-2-one. Analysis of ZTA1 gene expression indicates an induction under different types of cellular stress, including ethanol and dimethylsulfoxide exposure and by reaching the stationary growth phase. The role of Zta1p in the yeast adaptation to some stress types and the general functional significance of ζ-crystallins are discussed.


Asunto(s)
NAD(P)H Deshidrogenasa (Quinona)/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimología , zeta-Cristalinas/metabolismo , Regulación Fúngica de la Expresión Génica/efectos de los fármacos , Humanos , Cinética , NAD(P)H Deshidrogenasa (Quinona)/genética , Pentanonas/química , Pentanonas/toxicidad , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , zeta-Cristalinas/genética
11.
Chem Biol Interact ; 178(1-3): 288-94, 2009 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-19007762

RESUMEN

The medium-chain dehydrogenase/reductase (MDR) superfamily can be divided into Zn-containing and Zn-lacking proteins. Zn-containing MDRs are generally well-known enzymes, mostly acting as dehydrogenases. The non-Zn MDR are much less studied, and classified in several families of NADP(H)-dependent reductases, including quinone oxidoreductases (QOR). zeta-Crystallins are the best studied group of QOR, have a structural function in the lens of several mammals, exhibit ortho-quinone reductase activity, and bind to specific adenine-uracil-rich elements (ARE) in RNA. In the present work, we have further characterized human zeta-crystallin and Saccharomyces cerevisiae Zta1p, the only QOR in yeast. Subcellular localization using a fluorescent protein tag indicates that zeta-crystallin is distributed in the cytoplasm but not in nucleus. The protein may also be present in mitochondria. Zta1p localizes in both cytoplasm and nucleus. NADPH, but not NADH, competitively prevents binding of zeta-crystallin to RNA, suggesting that the cofactor-binding site is involved in RNA binding. Interference of NADPH on Zta1p binding to RNA is much lower, consistent with a weaker binding of NADPH to the yeast enzyme. Disruption of the yeast ZTA1 gene does not affect cell growth under standard conditions but makes yeast more sensitive to oxidative stress agents. Sequence alignments, phylogenetic tree analysis and kinetic properties reveal a close relationship between zeta-crystallin and Zta1p. Amino acid conservation, between the substrate-binding sites of the two proteins and that of an E. coli QOR, indicates that zeta-crystallins maintained their kinetic function throughout evolution. Quinones are toxic compounds and a relevant step in their detoxification is reduction to their corresponding hydroquinones. Many enzymes of several superfamilies can reduce quinones, including NAD(P)H:quinone oxidoreductase 1 (NQO1 or DT-diaphorase), aldo-keto reductases and short-chain dehydrogenases/reductases. In this context, the physiological role of zeta-crystallins is discussed.


Asunto(s)
Quinona Reductasas/metabolismo , Saccharomyces cerevisiae/metabolismo , zeta-Cristalinas/metabolismo , Secuencia de Bases , Western Blotting , Cartilla de ADN , Ensayo de Cambio de Movilidad Electroforética , Humanos , Filogenia , ARN/metabolismo , Fracciones Subcelulares/enzimología , Transcripción Genética , zeta-Cristalinas/química
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda