Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Publication year range
1.
Mem Inst Oswaldo Cruz ; 113(4): e170345, 2018 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-29412342

RESUMEN

BACKGROUND: Leishmaniasis, one of the most neglected diseases, is a serious public health problem in many countries, including Brazil. Currently available treatments require long-term use and have serious side effects, necessitating the development of new therapeutic interventions. Because translocator protein (TSPO) levels are reduced in Leishmania amazonensis-infected cells and because this protein participates in apoptosis and immunomodulation, TSPO represents a potential target for Leishmania chemotherapy. The present study evaluated PK11195, a ligand of this protein, as an anti-leishmanial agent. OBJECTIVE: To evaluate the leishmanicidal activity of PK11195 against L. amazonensis in infected CBA mouse macrophages in vitro. METHODS: The viability of axenic L. amazonensis, Leishmania major, and Leishmania braziliensis promastigotes was assessed after 48 h treatment with PK11195 (0.2-400 µM). Additionally, intracellular parasite viability was evaluated to determine IC50 values and the number of viable parasites in infected macrophages treated with PK11195 (50-100 µM). Infected macrophages were then treated with PK11195 (25-100 µM) to determine the percentage of L. amazonensis-infected cells and the number of parasites per infected cell. Electron microscopy was used to investigate morphological changes caused by PK11195. The production of free oxygen radicals, nitric oxide, and pro-inflammatory cytokines was also evaluated in infected macrophages treated with PK11195 and primed or not primed with IFN-γ. FINDINGS: Median IC50 values for PK11195 were 14.2 µM for L. amazonensis, 8.2 µM for L. major, and 3.5 µM for L. braziliensis. The selective index value for L. amazonensis was 13.7, indicating the safety of PK11195 for future testing in mammals. Time- and dose-dependent reductions in the percentage of infected macrophages, the number of parasites per infected macrophage, and the number of viable intracellular parasites were observed. Electron microscopy revealed some morphological alterations suggestive of autophagy. Interestingly, MCP-1 and superoxide levels were reduced in L. amazonensis-infected macrophages treated with PK11195. MAIN CONCLUSIONS: PK11195 causes the killing of amastigotes in vitro by mechanisms independent of inflammatory mediators and causes morphological alterations within Leishmania parasites, suggestive of autophagy, at doses that are non-toxic to macrophages. Thus, this molecule has demonstrated potential as an anti-leishmanial agent.


Asunto(s)
Isoquinolinas/farmacología , Leishmania braziliensis/efectos de los fármacos , Leishmania major/efectos de los fármacos , Leishmania mexicana/efectos de los fármacos , Macrófagos/parasitología , Animales , Leishmania braziliensis/ultraestructura , Leishmania major/ultraestructura , Leishmania mexicana/ultraestructura , Dosificación Letal Mediana , Ratones , Ratones Endogámicos CBA , Microscopía Electrónica de Transmisión , Pruebas de Sensibilidad Parasitaria , Factores de Tiempo
2.
Mem. Inst. Oswaldo Cruz ; 113(4): e170345, 2018. graf
Artículo en Inglés | LILACS | ID: biblio-894915

RESUMEN

BACKGROUND Leishmaniasis, one of the most neglected diseases, is a serious public health problem in many countries, including Brazil. Currently available treatments require long-term use and have serious side effects, necessitating the development of new therapeutic interventions. Because translocator protein (TSPO) levels are reduced in Leishmania amazonensis-infected cells and because this protein participates in apoptosis and immunomodulation, TSPO represents a potential target for Leishmania chemotherapy. The present study evaluated PK11195, a ligand of this protein, as an anti-leishmanial agent. OBJECTIVE To evaluate the leishmanicidal activity of PK11195 against L. amazonensis in infected CBA mouse macrophages in vitro. METHODS The viability of axenic L. amazonensis, Leishmania major, and Leishmania braziliensis promastigotes was assessed after 48 h treatment with PK11195 (0.2-400 µM). Additionally, intracellular parasite viability was evaluated to determine IC50 values and the number of viable parasites in infected macrophages treated with PK11195 (50-100 µM). Infected macrophages were then treated with PK11195 (25-100 µM) to determine the percentage of L. amazonensis-infected cells and the number of parasites per infected cell. Electron microscopy was used to investigate morphological changes caused by PK11195. The production of free oxygen radicals, nitric oxide, and pro-inflammatory cytokines was also evaluated in infected macrophages treated with PK11195 and primed or not primed with IFN-γ. FINDINGS Median IC50 values for PK11195 were 14.2 µM for L. amazonensis, 8.2 µM for L. major, and 3.5 µM for L. braziliensis. The selective index value for L. amazonensis was 13.7, indicating the safety of PK11195 for future testing in mammals. Time- and dose-dependent reductions in the percentage of infected macrophages, the number of parasites per infected macrophage, and the number of viable intracellular parasites were observed. Electron microscopy revealed some morphological alterations suggestive of autophagy. Interestingly, MCP-1 and superoxide levels were reduced in L. amazonensis-infected macrophages treated with PK11195. MAIN CONCLUSIONS PK11195 causes the killing of amastigotes in vitro by mechanisms independent of inflammatory mediators and causes morphological alterations within Leishmania parasites, suggestive of autophagy, at doses that are non-toxic to macrophages. Thus, this molecule has demonstrated potential as an anti-leishmanial agent.


Asunto(s)
Humanos , Leishmania mexicana , Utilización de Medicamentos , Macrófagos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda