Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
J Virol ; 98(3): e0188323, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38376197

RESUMEN

Many viruses, including mammarenaviruses, have evolved mechanisms to counteract different components of the host cell innate immunity, which is required to facilitate robust virus multiplication. The double-stranded RNA (dsRNA) sensor protein kinase receptor (PKR) pathway plays a critical role in the cell anti-viral response. Whether PKR can restrict the multiplication of the Old World mammarenavirus lymphocytic choriomeningitis virus (LCMV) and the mechanisms by which LCMV may counteract the anti-viral functions of PKR have not yet been investigated. Here we present evidence that LCMV infection results in very limited levels of PKR activation, but LCMV multiplication is enhanced in the absence of PKR. In contrast, infection with a recombinant LCMV with a mutation affecting the 3'-5' exonuclease (ExoN) activity of the viral nucleoprotein resulted in robust PKR activation in the absence of detectable levels of dsRNA, which was associated with severely restricted virus multiplication that was alleviated in the absence of PKR. However, pharmacological inhibition of PKR activation resulted in reduced levels of LCMV multiplication. These findings uncovered a complex role of the PKR pathway in LCMV-infected cells involving both pro- and anti-viral activities.IMPORTANCEAs with many other viruses, the prototypic Old World mammarenavirus LCMV can interfere with the host cell innate immune response to infection, which includes the dsRNA sensor PKR pathway. A detailed understanding of LCMV-PKR interactions can provide novel insights about mammarenavirus-host cell interactions and facilitate the development of effective anti-viral strategies against human pathogenic mammarenaviruses. In the present work, we present evidence that LCMV multiplication is enhanced in PKR-deficient cells, but pharmacological inhibition of PKR activation unexpectedly resulted in severely restricted propagation of LCMV. Likewise, we document a robust PKR activation in LCMV-infected cells in the absence of detectable levels of dsRNA. Our findings have revealed a complex role of the PKR pathway during LCMV infection and uncovered the activation of PKR as a druggable target for the development of anti-viral drugs against human pathogenic mammarenaviruses.


Asunto(s)
Arenaviridae , Coriomeningitis Linfocítica , Humanos , Arenaviridae/metabolismo , Línea Celular , Proteínas Quinasas/metabolismo , Interacciones Huésped-Patógeno , Virus de la Coriomeningitis Linfocítica/metabolismo , Proteínas Portadoras , Antivirales , eIF-2 Quinasa/genética , eIF-2 Quinasa/metabolismo
2.
J Virol ; 97(1): e0138522, 2023 01 31.
Artículo en Inglés | MEDLINE | ID: mdl-36533953

RESUMEN

Several mammarenaviruses cause severe hemorrhagic fever (HF) disease in humans and pose important public health problems in their regions of endemicity. There are no United States (US) Food and Drug Administration (FDA)-approved mammarenavirus vaccines, and current anti-mammarenavirus therapy is limited to an off-label use of ribavirin that has limited efficacy. Mammarenaviruses are enveloped viruses with a bi-segmented negative-strand RNA genome. Each genome segment contains two open reading frames (ORF) separated by a noncoding intergenic region (IGR). The large (L) segment encodes the RNA dependent RNA polymerase, L protein, and the Z matrix protein, whereas the small (S) segment encodes the surface glycoprotein precursor (GPC) and nucleoprotein (NP). In the present study, we document the generation of a recombinant form of the prototypic mammarenavirus lymphocytic choriomeningitis virus (LCMV) expressing a codon deoptimized (CD) GPC and containing the IGR of the S segment in both the S and L segments (rLCMV/IGR-CD). We show that rLCMV/IGR-CD is fully attenuated in C57BL/6 (B6) mice but able to provide complete protection upon a single administration against a lethal challenge with LCMV. Importantly, rLCMV/IGR-CD exhibited an unbreachable attenuation for its safe implementation as a live-attenuated vaccine (LAV). IMPORTANCE Several mammarenaviruses cause severe disease in humans and pose important public health problems in their regions of endemicity. Currently, no FDA-licensed mammarenavirus vaccines are available, and anti-mammarenaviral therapy is limited to an off-label use of ribavirin whose efficacy is controversial. Here, we describe the generation of recombinant version of the prototypic mammarenavirus lymphocytic choriomeningitis virus (rLCMV) combining the features of a codon deoptimized (CD) GPC and the noncoding intergenic region (IGR) of the S segment in both S and L genome segments, called rLCMV/IGR-CD. We present evidence that rLCMV/IGR-CD has excellent safety and protective efficacy features as live-attenuated vaccine (LAV). Importantly, rLCMV/IGR-CD prevents, in coinfected mice, the generation of LCMV reassortants with increased virulence. Our findings document a well-defined molecular strategy for the generation of mammarenavirus LAV candidates able to trigger long-term protective immunity, upon a single immunization, while exhibiting unique enhanced safety features, including unbreachable attenuation.


Asunto(s)
Ingeniería Genética , Virus de la Coriomeningitis Linfocítica , Vacunas Virales , Animales , Humanos , Ratones , Codón/genética , ADN Intergénico/genética , Virus de la Coriomeningitis Linfocítica/genética , Virus de la Coriomeningitis Linfocítica/inmunología , Ratones Endogámicos C57BL , Vacunas Atenuadas/inmunología , Desarrollo de Vacunas
3.
J Virol ; 97(2): e0168822, 2023 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-36656012

RESUMEN

The eukaryotic chaperonin containing tailless complex polypeptide 1 ring complex (CCT, also known as TCP-1 Ring Complex, TRiC/CCT) participates in the folding of 5% to 10% of the cellular proteome and has been involved in the life cycle of several viruses, including dengue, Zika, and influenza viruses, but the mechanisms by which the TRiC/CCT complex contributes to virus multiplication remain poorly understood. Here, we document that the nucleoprotein (NP) of the mammarenavirus lymphocytic choriomeningitis virus (LCMV) is a substrate of the human TRiC/CCT complex, and that pharmacological inhibition of TRiC/CCT complex function, or RNAi-mediated knockdown of TRiC/CCT complex subunits, inhibited LCMV multiplication in human cells. We obtained evidence that the TRiC/CCT complex is required for the production of NP-containing virus-like particles (VLPs), and the activity of the virus ribonucleoprotein (vRNP) responsible for directing replication and transcription of the viral genome. Pharmacological inhibition of the TRIC/CCT complex also restricted multiplication of the live-attenuated vaccine candidates Candid#1 and ML29 of the hemorrhagic fever causing Junin (JUNV) and Lassa (LASV) mammarenaviruses, respectively. Our findings indicate that the TRiC/CCT complex is required for mammarenavirus multiplication and is an attractive candidate for the development of host directed antivirals against human-pathogenic mammarenaviruses. IMPORTANCE Host-directed antivirals have gained great interest as an antiviral strategy to counteract the rapid emergence of drug-resistant viruses. The chaperonin TRiC/CCT complex has been involved in the life cycle of several viruses, including dengue, Zika, and influenza viruses. Here, we have provided evidence that the chaperonin TRiC/CCT complex participates in mammarenavirus infection via its interaction with the viral NP. Importantly, pharmacological inhibition of TRiC/CCT function significantly inhibited multiplication of LCMV and the distantly related mammarenavirus JUNV in human cells. Our findings support that the TRiC/CCT complex is required for multiplication of mammarenaviruses and that the TRiC/CCT complex is an attractive host target for the development of antivirals against human-pathogenic mammarenaviruses.


Asunto(s)
Chaperonina con TCP-1 , Virus de la Coriomeningitis Linfocítica , Nucleoproteínas , Humanos , Antivirales , Chaperonina con TCP-1/metabolismo , Replicación Viral
4.
J Virol ; 95(24): e0139921, 2021 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-34586865

RESUMEN

Targeting host factors is a promising strategy to develop broad-spectrum antiviral drugs. Drugs targeting anti-apoptotic Bcl-2 family proteins that were originally developed as tumor suppressors have been reported to inhibit multiplication of different types of viruses. However, the mechanisms whereby Bcl-2 inhibitors exert their antiviral activity remain poorly understood. In this study, we have investigated the mechanisms by which obatoclax (OLX) and ABT-737 Bcl-2 inhibitors exhibited a potent antiviral activity against the mammarenavirus lymphocytic choriomeningitis virus (LCMV). OLX and ABT-737 potent anti-LCMV activity was not associated with their proapoptotic properties but rather with their ability to induce cell arrest at the G0/G1 phase. OLX- and ABT-737-mediated inhibition of Bcl-2 correlated with reduced expression levels of thymidine kinase 1 (TK1), cyclin A2 (CCNA2), and cyclin B1 (CCNB1) cell cycle regulators. In addition, small interfering RNA (siRNA)-mediated knockdown of TK1, CCNA2, and CCNB1 resulted in reduced levels of LCMV multiplication. The antiviral activity exerted by Bcl-2 inhibitors correlated with reduced levels of viral RNA synthesis at early times of infection. Importantly, ABT-737 exhibited moderate efficacy in a mouse model of LCMV infection, and Bcl-2 inhibitors displayed broad-spectrum antiviral activities against different mammarenaviruses and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Our results suggest that Bcl-2 inhibitors, actively being explored as anticancer therapeutics, might be repositioned as broad-spectrum antivirals. IMPORTANCE Antiapoptotic Bcl-2 inhibitors have been shown to exert potent antiviral activities against various types of viruses via mechanisms that are currently poorly understood. This study has revealed that Bcl-2 inhibitors' mediation of cell cycle arrest at the G0/G1 phase, rather than their proapoptotic activity, plays a critical role in blocking mammarenavirus multiplication in cultured cells. In addition, we show that Bcl-2 inhibitor ABT-737 exhibited moderate antimammarenavirus activity in vivo and that Bcl-2 inhibitors displayed broad-spectrum antiviral activities against different mammarenaviruses and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Our results suggest that Bcl-2 inhibitors, actively being explored as anticancer therapeutics, might be repositioned as broad-spectrum antivirals.


Asunto(s)
Apoptosis , Arenaviridae/efectos de los fármacos , Tratamiento Farmacológico de COVID-19 , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Células A549 , Animales , Antivirales/farmacología , Proteínas Reguladoras de la Apoptosis/farmacología , Compuestos de Bifenilo/farmacología , COVID-19/virología , Ciclo Celular , Puntos de Control del Ciclo Celular/efectos de los fármacos , Células Cultivadas/efectos de los fármacos , Células Cultivadas/virología , Chlorocebus aethiops , Ciclina A2/biosíntesis , Ciclina B1/biosíntesis , Fase G1 , Humanos , Indoles/farmacología , Ratones , Ratones Endogámicos C57BL , Nitrofenoles/farmacología , Piperazinas/farmacología , Pirroles/farmacología , Fase de Descanso del Ciclo Celular , SARS-CoV-2 , Sulfonamidas/farmacología , Timidina Quinasa/biosíntesis , Células Vero
5.
PLoS Pathog ; 16(3): e1008352, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32142546

RESUMEN

Lassa virus infects hundreds of thousands of people each year across rural West Africa, resulting in a high number of cases of Lassa fever (LF), a febrile disease associated with high morbidity and significant mortality. The lack of approved treatments or interventions underscores the need for an effective vaccine. At least four viral lineages circulate in defined regions throughout West Africa with substantial interlineage nucleotide and amino acid diversity. An effective vaccine should be designed to elicit Lassa virus specific humoral and cell mediated immunity across all lineages. Most current vaccine candidates use only lineage IV antigens encoded by Lassa viruses circulating around Sierra Leone, Liberia, and Guinea but not Nigeria where lineages I-III are found. As previous infection is known to protect against disease from subsequent exposure, we sought to determine whether LF survivors from Nigeria and Sierra Leone harbor memory T cells that respond to lineage IV antigens. Our results indicate a high degree of cross-reactivity of CD8+ T cells from Nigerian LF survivors to lineage IV antigens. In addition, we identified regions within the Lassa virus glycoprotein complex and nucleoprotein that contributed to these responses while T cell epitopes were not widely conserved across our study group. These data are important for current efforts to design effective and efficient vaccine candidates that can elicit protective immunity across all Lassa virus lineages.


Asunto(s)
Antígenos Virales/inmunología , Linfocitos T CD8-positivos/inmunología , Epítopos de Linfocito T/inmunología , Virus Lassa/inmunología , África Occidental , Reacciones Cruzadas , Femenino , Humanos , Masculino , Especificidad de la Especie
6.
J Virol ; 94(12)2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32269122

RESUMEN

Early and robust T cell responses have been associated with survival from Lassa fever (LF), but the Lassa virus-specific memory responses have not been well characterized. Regions within the virus surface glycoprotein (GPC) and nucleoprotein (NP) are the main targets of the Lassa virus-specific T cell responses, but, to date, only a few T cell epitopes within these proteins have been identified. We identified GPC and NP regions containing T cell epitopes and HLA haplotypes from LF survivors and used predictive HLA-binding algorithms to identify putative epitopes, which were then experimentally tested using autologous survivor samples. We identified 12 CD8-positive (CD8+) T cell epitopes, including epitopes common to both Nigerian and Sierra Leonean survivors. These data should be useful for the identification of dominant Lassa virus-specific T cell responses in Lassa fever survivors and vaccinated individuals as well as for designing vaccines that elicit cell-mediated immunity.IMPORTANCE The high morbidity and mortality associated with clinical cases of Lassa fever, together with the lack of licensed vaccines and limited and partially effective interventions, make Lassa virus (LASV) an important health concern in its regions of endemicity in West Africa. Previous infection with LASV protects from disease after subsequent exposure, providing a framework for designing vaccines to elicit similar protective immunity. Multiple major lineages of LASV circulate in West Africa, and therefore, ideal vaccine candidates should elicit immunity to all lineages. We therefore sought to identify common T cell epitopes between Lassa fever survivors from Sierra Leone and Nigeria, where distinct lineages circulate. We identified three such epitopes derived from highly conserved regions within LASV proteins. In this process, we also identified nine other T cell epitopes. These data should help in the design of an effective pan-LASV vaccine.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Epítopos de Linfocito T/química , Fiebre de Lassa/inmunología , Virus Lassa/inmunología , Nucleoproteínas/inmunología , Proteínas del Envoltorio Viral/inmunología , Adolescente , Secuencia de Aminoácidos , Animales , Anticuerpos Antivirales/biosíntesis , Antígenos Virales/química , Antígenos Virales/genética , Antígenos Virales/inmunología , Linfocitos T CD8-positivos/virología , Niño , Epítopos de Linfocito T/genética , Epítopos de Linfocito T/inmunología , Femenino , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/inmunología , Antígenos HLA-DQ/genética , Antígenos HLA-DQ/inmunología , Haplotipos , Interacciones Huésped-Patógeno/genética , Interacciones Huésped-Patógeno/inmunología , Humanos , Sueros Inmunes/análisis , Memoria Inmunológica , Fiebre de Lassa/genética , Fiebre de Lassa/patología , Virus Lassa/patogenicidad , Masculino , Nigeria , Nucleoproteínas/genética , Sierra Leona , Sobrevivientes , Proteínas del Envoltorio Viral/genética , Adulto Joven
7.
Proc Natl Acad Sci U S A ; 115(32): E7578-E7586, 2018 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-30038008

RESUMEN

The recent Ebola epidemic exemplified the importance of understanding and controlling emerging infections. Despite the importance of T cells in clearing virus during acute infection, little is known about Ebola-specific CD8+ T cell responses. We investigated immune responses of individuals infected with Ebola virus (EBOV) during the 2013-2016 West Africa epidemic in Sierra Leone, where the majority of the >28,000 EBOV disease (EVD) cases occurred. We examined T cell memory responses to seven of the eight Ebola proteins (GP, sGP, NP, VP24, VP30, VP35, and VP40) and associated HLA expression in survivors. Of the 30 subjects included in our analysis, CD8+ T cells from 26 survivors responded to at least one EBOV antigen. A minority, 10 of 26 responders (38%), made CD8+ T cell responses to the viral GP or sGP. In contrast, 25 of the 26 responders (96%) made response to viral NP, 77% to VP24 (20 of 26), 69% to VP40 (18 of 26), 42% (11 of 26) to VP35, with no response to VP30. Individuals making CD8+ T cells to EBOV VP24, VP35, and VP40 also made CD8+ T cells to NP, but rarely to GP. We identified 34 CD8+ T cell epitopes for Ebola. Our data indicate the immunodominance of the EBOV NP-specific T cell response and suggest that its inclusion in a vaccine along with the EBOV GP would best mimic survivor responses and help boost cell-mediated immunity during vaccination.


Asunto(s)
Anticuerpos Antivirales/inmunología , Linfocitos T CD8-positivos/inmunología , Ebolavirus/inmunología , Epidemias , Antígenos HLA/inmunología , Fiebre Hemorrágica Ebola/inmunología , Adolescente , Adulto , Anticuerpos Antivirales/sangre , Antígenos Virales/inmunología , Epítopos de Linfocito T/inmunología , Femenino , Antígenos HLA/sangre , Fiebre Hemorrágica Ebola/sangre , Fiebre Hemorrágica Ebola/epidemiología , Fiebre Hemorrágica Ebola/prevención & control , Humanos , Masculino , Nucleoproteínas/inmunología , Sierra Leona , Sobrevivientes , Vacunación/métodos , Proteínas Virales/inmunología , Adulto Joven
8.
J Infect Dis ; 222(9): 1488-1497, 2020 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-32436943

RESUMEN

BACKGROUND: Ebola virus (EBOV) disease has killed thousands of West and Central Africans over the past several decades. Many who survive the acute disease later experience post-Ebola syndrome, a constellation of symptoms whose causative pathogenesis is unclear. METHODS: We investigated EBOV-specific CD8+ and CD4+ T-cell responses in 37 Sierra Leonean EBOV disease survivors with (n = 19) or without (n = 18) sequelae of arthralgia and ocular symptoms. Peripheral blood mononuclear cells were infected with recombinant vesicular stomatitis virus encoding EBOV antigens. We also studied the presence of EBOV-specific immunoglobulin G, antinuclear antibodies, anti-cyclic citrullinated peptide antibodies, rheumatoid factor, complement levels, and cytokine levels in these 2 groups. RESULTS: Survivors with sequelae had a significantly higher EBOV-specific CD8+ and CD4+ T-cell response. No differences in EBOV-specific immunoglobulin G, antinuclear antibody, or anti-cyclic citrullinated peptide antibody levels were found. Survivors with sequelae showed significantly higher rheumatoid factor levels. CONCLUSION: EBOV-specific CD8+ and CD4+ T-cell responses were significantly higher in Ebola survivors with post-Ebola syndrome. These findings suggest that pathogenesis may occur as an immune-mediated disease via virus-specific T-cell immune response or that persistent antigen exposure leads to increased and sustained T-cell responses.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , Ebolavirus/inmunología , Fiebre Hemorrágica Ebola/inmunología , Adulto , Anticuerpos Antivirales/inmunología , Antígenos Virales/inmunología , Femenino , Técnica del Anticuerpo Fluorescente , Fiebre Hemorrágica Ebola/patología , Humanos , Inmunidad Celular , Masculino , Sierra Leona/epidemiología , Sobrevivientes
9.
PLoS Pathog ; 14(7): e1007172, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-30028868

RESUMEN

The interferon inducible protein, BST-2 (or, tetherin), plays an important role in the innate antiviral defense system by inhibiting the release of many enveloped viruses. Consequently, viruses have evolved strategies to counteract the anti-viral activity of this protein. While the mechanisms by which BST-2 prevents viral dissemination have been defined, less is known about how this protein shapes the early viral distribution and immunological defense against pathogens during the establishment of persistence. Using the lymphocytic choriomeningitis virus (LCMV) model of infection, we sought insights into how the in vitro antiviral activity of this protein compared to the immunological defense mounted in vivo. We observed that BST-2 modestly reduced production of virion particles from cultured cells, which was associated with the ability of BST-2 to interfere with the virus budding process mediated by the LCMV Z protein. Moreover, LCMV does not encode a BST-2 antagonist, and viral propagation was not significantly restricted in cells that constitutively expressed BST-2. In contrast to this very modest effect in cultured cells, BST-2 played a crucial role in controlling LCMV in vivo. In BST-2 deficient mice, a persistent strain of LCMV was no longer confined to the splenic marginal zone at early times post-infection, which resulted in an altered distribution of LCMV-specific T cells, reduced T cell proliferation / function, delayed viral control in the serum, and persistence in the brain. These data demonstrate that BST-2 is important in shaping the anatomical distribution and adaptive immune response against a persistent viral infection in vivo.


Asunto(s)
Antígenos CD/inmunología , Coriomeningitis Linfocítica/inmunología , Linfocitos T/inmunología , Animales , Antígenos CD/metabolismo , Proliferación Celular , Proteínas Ligadas a GPI/inmunología , Proteínas Ligadas a GPI/metabolismo , Humanos , Activación de Linfocitos , Coriomeningitis Linfocítica/metabolismo , Virus de la Coriomeningitis Linfocítica/inmunología , Ratones , Ratones Endogámicos C57BL
10.
J Virol ; 90(6): 3187-97, 2016 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-26739049

RESUMEN

UNLABELLED: Hemorrhagic fever arenaviruses (HFAs) pose important public health problems in regions where they are endemic. Concerns about human-pathogenic arenaviruses are exacerbated because of the lack of FDA-licensed arenavirus vaccines and because current antiarenaviral therapy is limited to an off-label use of ribavirin that is only partially effective. We have recently shown that the noncoding intergenic region (IGR) present in each arenavirus genome segment, the S and L segments (S-IGR and L-IGR, respectively), plays important roles in the control of virus protein expression and that this knowledge could be harnessed for the development of live-attenuated vaccine strains to combat HFAs. In this study, we further investigated the sequence plasticity of the arenavirus IGR. We demonstrate that recombinants of the prototypic arenavirus lymphocytic choriomeningitis virus (rLCMVs), whose S-IGRs were replaced by the S-IGR of Lassa virus (LASV) or an entirely nonviral S-IGR-like sequence (Ssyn), are viable, indicating that the function of S-IGR tolerates a high degree of sequence plasticity. In addition, rLCMVs whose L-IGRs were replaced by Ssyn or S-IGRs of the very distantly related reptarenavirus Golden Gate virus (GGV) were viable and severely attenuated in vivo but able to elicit protective immunity against a lethal challenge with wild-type LCMV. Our findings indicate that replacement of L-IGR by a nonviral Ssyn could serve as a universal molecular determinant of arenavirus attenuation. IMPORTANCE: Hemorrhagic fever arenaviruses (HFAs) cause high rates of morbidity and mortality and pose important public health problems in regions where they are endemic. Implementation of live-attenuated vaccines (LAVs) will represent a major step to combat HFAs. Here we document that the arenavirus noncoding intergenic region (IGR) has a high degree of plasticity compatible with virus viability. This observation led us to generate recombinant LCMVs containing nonviral synthetic IGRs. These rLCMVs were severely attenuated in vivo but able to elicit protective immunity against a lethal challenge with wild-type LCMV. These nonviral synthetic IGRs can be used as universal molecular determinants of arenavirus attenuation for the rapid development of safe and effective, as well as stable, LAVs to combat HFA.


Asunto(s)
ADN Intergénico , Virus de la Coriomeningitis Linfocítica/genética , Virus de la Coriomeningitis Linfocítica/patogenicidad , Mutagénesis Insercional , Recombinación Genética , Vacunas Virales/inmunología , Animales , Infecciones por Arenaviridae/patología , Infecciones por Arenaviridae/prevención & control , Modelos Animales de Enfermedad , Virus Lassa/genética , Virus de la Coriomeningitis Linfocítica/fisiología , Ratones Endogámicos C57BL , Viabilidad Microbiana , Análisis de Supervivencia , Vacunas Atenuadas/administración & dosificación , Vacunas Atenuadas/genética , Vacunas Atenuadas/inmunología , Vacunas Virales/administración & dosificación , Vacunas Virales/genética
11.
J Virol ; 90(22): 10102-10112, 2016 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-27581982

RESUMEN

Several arenaviruses, chiefly Lassa virus (LASV), cause hemorrhagic fever disease in humans and pose serious public health concerns in their regions of endemicity. Moreover, mounting evidence indicates that the worldwide-distributed prototypic arenavirus, lymphocytic choriomeningitis virus (LCMV), is a neglected human pathogen of clinical significance. We have documented that a recombinant LCMV containing the glycoprotein (GPC) gene of LASV within the backbone of the immunosuppressive clone 13 (Cl-13) variant of the Armstrong strain of LCMV (rCl-13/LASV-GPC) exhibited Cl-13-like growth properties in cultured cells, but in contrast to Cl-13, rCl-13/LASV-GPC was unable to establish persistence in immunocompetent adult mice, which prevented its use for some in vivo experiments. Recently, V459K and K461G mutations within the GP2 cytoplasmic domain (CD) of rCl-13/LASV-GPC were shown to increase rCl-13/LASV-GPC infectivity in mice. Here, we generated rCl-13(GPC/VGKS) by introducing the corresponding revertant mutations K465V and G467K within GP2 of rCl-13 and we show that rCl-13(GPC/VGKS) was unable to persist in mice. K465V and G467K mutations did not affect GPC processing, virus RNA replication, or gene expression. In addition, rCl-13(GPC/VGKS) grew to high titers in cultured cell lines and in immunodeficient mice. Further analysis revealed that rCl-13(GPC/VGKS) infected fewer splenic plasmacytoid dendritic cells than rCl-13, yet the two viruses induced similar type I interferon responses in mice. Our findings have identified novel viral determinants of Cl-13 persistence and also revealed that virus GPC-host interactions yet to be elucidated critically contribute to Cl-13 persistence. IMPORTANCE: The prototypic arenavirus, lymphocytic choriomeningitis virus (LCMV), provides investigators with a superb experimental model system to investigate virus-host interactions. The Armstrong strain (ARM) of LCMV causes an acute infection, whereas its derivative, clone 13 (Cl-13), causes a persistent infection. Mutations F260L and K1079Q within GP1 and L polymerase, respectively, have been shown to play critical roles in Cl-13's ability to persist in mice. However, there is an overall lack of knowledge about other viral determinants required for Cl-13's persistence. Here, we report that mutations K465V and G467K within the cytoplasmic domain of Cl-13 GP2 resulted in a virus, rCl-13(GPC/VGKS), that failed to persist in mice despite exhibiting Cl-13 wild-type-like fitness in cultured cells and immunocompromised mice. This finding has uncovered novel viral determinants of viral persistence, and a detailed characterization of rCl-13(GPC/VGKS) can provide novel insights into the mechanisms underlying persistent viral infection.


Asunto(s)
Glicoproteínas/genética , Virus de la Coriomeningitis Linfocítica/genética , Virus de la Coriomeningitis Linfocítica/patogenicidad , Células A549 , Animales , Línea Celular , Línea Celular Tumoral , Chlorocebus aethiops , Citoplasma , Células Dendríticas/metabolismo , Células Dendríticas/virología , Células HEK293 , Interacciones Huésped-Patógeno/genética , Humanos , Huésped Inmunocomprometido/fisiología , Interferón Tipo I/metabolismo , Virus Lassa/genética , Virus Lassa/patogenicidad , Coriomeningitis Linfocítica/metabolismo , Coriomeningitis Linfocítica/virología , Ratones , Mutación/genética , Células Vero , Replicación Viral/genética
12.
J Virol ; 89(23): 12166-77, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26401045

RESUMEN

UNLABELLED: Hemorrhagic fever arenaviruses (HFA) pose important public health problems in regions where they are endemic. Thus, Lassa virus (LASV) infects several hundred thousand individuals yearly in West Africa, causing a large number of Lassa fever cases associated with high morbidity and mortality. Concerns about human-pathogenic arenaviruses are exacerbated because of the lack of FDA-licensed arenavirus vaccines and because current antiarenaviral therapy is limited to an off-label use of ribavirin that is only partially effective. The Mopeia virus (MOPV)/LASV reassortant (ML29) is a LASV candidate live-attenuated vaccine (LAV) that has shown promising results in animal models. Nevertheless, the mechanism of ML29 attenuation remains unknown, which raises concerns about the phenotypic stability of ML29 in response to additional mutations. Development of LAVs based on well-defined molecular mechanisms of attenuation will represent a major step in combatting HFA. We used the prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) to develop a general molecular strategy for arenavirus attenuation. Our approach involved replacement of the noncoding intergenic region (IGR) of the L genome segment with the IGR of the S genome segment to generate a recombinant LCMV, rLCMV(IGR/S-S), that was highly attenuated in vivo but induced protection against a lethal challenge with wild-type LCMV. Attenuation of rLCMV(IGR/S-S) was associated with a stable reorganization of the control of viral gene expression. This strategy can facilitate the rapid development of LAVs with the antigenic composition of the parental HFA and a mechanism of attenuation that minimizes concerns about increased virulence that could be caused by genetic changes in the LAV. IMPORTANCE: Hemorrhagic fever arenaviruses (HFA) cause high morbidity and mortality, and pose important public health problems in the regions where they are endemic. Implementation of live-attenuated vaccines (LAV) will represent a major step in combatting HFA. Here we have used the prototypic arenavirus LCMV to document a general molecular strategy for arenavirus attenuation that can facilitate the rapid development of safe and effective, as well as stable, LAV to combat HFA.


Asunto(s)
Arenaviridae/inmunología , Fiebre de Lassa/prevención & control , Vacunas Atenuadas/biosíntesis , Vacunas Virales/biosíntesis , Animales , Arenaviridae/genética , Northern Blotting , Chlorocebus aethiops , Cartilla de ADN/genética , Humanos , Virus de la Coriomeningitis Linfocítica/genética , Plásmidos/genética , Vacunas Atenuadas/inmunología , Vacunas Sintéticas/genética , Células Vero , Vacunas Virales/inmunología
13.
J Virol ; 89(10): 5734-8, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25762740

RESUMEN

In this study, we document that efficient interaction between arenavirus nucleoprotein (NP) and RNA-dependent RNA polymerase (L protein), the two trans-acting viral factors required for both virus RNA replication and gene transcription, requires the presence of virus-specific RNA sequences located within the untranslated 5' and 3' termini of the viral genome.


Asunto(s)
Arenavirus/metabolismo , Nucleocápside/metabolismo , Nucleoproteínas/metabolismo , ARN Polimerasa Dependiente del ARN/metabolismo , Proteínas Virales/metabolismo , Arenavirus/genética , Genoma Viral , Células HEK293 , Humanos , Virus de la Coriomeningitis Linfocítica/genética , Virus de la Coriomeningitis Linfocítica/fisiología , Nucleocápside/genética , Nucleoproteínas/genética , ARN no Traducido/genética , ARN no Traducido/metabolismo , ARN Viral/genética , ARN Viral/metabolismo , ARN Polimerasa Dependiente del ARN/genética , Proteínas Virales/genética , Replicación Viral
14.
J Virol ; 89(21): 10924-33, 2015 11.
Artículo en Inglés | MEDLINE | ID: mdl-26292327

RESUMEN

UNLABELLED: Several arenaviruses cause hemorrhagic fever disease in humans and represent important public health problems in the regions where these viruses are endemic. In addition, evidence indicates that the worldwide-distributed prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) is an important neglected human pathogen. There are no licensed arenavirus vaccines and current antiarenavirus therapy is limited to the use of ribavirin that is only partially effective. Therefore, there is an unmet need for novel antiarenaviral therapeutics. Here, we report the generation of a novel recombinant LCM virus and its use to develop a cell-based high-throughput screen to rapidly identify inhibitors of LCMV multiplication. We used this novel assay to screen a library of 30,400 small molecules and identified compound F3406 (chemical name: N-[3,5-bis(fluoranyl)phenyl]-2-[5,7-bis(oxidanylidene)-6-propyl-2-pyrrolidin-1-yl-[1,3]thiazolo[4,5-d]pyrimidin-4-yl]ethanamide), which exhibited strong anti-LCMV activity in the absence of cell toxicity. Mechanism-of-action studies revealed that F3406 inhibited LCMV cell entry by specifically interfering with the pH-dependent fusion in the endosome compartment that is mediated by LCMV glycoprotein GP2 and required to release the virus ribonucleoprotein into the cell cytoplasm to initiate transcription and replication of the virus genome. We identified residue M437 within the transmembrane domain of GP2 as critical for virus susceptibility to F3406. IMPORTANCE: Hemorrhagic fever arenaviruses (HFA) are important human pathogens that cause high morbidity and mortality in areas where these viruses are endemic. In addition, evidence indicates that the worldwide-distributed prototypic arenavirus lymphocytic choriomeningitis virus (LCMV) is a neglected human pathogen of clinical significance. Concerns posed by arenavirus infections are aggravated by the lack of U.S. Food and Drug Administration-licensed arenavirus vaccines and current antiarenaviral therapy being limited to the off-label use of ribavirin that is only partially effective. Here we describe a novel recombinant LCMV and its use to develop a cell-based assay suitable for HTS to rapidly identify inhibitors arenavirus multiplication. The concepts and experimental strategies we describe in this work provide the bases for the rapid identification and characterization of novel anti-HFA therapeutics.


Asunto(s)
Infecciones por Arenaviridae/prevención & control , Virus de la Coriomeningitis Linfocítica/genética , Virus de la Coriomeningitis Linfocítica/fisiología , Pirimidinonas/farmacología , Bibliotecas de Moléculas Pequeñas/química , Tiazoles/farmacología , Internalización del Virus/efectos de los fármacos , Replicación Viral/fisiología , Animales , Western Blotting , Chlorocebus aethiops , Células HEK293 , Ensayos Analíticos de Alto Rendimiento , Humanos , Plásmidos/genética , Pirimidinonas/análisis , Tiazoles/análisis , Células Vero , Replicación Viral/efectos de los fármacos
15.
Proc Natl Acad Sci U S A ; 108(17): 6715-20, 2011 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-21245351

RESUMEN

Modern drug discovery efforts rely, to a large extent, on lead compounds from two classes of small organic molecules; namely, natural products (i.e., secondary metabolites) and designed compounds (i.e., synthetic molecules). In this article, we demonstrate how these two domains of lead compounds can be merged through total synthesis and molecular design of analogs patterned after the targeted natural products, whose promising biological properties provide the motivation. Specifically, the present study targeted the naturally occurring biyouyanagins A and B and their analogs through modular chemical synthesis and led to the discovery of small organic molecules possessing anti-HIV and anti-arenavirus properties.


Asunto(s)
Fármacos Anti-VIH/síntesis química , Arenavirus , VIH , Sesquiterpenos/química , Sesquiterpenos/síntesis química , Compuestos de Espiro/química , Compuestos de Espiro/síntesis química , Fármacos Anti-VIH/química , Fármacos Anti-VIH/farmacología , Infecciones por Arenaviridae/tratamiento farmacológico , Línea Celular , Infecciones por VIH/tratamiento farmacológico , Humanos , Estructura Molecular , Sesquiterpenos/farmacología , Compuestos de Espiro/farmacología
16.
bioRxiv ; 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38328184

RESUMEN

Generation of functional CD8 + T cell memory typically requires engagement of CD4 + T cells. However, in certain scenarios, such as acutely-resolving viral infections, effector (T E ) and subsequent memory (T M ) CD8 + T cell formation appear impervious to a lack of CD4 + T cell help during priming. Nonetheless, such "helpless" CD8 + T M respond poorly to pathogen rechallenge. At present, the origin and long-term evolution of helpless CD8 + T cell memory remain incompletely understood. Here, we demonstrate that helpless CD8 + T E differentiation is largely normal but a multiplicity of helpless CD8 T M defects, consistent with impaired memory maturation, emerge as a consequence of prolonged yet finite exposure to cognate antigen. Importantly, these defects resolve over time leading to full restoration of CD8 + T M potential and recall capacity. Our findings provide a unified explanation for helpless CD8 + T cell memory and emphasize an unexpected CD8 + T M plasticity with implications for vaccination strategies and beyond.

17.
bioRxiv ; 2023 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-38106082

RESUMEN

Many viruses, including mammarenaviruses, have evolved mechanisms to counteract different components of the host cell innate immunity, which is required to facilitate robust virus multiplication. The double strand (ds)RNA sensor protein kinase receptor (PKR) pathway plays a critical role in the cell antiviral response. Whether PKR can restrict the multiplication of the Old World mammarenavirus lymphocytic choriomeningitis virus (LCMV) and the mechanisms by which LCMV may counteract the antiviral functions of PKR have not yet been investigated. Here we present evidence that LCMV infection results in very limited levels of PKR activation, but LCMV multiplication is enhanced in the absence of PKR. In contrast, infection with a recombinant LCMV with a mutation affecting the 3'-5' exonuclease (ExoN) activity of the viral nucleoprotein (NP) resulted in robust PKR activation in the absence of detectable levels of dsRNA, which was associated with severely restricted virus multiplication that was alleviated in the absence of PKR. However, pharmacological inhibition of PKR activation resulted in reduced levels of LCMV multiplication. These findings uncovered a complex role of the PKR pathway in LCMV-infected cells involving both pro-and antiviral activities.

19.
Virology ; 576: 83-95, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36183499

RESUMEN

The mammarenavirus Lassa virus (LASV) causes a life-threatening acute febrile disease, Lassa fever (LF). To date, no US Food and Drug Administration (FDA)-licensed medical countermeasures against LASV are available. This underscores the need for the development of novel anti-LASV drugs. Here, we screen an FDA-approved drug library to identify novel anti-LASV drug candidates using an infectious-free cell line expressing a functional LASV ribonucleoprotein (vRNP), where levels of vRNP-directed reporter gene expression serve as a surrogate for vRNP activity. Our screen identified the pan-ErbB tyrosine kinase inhibitor afatinib as a potent inhibitor of LASV vRNP activity. Afatinib inhibited multiplication of lymphocytic choriomeningitis virus (LCMV) a mammarenavirus closely related to LASV. Cell-based assays revealed that afatinib inhibited multiple steps of the LASV and LCMV life cycles. Afatinib also inhibited multiplication of Junín virus vaccine strain Candid#1, indicating that afatinib can have antiviral activity against a broad range of human pathogenic mammarenaviruses.


Asunto(s)
Arenaviridae , Fiebre de Lassa , Vacunas , Chlorocebus aethiops , Animales , Humanos , Afatinib , Células Vero , Virus Lassa/genética , Virus de la Coriomeningitis Linfocítica , Antivirales/farmacología , Ribonucleoproteínas/metabolismo , Inhibidores de Proteínas Quinasas/farmacología , Estadios del Ciclo de Vida
20.
bioRxiv ; 2021 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-34426809

RESUMEN

Targeting host factors is a promising strategy to develop broad-spectrum antiviral drugs. Drugs targeting anti-apoptotic Bcl-2 family proteins that were originally developed as tumor suppressors have been reported to inhibit multiplication of different types of viruses. However, the mechanisms whereby Bcl-2 inhibitors exert their antiviral activity remain poorly understood. In this study, we have investigated the mechanisms by which obatoclax (OLX) and ABT-737 Bcl-2 inhibitors exhibited a potent antiviral activity against the mammarenavirus lymphocytic choriomeningitis virus (LCMV). OLX and ABT-737 potent anti-LCMV activity was not associated with their pro-apoptotic properties, but rather their ability of inducing cell arrest at G0/G1 phase. OLX and ABT-737 mediated inhibition of Bcl-2 correlated with reduced expression levels of thymidine kinase 1 (TK1), cyclin A2 (CCNA2), and cyclin B1 (CCNB1) cell cycle regulators. In addition, siRNA-mediated knock down of TK1, CCNA2, and CCNB1 resulted in reduced levels of LCMV multiplication. The antiviral activity exerted by Bcl-2 inhibitors correlated with reduced levels of viral RNA synthesis at early times of infection. Importantly, ABT-737 exhibited moderate efficacy in a mouse model of LCMV infection, and Bcl-2 inhibitors displayed broad-spectrum antiviral activities against different mammarenaviruses and SARS-CoV-2. Our results suggest that Bcl-2 inhibitors, actively being explored as anti-cancer therapeutics, might be repositioned as broad-spectrum antivirals. IMPORTANCE: Anti-apoptotic Bcl-2 inhibitors have been shown to exert potent antiviral activities against various types of viruses via mechanisms that are currently poorly understood. This study has revealed that Bcl-2 inhibitors mediated cell cycle arrest at the G0/G1 phase, rather than their pro-apoptotic activity, plays a critical role in blocking mammarenavirus multiplication in cultured cells. In addition, we show that Bcl-2 inhibitor ABT-737 exhibited moderate anti-mammarenavirus activity in vivo , and that Bcl-2 inhibitors displayed broad-spectrum antiviral activities against different mammarenaviruses and SARS-CoV-2. Our results suggest that Bcl-2 inhibitors, actively being explored as anti-cancer therapeutics, might be repositioned as broad-spectrum antivirals.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda