Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Magn Reson Med ; 91(3): 860-885, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37946584

RESUMEN

Brain cell structure and function reflect neurodevelopment, plasticity, and aging; and changes can help flag pathological processes such as neurodegeneration and neuroinflammation. Accurate and quantitative methods to noninvasively disentangle cellular structural features are needed and are a substantial focus of brain research. Diffusion-weighted MRS (dMRS) gives access to diffusion properties of endogenous intracellular brain metabolites that are preferentially located inside specific brain cell populations. Despite its great potential, dMRS remains a challenging technique on all levels: from the data acquisition to the analysis, quantification, modeling, and interpretation of results. These challenges were the motivation behind the organization of the Lorentz Center workshop on "Best Practices & Tools for Diffusion MR Spectroscopy" held in Leiden, the Netherlands, in September 2021. During the workshop, the dMRS community established a set of recommendations to execute robust dMRS studies. This paper provides a description of the steps needed for acquiring, processing, fitting, and modeling dMRS data, and provides links to useful resources.


Asunto(s)
Encéfalo , Imagen de Difusión por Resonancia Magnética , Consenso , Encéfalo/metabolismo , Espectroscopía de Resonancia Magnética/métodos , Difusión , Imagen de Difusión por Resonancia Magnética/métodos
2.
NMR Biomed ; : e5211, 2024 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-39041293

RESUMEN

Proton magnetic resonance spectroscopic imaging (1H-MRSI) is a powerful tool that enables the multidimensional non-invasive mapping of the neurochemical profile at high resolution over the entire brain. The constant demand for higher spatial resolution in 1H-MRSI has led to increased interest in post-processing-based denoising methods aimed at reducing noise variance. The aim of the present study was to implement two noise-reduction techniques, Marchenko-Pastur principal component analysis (MP-PCA) based denoising and low-rank total generalized variation (LR-TGV) reconstruction, and to test their potential with and impact on preclinical 14.1 T fast in vivo 1H-FID-MRSI datasets. Since there is no known ground truth for in vivo metabolite maps, additional evaluations of the performance of both noise-reduction strategies were conducted using Monte Carlo simulations. Results showed that both denoising techniques increased the apparent signal-to-noise ratio (SNR) while preserving noise properties in each spectrum for both in vivo and Monte Carlo datasets. Relative metabolite concentrations were not significantly altered by either method and brain regional differences were preserved in both synthetic and in vivo datasets. Increased precision of metabolite estimates was observed for the two methods, with inconsistencies noted for lower-concentration metabolites. Our study provided a framework for how to evaluate the performance of MP-PCA and LR-TGV methods for preclinical 1H-FID MRSI data at 14.1 T. While gains in apparent SNR and precision were observed, concentration estimations ought to be treated with care, especially for low-concentration metabolites.

3.
Metab Brain Dis ; 39(3): 403-437, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37606786

RESUMEN

Brain edema is considered as a common feature associated with hepatic encephalopathy (HE). However, its central role as cause or consequence of HE and its implication in the development of the neurological alterations linked to HE are still under debate. It is now well accepted that type A and type C HE are biologically and clinically different, leading to different manifestations of brain edema. As a result, the findings on brain edema/swelling in type C HE are variable and sometimes controversial. In the light of the changing natural history of liver disease, better description of the clinical trajectory of cirrhosis and understanding of molecular mechanisms of HE, and the role of brain edema as a central component in the pathogenesis of HE is revisited in the current review. Furthermore, this review highlights the main techniques to measure brain edema and their advantages/disadvantages together with an in-depth description of the main ex-vivo/in-vivo findings using cell cultures, animal models and humans with HE. These findings are instrumental in elucidating the role of brain edema in HE and also in designing new multimodal studies by performing in-vivo combined with ex-vivo experiments for a better characterization of brain edema longitudinally and of its role in HE, especially in type C HE where water content changes are small.


Asunto(s)
Edema Encefálico , Encefalopatía Hepática , Animales , Humanos , Encefalopatía Hepática/metabolismo , Edema Encefálico/metabolismo , Encéfalo/metabolismo , Modelos Animales , Cirrosis Hepática/complicaciones
4.
Anal Biochem ; 675: 115212, 2023 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-37356555

RESUMEN

BACKGROUND: There is increasing evidence that children or young adults having acquired liver disease in childhood display neurocognitive impairment which may become more apparent as they grow older. The molecular, cellular and morphological underpinnings of this clinical problem are incompletely understood. AIM: Therefore, we used the advantages of highly-resolved proton magnetic resonance spectroscopy at ultra-high magnetic field to analyze the neurometabolic profile and brain morphometry of children with chronic, compensated liver disease, hypothesizing that with high field spectroscopy we would identify early evidence of rising brain glutamine and decreased myoinositol, such as has been described both in animals and humans with more significant liver disease. METHODS: Patients (n = 5) and age-matched controls (n = 19) underwent 7T MR scans and short echo time 1H MR spectra were acquired using the semi-adiabatic SPECIAL sequence in two voxels located in gray and white matter dominated prefrontal cortex, respectively. A 3D MP2RAGE sequence was also acquired for brain volumetry and T1 mapping. Liver disease had to have developed at least 6 months before entering the study. Subjects underwent routine blood analysis and neurocognitive testing using validated methods within 3 months of MRI and MRS. RESULTS: Five children aged 8-16 years with liver disease acquired in childhood were included. Baseline biological characteristics were similar among patients. There were no statistically significant differences between subjects and controls in brain metabolite levels or brain volumetry. Finally, there were minor neurocognitive fluctuations including attention deficit in one child, but none fell in the statistically significant range. CONCLUSION: Children with chronic, compensated liver disease did not display an abnormal neurometabolic profile, neurocognitive abnormalities, or signal intensity changes in the globus pallidus. Despite the absence of neurometabolic changes, it is an opportunity to emphasize that it is only by developing the use of 1H MRS at high field in the clinical arena that we will understand the significance and generalizability of these findings in children with CLD. Healthy children displayed neurometabolic regional differences as previously reported in adult subjects.


Asunto(s)
Hepatopatías , Protones , Animales , Adulto Joven , Humanos , Niño , Espectroscopía de Protones por Resonancia Magnética/métodos , Proyectos Piloto , Encéfalo/metabolismo , Hepatopatías/metabolismo , Imagen por Resonancia Magnética
5.
Metab Brain Dis ; 38(6): 1999-2012, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37148431

RESUMEN

Chronic liver disease (CLD) is a serious condition where various toxins present in the blood affect the brain leading to type C hepatic encephalopathy (HE). Both adults and children are impacted, while children may display unique vulnerabilities depending on the affected window of brain development.We aimed to use the advantages of high field proton Magnetic Resonance Spectroscopy (1H MRS) to study longitudinally the neurometabolic and behavioural effects of Bile Duct Ligation (animal model of CLD-induced type C HE) on rats at post-natal day 15 (p15) to get closer to neonatal onset liver disease. Furthermore, we compared two sets of animals (p15 and p21-previously published) to evaluate whether the brain responds differently to CLD according to age onset.We showed for the first time that when CLD was acquired at p15, the rats presented the typical signs of CLD, i.e. rise in plasma bilirubin and ammonium, and developed the characteristic brain metabolic changes associated with type C HE (e.g. glutamine increase and osmolytes decrease). When compared to rats that acquired CLD at p21, p15 rats did not show any significant difference in plasma biochemistry, but displayed a delayed increase in brain glutamine and decrease in total-choline. The changes in neurotransmitters were milder than in p21 rats. Moreover, p15 rats showed an earlier increase in brain lactate and a different antioxidant response. These findings offer tentative pointers as to which neurodevelopmental processes may be impacted and raise the question of whether similar changes might exist in humans but are missed owing to 1H MRS methodological limitations in field strength of clinical magnet.


Asunto(s)
Encefalopatía Hepática , Hepatopatías , Humanos , Adulto , Niño , Ratas , Animales , Encefalopatía Hepática/metabolismo , Glutamina/metabolismo , Espectroscopía de Resonancia Magnética , Hepatopatías/metabolismo , Encéfalo/metabolismo , Ácido Láctico/metabolismo
6.
Neuroimage ; 263: 119634, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36150605

RESUMEN

Diffusion-weighted (DW) magnetic resonance spectroscopy (MRS) suffers from a lower signal to noise ratio (SNR) compared to conventional MRS owing to the addition of diffusion attenuation. This technique can therefore strongly benefit from noise reduction strategies. In the present work, Marchenko-Pastur principal component analysis (MP-PCA) denoising is tested on Monte Carlo simulations and on in vivo DW-MRS data acquired at 9.4 T in rat brain and at 3 T in human brain. We provide a descriptive study of the effects observed following different MP-PCA denoising strategies (denoising the entire matrix versus using a sliding window), in terms of apparent SNR, rank selection, noise correlation within and across b-values and quantification of metabolite concentrations and fitted diffusion coefficients. MP-PCA denoising yielded an increased apparent SNR, a more accurate B0 drift correction between shots, and similar estimates of metabolite concentrations and diffusivities compared to the raw data. No spectral residuals on individual shots were observed but correlations in the noise level across shells were introduced, an effect which was mitigated using a sliding window, but which should be carefully considered.


Asunto(s)
Encéfalo , Imagen de Difusión por Resonancia Magnética , Animales , Humanos , Ratas , Algoritmos , Encéfalo/diagnóstico por imagen , Imagen de Difusión por Resonancia Magnética/métodos , Imagen de Difusión por Resonancia Magnética/normas , Análisis de Componente Principal , Relación Señal-Ruido
7.
Anal Biochem ; 647: 114606, 2022 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-35240109

RESUMEN

Type C hepatic encephalopathy (HE) is a complex neuropsychiatric disorder occurring as a consequence of chronic liver disease. Alterations in energy metabolism have been suggested in type C HE, but in vivo studies on this matter remain sparse and have reported conflicting results. Here, we propose a novel preclinical 18F-FDG PET methodology to compute quantitative 3D maps of the regional cerebral metabolic rate of glucose (CMRglc) from a labelling steady-state PET image of the brain and an image-derived input function. This quantitative approach shows its strength when comparing groups of animals with divergent physiology, such as HE animals. PET CMRglc maps were registered to an atlas and the mean CMRglc from the hippocampus and the cerebellum were associated to the corresponding localized 1H MR spectroscopy acquisitions. This study provides for the first time local and quantitative information on both brain glucose uptake and neurometabolic profile alterations in a rat model of type C HE. A 2-fold lower brain glucose uptake, concomitant with an increase in brain glutamine and a decrease in the main osmolytes, was observed in the hippocampus and in the cerebellum. These novel findings are an important step towards new insights into energy metabolism in the pathophysiology of HE.


Asunto(s)
Encefalopatía Hepática , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Glucosa/metabolismo , Glutamina/metabolismo , Encefalopatía Hepática/metabolismo , Espectroscopía de Protones por Resonancia Magnética , Ratas
8.
J Inherit Metab Dis ; 45(2): 278-291, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34936099

RESUMEN

Creatine (Cr) is a nitrogenous organic acid and plays roles such as fast phosphate energy buffer to replenish ATP, osmolyte, antioxidant, neuromodulator, and as a compound with anabolic and ergogenic properties in muscle. Cr is taken from the diet or endogenously synthetized by the enzymes arginine:glycine amidinotransferase and guanidinoacetate methyltransferase, and specifically taken up by the transporter SLC6A8. Loss-of-function mutations in the genes encoding for the enzymes or the transporter cause creatine deficiency syndromes (CDS). CDS are characterized by brain Cr deficiency, intellectual disability with severe speech delay, behavioral troubles, epilepsy, and motor dysfunction. Among CDS, the X-linked Cr transporter deficiency (CTD) is the most prevalent with no efficient treatment so far. Different animal models of CTD show reduced brain Cr levels, cognitive deficiencies, and together they cover other traits similar to those of patients. However, motor function was poorly explored in CTD models, and some controversies in the phenotype exist in comparison with CTD patients. Our recently described Slc6a8Y389C knock-in rat model of CTD showed mild impaired motor function, morphological alterations in cerebellum, reduced muscular mass, Cr deficiency, and increased guanidinoacetate content in muscle, although no consistent signs of muscle atrophy. Our results indicate that such motor dysfunction co-occurred with both nervous and muscle dysfunctions, suggesting that muscle strength and performance as well as neuronal connectivity might be affected by this Cr deficiency in muscle and brain.


Asunto(s)
Enfermedades Cerebelosas , Creatina , Animales , Cerebelo/metabolismo , Guanidinoacetato N-Metiltransferasa/genética , Humanos , Proteínas de Transporte de Membrana , Músculos/metabolismo , Atrofia Muscular , Ratas , Síndrome
9.
J Neurochem ; 157(3): 508-519, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33421129

RESUMEN

Brain metabolism evolves rapidly during early post-natal development in the rat. While changes in amino acids, energy metabolites, antioxidants or metabolites involved in phospholipid metabolism have been reported in the early stages, neurometabolic changes during the later post-natal period are less well characterized. Therefore, we aimed to assess the neurometabolic changes in male Wistar rats between post-natal days 29 and 77 (p29-p77) using longitudinal magnetic resonance spectroscopy (MRS) in vivo at 9.4 Tesla. 1 H MRS was performed in the hippocampus between p29 and p77 at 1-week intervals (n = 7) and in the cerebellum between p35 and p77 at 2-week intervals (n = 7) using the SPECIAL sequence at ultra-short echo-time. NOE enhanced and 1 H decoupled 31 P MR spectra were acquired at p35, p48 and p63 (n = 7) in a larger voxel covering cortex, hippocampus and part of the striatum. The hippocampus showed a decrease in taurine concentration and an increase in glutamate (with more pronounced changes until p49), seemingly a continuation of their well-described changes in the early post-natal period. A constant increase in myo-inositol and choline-containing compounds in the hippocampus (in particular glycero-phosphocholine as shown by 31 P MRS) was measured throughout the observation period, probably related to membrane metabolism and myelination. The cerebellum showed only a significant increase in myo-inositol between p35 and p77. In conclusion, this study showed important changes in brain metabolites in both the hippocampus and cerebellum in the later post-natal period (p29/p35-p77) of male rats, something previously unreported. Based on these novel data, changes in some neurometabolites beyond p28-35, conventionally accepted as the cut off for adulthood, should be taken into account in both experimental design and data interpretation in this animal model.


Asunto(s)
Sistema Nervioso/crecimiento & desarrollo , Sistema Nervioso/metabolismo , Anestesia/efectos adversos , Anestésicos por Inhalación/efectos adversos , Animales , Cerebelo/efectos de los fármacos , Cerebelo/crecimiento & desarrollo , Cerebelo/metabolismo , Corteza Cerebral/efectos de los fármacos , Corteza Cerebral/crecimiento & desarrollo , Corteza Cerebral/metabolismo , Colina/metabolismo , Ácido Glutámico/metabolismo , Hipocampo/efectos de los fármacos , Hipocampo/crecimiento & desarrollo , Hipocampo/metabolismo , Inositol/metabolismo , Isoflurano/efectos adversos , Espectroscopía de Resonancia Magnética , Masculino , Sistema Nervioso/efectos de los fármacos , Isótopos de Fósforo , Protones , Ratas , Ratas Wistar , Taurina/metabolismo
10.
Magn Reson Med ; 86(5): 2384-2401, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34268821

RESUMEN

PURPOSE: Reliable detection and fitting of macromolecules (MM) are crucial for accurate quantification of brain short-echo time (TE) 1 H-MR spectra. An experimentally acquired single MM spectrum is commonly used. Higher spectral resolution at ultra-high field (UHF) led to increased interest in using a parametrized MM spectrum together with flexible spline baselines to address unpredicted spectroscopic components. Herein, we aimed to: (1) implement an advanced methodological approach for post-processing, fitting, and parametrization of 9.4T rat brain MM spectra; (2) assess the concomitant impact of the LCModel baseline and MM model (ie, single vs parametrized); and (3) estimate the apparent T2 relaxation times for seven MM components. METHODS: A single inversion recovery sequence combined with advanced AMARES prior knowledge was used to eliminate the metabolite residuals, fit, and parametrize 10 MM components directly from 9.4T rat brain in vivo 1 H-MR spectra at different TEs. Monte Carlo simulations were also used to assess the concomitant influence of parametrized MM and DKNTMN parameter in LCModel. RESULTS: A very stiff baseline (DKNTMN ≥ 1 ppm) in combination with a single MM spectrum led to deviations in metabolite concentrations. For some metabolites the parametrized MM showed deviations from the ground truth for all DKNTMN values. Adding prior knowledge on parametrized MM improved MM and metabolite quantification. The apparent T2 ranged between 12 and 24 ms for seven MM peaks. CONCLUSION: Moderate flexibility in the spline baseline was required for reliable quantification of real/experimental spectra based on in vivo and Monte Carlo data. Prior knowledge on parametrized MM improved MM and metabolite quantification.


Asunto(s)
Química Encefálica , Encéfalo , Animales , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo , Sustancias Macromoleculares/metabolismo , Ratas
11.
Mol Genet Metab ; 133(2): 157-181, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33965309

RESUMEN

Glutaric aciduria type I (GA-I, OMIM # 231670) is an inborn error of metabolism caused by a deficiency of glutaryl-CoA dehydrogenase (GCDH). Patients develop acute encephalopathic crises (AEC) with striatal injury most often triggered by catabolic stress. The pathophysiology of GA-I, particularly in brain, is still not fully understood. We generated the first knock-in rat model for GA-I by introduction of the mutation p.R411W, the rat sequence homologue of the most common Caucasian mutation p.R402W, into the Gcdh gene of Sprague Dawley rats by CRISPR/CAS9 technology. Homozygous Gcdhki/ki rats revealed a high excretor phenotype, but did not present any signs of AEC under normal diet (ND). Exposure to a high lysine diet (HLD, 4.7%) after weaning resulted in clinical and biochemical signs of AEC. A significant increase of plasmatic ammonium concentrations was found in Gcdhki/ki rats under HLD, accompanied by a decrease of urea concentrations and a concomitant increase of arginine excretion. This might indicate an inhibition of the urea cycle. Gcdhki/ki rats exposed to HLD showed highly diminished food intake resulting in severely decreased weight gain and moderate reduction of body mass index (BMI). This constellation suggests a loss of appetite. Under HLD, pipecolic acid increased significantly in cerebral and extra-cerebral liquids and tissues of Gcdhki/ki rats, but not in WT rats. It seems that Gcdhki/ki rats under HLD activate the pipecolate pathway for lysine degradation. Gcdhki/ki rat brains revealed depletion of free carnitine, microglial activation, astroglyosis, astrocytic death by apoptosis, increased vacuole numbers, impaired OXPHOS activities and neuronal damage. Under HLD, Gcdhki/ki rats showed imbalance of intra- and extracellular creatine concentrations and indirect signs of an intracerebral ammonium accumulation. We successfully created the first rat model for GA-I. Characterization of this Gcdhki/ki strain confirmed that it is a suitable model not only for the study of pathophysiological processes, but also for the development of new therapeutic interventions. We further brought up interesting new insights into the pathophysiology of GA-I in brain and periphery.


Asunto(s)
Errores Innatos del Metabolismo de los Aminoácidos/genética , Encefalopatías Metabólicas/genética , Encéfalo/metabolismo , Gliosis/genética , Glutaril-CoA Deshidrogenasa/deficiencia , Glutaril-CoA Deshidrogenasa/genética , Errores Innatos del Metabolismo de los Aminoácidos/metabolismo , Errores Innatos del Metabolismo de los Aminoácidos/patología , Animales , Arginina/metabolismo , Encéfalo/patología , Encefalopatías Metabólicas/metabolismo , Encefalopatías Metabólicas/patología , Creatina/sangre , Modelos Animales de Enfermedad , Técnicas de Sustitución del Gen , Gliosis/metabolismo , Gliosis/patología , Glutaril-CoA Deshidrogenasa/metabolismo , Humanos , Lisina/metabolismo , Errores Innatos del Metabolismo/genética , Errores Innatos del Metabolismo/metabolismo , Ratas
12.
NMR Biomed ; 34(5): e4350, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-32596978

RESUMEN

Magnetic resonance spectroscopy (MRS) and spectroscopic imaging (MRSI) allow the chemical analysis of physiological processes in vivo and provide powerful tools in the life sciences and for clinical diagnostics. Excellent homogeneity of the static B0 magnetic field over the object of interest is essential for achieving high-quality spectral results and quantitative metabolic measurements. The experimental minimization of B0 variation is performed in a process called B0 shimming. In this article, we summarize the concepts of B0 field shimming using spherical harmonic shimming techniques, specific strategies for B0 homogenization and crucial factors to consider for implementation and use in both brain and body. In addition, experts' recommendations are provided for minimum requirements for B0 shim hardware and evaluation criteria for the primary outcome of adequate B0 shimming for MRS and MRSI, such as the water spectroscopic linewidth.


Asunto(s)
Consenso , Imagen por Resonancia Magnética , Animales , Calibración , Simulación por Computador , Testimonio de Experto , Humanos , Campos Magnéticos , Procesamiento de Señales Asistido por Computador
13.
NMR Biomed ; 34(5): e4484, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33559967

RESUMEN

The translation of MRS to clinical practice has been impeded by the lack of technical standardization. There are multiple methods of acquisition, post-processing, and analysis whose details greatly impact the interpretation of the results. These details are often not fully reported, making it difficult to assess MRS studies on a standardized basis. This hampers the reviewing of manuscripts, limits the reproducibility of study results, and complicates meta-analysis of the literature. In this paper a consensus group of MRS experts provides minimum guidelines for the reporting of MRS methods and results, including the standardized description of MRS hardware, data acquisition, analysis, and quality assessment. This consensus statement describes each of these requirements in detail and includes a checklist to assist authors and journal reviewers and to provide a practical way for journal editors to ensure that MRS studies are reported in full.


Asunto(s)
Consenso , Espectroscopía de Resonancia Magnética , Informe de Investigación/normas , Testimonio de Experto , Humanos , Programas Informáticos
14.
NMR Biomed ; 34(5): e4393, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33236818

RESUMEN

Proton MR spectra of the brain, especially those measured at short and intermediate echo times, contain signals from mobile macromolecules (MM). A description of the main MM is provided in this consensus paper. These broad peaks of MM underlie the narrower peaks of metabolites and often complicate their quantification but they also may have potential importance as biomarkers in specific diseases. Thus, separation of broad MM signals from low molecular weight metabolites enables accurate determination of metabolite concentrations and is of primary interest in many studies. Other studies attempt to understand the origin of the MM spectrum, to decompose it into individual spectral regions or peaks and to use the components of the MM spectrum as markers of various physiological or pathological conditions in biomedical research or clinical practice. The aim of this consensus paper is to provide an overview and some recommendations on how to handle the MM signals in different types of studies together with a list of open issues in the field, which are all summarized at the end of the paper.


Asunto(s)
Encéfalo/diagnóstico por imagen , Consenso , Testimonio de Experto , Sustancias Macromoleculares/metabolismo , Espectroscopía de Protones por Resonancia Magnética , Adulto , Anciano , Anciano de 80 o más Años , Humanos , Lípidos/química , Imagen por Resonancia Magnética , Metaboloma , Persona de Mediana Edad , Modelos Teóricos , Procesamiento de Señales Asistido por Computador , Adulto Joven
15.
Liver Int ; 41(7): 1474-1488, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33900013

RESUMEN

This working group of the International Society of Hepatic Encephalopathy and Nitrogen Metabolism (ISHEN) was commissioned to summarize and update current efforts in the development and characterization of animal models of hepatic encephalopathy (HE). As defined in humans, HE in animal models is based on the underlying degree and severity of liver pathology. Although hyperammonemia remains the key focus in the pathogenesis of HE, other factors associated with HE have been identified, together with recommended animal models, to help explore the pathogenesis and pathophysiological mechanisms of HE. While numerous methods to induce liver failure and disease exist, less have been characterized with neurological and neurobehavioural impairments. Moreover, there still remains a paucity of adequate animal models of Type C HE induced by alcohol, viruses and non-alcoholic fatty liver disease; the most common etiologies of chronic liver disease.


Asunto(s)
Encefalopatía Hepática , Hiperamonemia , Hepatopatías , Animales , Modelos Animales de Enfermedad , Encefalopatía Hepática/etiología , Humanos
16.
NMR Biomed ; : e4325, 2020 Aug 26.
Artículo en Inglés | MEDLINE | ID: mdl-33565219

RESUMEN

In vivo MRS is a non-invasive measurement technique used not only in humans, but also in animal models using high-field magnets. MRS enables the measurement of metabolite concentrations as well as metabolic rates and their modifications in healthy animals and disease models. Such data open the way to a deeper understanding of the underlying biochemistry, related disturbances and mechanisms taking place during or prior to symptoms and tissue changes. In this work, we focus on the main preclinical 1H, 31P and 13C MRS approaches to study brain metabolism in rodent models, with the aim of providing general experts' consensus recommendations (animal models, anesthesia, data acquisition protocols). An overview of the main practical differences in preclinical compared with clinical MRS studies is presented, as well as the additional biochemical information that can be obtained in animal models in terms of metabolite concentrations and metabolic flux measurements. The properties of high-field preclinical MRS and the technical limitations are also described.

17.
NMR Biomed ; : e4347, 2020 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-32808407

RESUMEN

With a 40-year history of use for in vivo studies, the terminology used to describe the methodology and results of magnetic resonance spectroscopy (MRS) has grown substantially and is not consistent in many aspects. Given the platform offered by this special issue on advanced MRS methodology, the authors decided to describe many of the implicated terms, to pinpoint differences in their meanings and to suggest specific uses or definitions. This work covers terms used to describe all aspects of MRS, starting from the description of the MR signal and its theoretical basis to acquisition methods, processing and to quantification procedures, as well as terms involved in describing results, for example, those used with regard to aspects of quality, reproducibility or indications of error. The descriptions of the meanings of such terms emerge from the descriptions of the basic concepts involved in MRS methods and examinations. This paper also includes specific suggestions for future use of terms where multiple conventions have emerged or coexisted in the past.

18.
J Hepatol ; 71(3): 505-515, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31173812

RESUMEN

BACKGROUND & AIMS: The sequence of events in hepatic encephalopathy (HE) remains unclear. Using the advantages of in vivo 1H-MRS (9.4T) we aimed to analyse the time-course of disease in an established model of type C HE by analysing the longitudinal changes in a large number of brain metabolites together with biochemical, histological and behavioural assessment. We hypothesized that neurometabolic changes are detectable very early, and that these early changes will offer insight into the primary events underpinning HE. METHODS: Wistar rats underwent bile-duct ligation (BDL) and were studied before BDL and at post-operative weeks 2, 4, 6 and 8 (n = 26). In vivo short echo-time 1H-MRS (9.4T) of the hippocampus was performed in a longitudinal manner, as were biochemical (plasma), histological and behavioural tests. RESULTS: Plasma ammonium increased early after BDL and remained high during the study. Brain glutamine increased (+47%) as early as 2-4 weeks post-BDL while creatine (-8%) and ascorbate (-12%) decreased. Brain glutamine and ascorbate correlated closely with rising plasma ammonium, while brain creatine correlated with brain glutamine. The increases in brain glutamine and plasma ammonium were correlated, while plasma ammonium correlated negatively with distance moved. Changes in astrocyte morphology were observed at 4 weeks. These early changes were further accentuated at 6-8 weeks post-BDL, concurrently with the known decreases in brain organic osmolytes. CONCLUSION: Using a multimodal, in vivo and longitudinal approach we have shown that neurometabolic changes are already noticeable 2 weeks after BDL. These early changes are suggestive of osmotic/oxidative stress and are likely the premise of some later changes. Early decreases in cerebral creatine and ascorbate are novel findings offering new avenues to explore neuroprotective strategies for HE treatment. LAY SUMMARY: The sequence of events in chronic hepatic encephalopathy (HE) remains unclear, therefore using the advantages of in vivo proton magnetic resonance spectroscopy at 9.4T we aimed to test the hypothesis that neurometabolic changes are detectable very early in an established model of type C HE, offering insight into the primary events underpinning HE, before advanced liver disease confounds the findings. These early, previously unreported neurometabolic changes occurred as early as 2 to 4 weeks after bile-duct ligation, namely an increase in plasma ammonium and brain glutamine, a decrease in brain creatine and ascorbate together with behavioural and astrocyte morphology changes, and continued to progress throughout the 8-week course of the disease.


Asunto(s)
Ácido Ascórbico/metabolismo , Creatina/metabolismo , Modelos Animales de Enfermedad , Encefalopatía Hepática/metabolismo , Hipocampo/metabolismo , Compuestos de Amonio/sangre , Animales , Astrocitos/patología , Enfermedad Crónica , Glutamina/metabolismo , Masculino , Estrés Oxidativo , Espectroscopía de Protones por Resonancia Magnética , Ratas , Ratas Wistar
19.
Magn Reson Med ; 82(2): 527-550, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30919510

RESUMEN

Proton MRS (1 H MRS) provides noninvasive, quantitative metabolite profiles of tissue and has been shown to aid the clinical management of several brain diseases. Although most modern clinical MR scanners support MRS capabilities, routine use is largely restricted to specialized centers with good access to MR research support. Widespread adoption has been slow for several reasons, and technical challenges toward obtaining reliable good-quality results have been identified as a contributing factor. Considerable progress has been made by the research community to address many of these challenges, and in this paper a consensus is presented on deficiencies in widely available MRS methodology and validated improvements that are currently in routine use at several clinical research institutions. In particular, the localization error for the PRESS localization sequence was found to be unacceptably high at 3 T, and use of the semi-adiabatic localization by adiabatic selective refocusing sequence is a recommended solution. Incorporation of simulated metabolite basis sets into analysis routines is recommended for reliably capturing the full spectral detail available from short TE acquisitions. In addition, the importance of achieving a highly homogenous static magnetic field (B0 ) in the acquisition region is emphasized, and the limitations of current methods and hardware are discussed. Most recommendations require only software improvements, greatly enhancing the capabilities of clinical MRS on existing hardware. Implementation of these recommendations should strengthen current clinical applications and advance progress toward developing and validating new MRS biomarkers for clinical use.


Asunto(s)
Encéfalo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Encéfalo/metabolismo , Consenso , Humanos , Protones
20.
Int J Cancer ; 143(1): 127-138, 2018 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-29417580

RESUMEN

Glioblastoma are notorious for their highly invasive growth, diffusely infiltrating adjacent brain structures that precludes complete resection, and is a major obstacle for cure. To characterize this "invisible" tumor part, we designed a high resolution multimodal imaging approach assessing in vivo the metabolism of invasively growing glioma xenografts in the mouse brain. Animals were subjected longitudinally to magnetic resonance imaging (MRI) and 1 H spectroscopy (MRS) at ultra high field (14.1 Tesla) that allowed the measurement of 16 metabolic biomarkers to characterize the metabolic profiles. As expected, the neuronal functionality was progressively compromised as indicated by decreasing N-acetyl aspartate, glutamate and gamma-aminobutyric acid and reduced neuronal TCA cycle (-58%) and neurotransmission (-50%). The dynamic metabolic changes observed, captured differences in invasive growth that was modulated by re-expression of the tumor suppressor gene WNT inhibitory factor 1 (WIF1) in the orthotopic xenografts that attenuates invasion. At late stage mice were subjected to 13 C MRS with infusion of [1,6-13 C]glucose and 18 FDG positron emission tomography (PET) to quantify cell-specific metabolic fluxes involved in glucose metabolism. Most interestingly, this provided the first in vivo evidence for significant glucose oxidation in glioma cells. This suggests that the infiltrative front of glioma does not undergo the glycolytic switch per se, but that environmental triggers may induce metabolic reprograming of tumor cells.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Neoplasias Encefálicas/diagnóstico por imagen , Encéfalo/metabolismo , Fluorodesoxiglucosa F18/metabolismo , Glioma/diagnóstico por imagen , Glucosa/metabolismo , Proteínas Represoras/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Encéfalo/diagnóstico por imagen , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Línea Celular Tumoral , Glioma/genética , Glioma/metabolismo , Ácido Glutámico/metabolismo , Humanos , Masculino , Ratones , Trasplante de Neoplasias , Oxidación-Reducción , Tomografía de Emisión de Positrones/métodos , Espectroscopía de Protones por Resonancia Magnética/métodos , Proteínas Represoras/metabolismo , Ácido gamma-Aminobutírico/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda