Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Int J Mol Sci ; 22(4)2021 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-33672220

RESUMEN

Hanseniaspora vineae is a non-Saccharomyces yeast that has a powerful impact on the sensory profile of wines. Its effect on the aromatic profile of non-aromatic grape varieties, such as Albillo Mayor (Vitis vinifera, L), during vinification is a useful biotechnology to improve sensory complexity. Fermentation in steel barrels using Hanseniaspora vineae and sequential inoculation with Saccharomyces cerevisiae have been used to study the formation of terpenes and cell lysis in the production of Albillo white wines. The GC-MS analysis profile shows a significant effect of H. vineae fermentation on the contents of terpenes (≈×3), mainly in linalool (>×3), ß-citronellol (>×4), geraniol (>×2) and α-terpineol (≈×2). The contents of several polyoxygenated terpenes and some volatile phenols with a spicy aroma were increased during fermentation. In summary, Hanseniaspora vineae releases a large number of cell wall polysaccharides during fermentation that affect wine palatability and structure. Hanseniaspora vineae is a powerful bio-tool to enhance the fruitiness, floral notes and freshness in non-aromatic white varieties.


Asunto(s)
Hanseniaspora/fisiología , Terpenos/análisis , Vino/microbiología , Fermentación , Microbiología de Alimentos , Cromatografía de Gases y Espectrometría de Masas , Hanseniaspora/genética , Odorantes/análisis , Polifenoles/análisis , Polifenoles/metabolismo , Polisacáridos/análisis , Polisacáridos/metabolismo , Saccharomyces cerevisiae , Terpenos/metabolismo , Compuestos Orgánicos Volátiles/análisis , Vino/análisis
2.
Molecules ; 24(3)2019 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-30759718

RESUMEN

Ageing on Lees (AOL) is a technique to improve the aromatic and gustatory complexity of wine, mainly by improving its body and reducing its astringency. However, the autolytic process is slow, resulting in high production costs. This work evaluated the effect of adding sonicated lees and combining it with oak chips, as a new technique to accelerate the AOL process and improve the aromatic quality of aged red wine. Cell disruption due to sonication was verified by optical microscopy. Volatile acidity, total polyphenol index, color intensity, tonality, dissolved oxygen, anthocyanins, and fermentative volatiles were monitored throughout the ageing of the wines. Sensory analysis was performed at the end of the ageing process. Polysaccharides released from the cell walls and the oxygen consumption, was quantified using a hydroalcoholic solution. The results indicated a 20% increase of the polysaccharide content and suggested an increase in the antioxidant capacity of the lees. No significant changes were observed in the fermentative volatile compounds and the total polyphenol index (TPI), except for those wines in contact with wood. The sonication of lees had some protective effect on the total anthocyanins content, however, color intensity was significantly lower in the sonicated treatments. The sonication of the lees did not cause any defect at the sensory level. Therefore, sonication could allow a reduction in the SO2 addition to wine, as well as a shortening of the ageing times.


Asunto(s)
Bebidas Alcohólicas/microbiología , Saccharomyces cerevisiae/crecimiento & desarrollo , Vino/microbiología , Antocianinas/metabolismo , Biomasa , Pared Celular/metabolismo , Color , Fermentación/fisiología , Manipulación de Alimentos/métodos , Consumo de Oxígeno/fisiología , Fenoles/metabolismo , Polifenoles/metabolismo , Sonicación/métodos , Madera/microbiología
3.
Microorganisms ; 8(6)2020 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-32492776

RESUMEN

In the current scenario of climatic warming, the over-ripening of grapes increases the sugar content, producing flat and alcoholic wines with low acidity, high pH and low freshness. Additionally, a high pH makes wines more chemically and microbiologically unstable, requiring a higher sulphite content for preservation. Some strains of Lachancea thermotolerans can naturally lower the pH of wine by producing lactic acid from sugars; this pH reduction can reach 0.5 units. The industrial performance of four selected strains has been compared with that of two commercial strains and with that of Saccharomyces cerevisiae. The yeasts were assessed under variable oenological conditions, measuring lactic acid production and fermentative performance at two fermentation temperatures (17 and 27 °C), and in the presence or absence of sulphites (25 and 75 mg/L). Lactic acid production depends on yeast populations, with higher concentrations being reached when the microbial population is close to or above 7-log CFU/mL. A temperature effect on acidification can also be observed, being more intense at higher fermentation temperatures for most strains. Ethanol yield ranged from 7-11% vol., depending on the fermentation conditions (temperature and SO2) at day 12 of fermentation, compared with 12% for the S. cerevisiae control in micro-fermentations. The production of fermentative esters was higher at 27 °C compared with 17 °C, which favoured the production of higher alcohols. Volatile acidity was moderate under all fermentation conditions with values below 0.4 g/L.

4.
Food Chem ; 261: 157-163, 2018 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-29739577

RESUMEN

Ageing on lees (AOL) is a technique that increases volatile compounds, promotes colour stability, improves mouthfeel and reduces astringency in red wines. The main drawback is that it is a slow process. Several months are necessary to obtain perceptible effects in wines. Different authors have studied the application of new techniques to accelerate the AOL process. Ultrasound (US) has been used to improve different food industry processes; it could be interesting to accelerate the yeast autolysis during AOL. This work evaluates the use of the US technique together with AOL and oak chips for this purpose studying the effects of different oenological parameters of red wines. The results obtained indicate an increase of polysaccharides content when US is applied in wine AOL. In addition, total polyphenol index (TPI) and volatile acidity were not affected. However, this treatment increases the dissolved oxygen affecting the volatile compounds and total anthocyanins.


Asunto(s)
Conservación de Alimentos/métodos , Sonicación , Compuestos Orgánicos Volátiles/análisis , Vino/análisis , Color , Polifenoles , Factores de Tiempo , Vino/microbiología , Levadura Seca/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda