Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Cancer Cell Int ; 23(1): 97, 2023 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-37208719

RESUMEN

BACKGROUND: Development of precision medicine requires the identification of easily detectable and druggable biomarkers. Despite recent targeted drug approvals, prognosis of acute myeloid leukemia (AML) patients needs to be greatly improved, as relapse and refractory disease are still difficult to manage. Thus, new therapeutic approaches are needed. Based on in silico-generated preliminary data and the literature, the role of the prolactin (PRL)-mediated signaling was interrogated in AML. METHODS: Protein expression and cell viability were determined by flow cytometry. Repopulation capacity was studied in murine xenotransplantation assays. Gene expression was measured by qPCR and luciferase-reporters. SA-ß-Gal staining was used as a senescence marker. RESULTS: The prolactin receptor (PRLR) was upregulated in AML cells, as compared to their healthy counterpart. The genetic and molecular inhibition of this receptor reduced the colony-forming potential. Disruption of the PRLR signaling, either using a mutant PRL or a dominant-negative isoform of PRLR, reduced the leukemia burden in vivo, in xenotransplantation assays. The expression levels of PRLR directly correlated with resistance to cytarabine. Indeed, acquired cytarabine resistance was accompanied with the induction of PRLR surface expression. The signaling associated to PRLR in AML was mainly mediated by Stat5, in contrast to the residual function of Stat3. In concordance, Stat5 mRNA was significantly overexpressed at mRNA levels in relapse AML samples. A senescence-like phenotype, measured by SA-ß-gal staining, was induced upon enforced expression of PRLR in AML cells, partially dependent on ATR. Similar to the previously described chemoresistance-induced senescence in AML, no cell cycle arrest was observed. Additionally, the therapeutic potential of PRLR in AML was genetically validated. CONCLUSIONS: These results support the role of PRLR as a therapeutic target for AML and the further development of drug discovery programs searching for specific PRLR inhibitors.

2.
J Cell Mol Med ; 24(22): 13536-13541, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33080103

RESUMEN

Despite the success of immunotherapy in several haematological neoplasms, the effectiveness in acute myeloid leukaemia (AML) is still controversial, partially due to the lack of knowledge regarding immune-related processes in this disease and similar neoplasias. In this study, we analysed the role and expression of histamine receptor 1 (HRH1) in haematological malignancies. Although the histamine receptor type 1 was widely expressed in healthy and malignant haematopoiesis, especially along the myeloid lineage, HRH1 lacked a relevant role in survival/proliferation and chemoresistance of AML cells, as analysed by HRH1 knockdown (KD) and pharmacological modulation. However, HRH1-mediated signalling was critical for the activation of the differentiation process induced by several agents including all-trans retinoic acid, establishing a role for HRH1 in myeloid differentiation. Pharmacological activation of Erk was able to partially restore differentiation capacity in HRH1 KD AML cells, suggesting that HRH1 signalling acts upstream MAPK-Erk pathway. As an indirect consequence of our results, treatment-related histamine release is not expected to confer a proliferative advantage in leukaemic cells.


Asunto(s)
Diferenciación Celular/genética , Regulación Leucémica de la Expresión Génica , Receptores Histamínicos H1/genética , Biomarcadores , Línea Celular Tumoral , Hematopoyesis/genética , Humanos , Inmunohistoquímica , Inmunofenotipificación , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patología , Receptores Histamínicos H1/metabolismo
3.
Cancers (Basel) ; 15(6)2023 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-36980800

RESUMEN

Acute myeloid leukemia (AML) is a heterogeneous hematological cancer characterized by poor prognosis and frequent relapses. Aside from specific mutation-related changes, in AML, the overall function of lysosomes and mitochondria is drastically altered to fulfill the elevated biomass and bioenergetic demands. On the basis of previous results, in silico drug discovery screening was used to identify a new family of lysosome-/mitochondria-targeting compounds. These novel tetracyclic hits, with a cationic amphiphilic structure, specifically eradicate leukemic cells by inducing both mitochondrial damage and apoptosis, and simultaneous lysosomal membrane leakiness. Lysosomal leakiness does not only elicit canonical lysosome-dependent cell death, but also activates the terminal differentiation of AML cells through the Ca2+-TFEB-MYC signaling axis. In addition to being an effective monotherapy, its combination with the chemotherapeutic arsenic trioxide (ATO) used in other types of leukemia is highly synergistic in AML cells, widening the therapeutic window of the treatment. Moreover, the compounds are effective in a wide panel of cancer cell lines and possess adequate pharmacological properties rendering them promising drug candidates for the treatment of AML and other neoplasias.

4.
Blood Adv ; 7(19): 5799-5811, 2023 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-37450374

RESUMEN

Germ line predisposition in acute myeloid leukemia (AML) has gained attention in recent years because of a nonnegligible frequency and an impact on management of patients and their relatives. Risk alleles for AML development may be present in patients without a clinical suspicion of hereditary hematologic malignancy syndrome. In this study we investigated the presence of germ line variants (GVs) in 288 genes related to cancer predisposition in 47 patients with available paired, tumor-normal material, namely bone marrow stroma cells (n = 29), postremission bone marrow (n = 17), and saliva (n = 1). These patients correspond to 2 broad AML categories with heterogeneous genetic background (AML myelodysplasia related and AML defined by differentiation) and none of them had phenotypic abnormalities, previous history of cytopenia, or strong cancer aggregation. We found 11 pathogenic or likely pathogenic variants, 6 affecting genes related to autosomal dominant cancer predisposition syndromes (ATM, DDX41, and CHEK2) and 5 related to autosomal recessive bone marrow failure syndromes (FANCA, FANCM, SBDS, DNAJC21, and CSF3R). We did not find differences in clinical characteristics nor outcome between carriers of GVs vs noncarriers. Further studies in unselected AML cohorts are needed to determine GV incidence and penetrance and, in particular, to clarify the role of ATM nonsense mutations in AML predisposition.


Asunto(s)
Neoplasias Hematológicas , Leucemia Mieloide Aguda , Síndromes Mielodisplásicos , Humanos , Neoplasias Hematológicas/diagnóstico , Neoplasias Hematológicas/genética , Neoplasias Hematológicas/epidemiología , Síndromes Mielodisplásicos/genética , Leucemia Mieloide Aguda/diagnóstico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/epidemiología , Mutación de Línea Germinal , Genotipo , ADN Helicasas/genética
5.
Cancer Drug Resist ; 5(1): 233-244, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35582535

RESUMEN

Despite the outstanding advances in understanding the biology underlying the pathophysiology of acute myeloid leukemia (AML) and the promising preclinical data published lastly, AML treatment still relies on a classic chemotherapy regimen largely unchanged for the past five decades. Recently, new drugs have been approved for AML, but the real clinical benefit is still under evaluation. Nevertheless, primary refractory and relapse AML continue to represent the main clinical challenge, as the majority of AML patients will succumb to the disease despite achieving a complete remission during the induction phase. As such, treatments for chemoresistant AML represent an unmet need in this disease. Although great efforts have been made to decipher the biological basis for leukemogenesis, the mechanism by which AML cells become resistant to chemotherapy is largely unknown. The identification of the signaling pathways involved in resistance may lead to new combinatory therapies or new therapeutic approaches suitable for this subset of patients. Several mechanisms of chemoresistance have been identified, including drug transporters, key secondary messengers, and metabolic regulators. However, no therapeutic approach targeting chemoresistance has succeeded in clinical trials, especially due to broad secondary effects in healthy cells. Recent research has highlighted the importance of lysosomes in this phenomenon. Lysosomes' key role in resistance to chemotherapy includes the potential to sequester drugs, central metabolic signaling role, and gene expression regulation. These results provide further evidence to support the development of new therapeutic approaches that target lysosomes in AML.

6.
EBioMedicine ; 47: 221-234, 2019 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-31473184

RESUMEN

BACKGROUND: Despite great efforts to identify druggable molecular targets for AML, there remains an unmet need for more effective therapies. METHODS: An in silico screening was performed using Connectivity Maps to identify FDA-approved drugs that may revert an early leukaemic transformation gene signature. Hit compounds were validated in AML cell lines. Cytotoxic effects were assessed both in primary AML patient samples and healthy donor blood cells. Xenotransplantation assays were undertaken to determine the effect on engraftment of hit compounds. The mechanism of action responsible for the antileukaemic effect was studied focussing on lysosomes and mitochondria. FINDINGS: We identified a group of antihistamines (termed ANHAs) with distinct physicochemical properties associated with their cationic-amphiphilic nature, that selectively killed leukaemic cells. ANHAs behaved as antileukaemic agents against primary AML samples ex vivo, sparing healthy cells. Moreover, ANHAs severely impaired the in vivo leukaemia regeneration capacity. ANHAs' cytotoxicity relied on simultaneous mitochondrial and lysosomal disruption and induction of autophagy and apoptosis. The pharmacological effect was exerted based on their physicochemical properties that permitted the passive targeting of both organelles, without the involvement of active molecular recognition. INTERPRETATION: Dual targeting of lysosomes and mitochondria constitutes a new promising therapeutic approach for leukaemia treatment, supporting the further clinical development. FUND: This work was funded by the Fundación Mutua Madrileña (RMR), CaixaImpulse (RMR), the Spanish Ministry of Economy (RMR), the Josep Carreras International Leukaemia Foundation (RMR), l'Obra Social "La Caixa" (RMR), and Generalitat de Catalunya (IJC).


Asunto(s)
Antineoplásicos/farmacología , Antagonistas de los Receptores Histamínicos/farmacología , Lisosomas/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Animales , Antineoplásicos/química , Biomarcadores , Línea Celular Tumoral , Modelos Animales de Enfermedad , Antagonistas de los Receptores Histamínicos/química , Humanos , Leucemia Mieloide Aguda , Lisosomas/metabolismo , Ratones , Mitocondrias/metabolismo , Modelos Biológicos , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda