RESUMEN
To date, no study has explored the extent to which genetic susceptibility modifies the effects of air pollutants on the risk of atrial fibrillation (AF). This study was designed to investigate the separate and joint effects of long-term exposure to air pollutants and genetic susceptibility on the risk of AF events. This study included 401,251 participants without AF at baseline from UK Biobank. We constructed a polygenic risk score and categorized it into three categories. Cox proportional hazards models were fitted to assess the separate and joint effects of long-term exposure to air pollutants and genetics on the risk of AF. Additionally, we further evaluated the effect modification of genetic susceptibility. The hazard ratios and corresponding 95% confidence intervals of incident AF for per interquartile range increase in particulate matter with an aerodynamic diameter smaller than 2.5 µm (PM2.5) or 10 µm (PM10), nitrogen dioxide (NO2), and nitrogen oxide (NOx) were 1.044 (1.025, 1.063), 1.063 (1.044, 1.083), 1.061 (1.042, 1.081), and 1.039 (1.023, 1.055), respectively. For the combined effects, participants exposed to high air pollutants levels and high genetic risk had approximately 149.2% (PM2.5), 181.7% (PM10), 170.2% (NO2), and 157.2% (NOx) higher risk of AF compared to those with low air pollutants levels and low genetic risk, respectively. Moreover, the significant additive interactions between PM10 and NO2 and genetic risk on AF risk were observed, with around 16.4% and 35.1% of AF risk could be attributable to the interactive effects. In conclusion, long-term exposure to air pollutants increases the risk of AF, particularly among individuals with high genetic susceptibility.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Fibrilación Atrial , Humanos , Fibrilación Atrial/etiología , Fibrilación Atrial/genética , Dióxido de Nitrógeno/efectos adversos , Dióxido de Nitrógeno/análisis , Estudios Prospectivos , Predisposición Genética a la Enfermedad , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Material Particulado/efectos adversos , Material Particulado/análisis , Óxido NítricoRESUMEN
BACKGROUND AND AIMS: Air pollutants are important contributors to cardiovascular diseases, but associations between long-term exposure to air pollutants and the risk of abdominal aortic aneurysm (AAA) are still unknown. METHODS: This study was conducted using a sample of 449 463 participants from the UK Biobank. Hazard ratios and 95% confidence intervals for the risk of AAA incidence associated with long-term exposure to air pollutants were estimated using the Cox proportional hazards model with time-varying exposure measurements. Additionally, the cumulative incidence of AAA was calculated by using the Fine and Grey sub-distribution hazards regression model. Furthermore, this study investigated the combined effects and interactions between air pollutants exposure and genetic predisposition in relation to the risk of AAA onset. RESULTS: Long-term exposure to particulate matter with an aerodynamic diameter <2.5â µm [PM2.5, 1.21 (1.16, 1.27)], particulate matter with an aerodynamic diameter <10â µm [PM10, 1.21 (1.16, 1.27)], nitrogen dioxide [NO2, 1.16 (1.11, 1.22)], and nitrogen oxides [NOx, 1.10 (1.05, 1.15)] was found to be associated with an elevated risk of AAA onset. The detrimental effects of air pollutants persisted even in participants with low-level exposure. For the joint associations, participants with both high levels of air pollutants exposure and high genetic risk had a higher risk of developing AAA compared with those with low concentrations of pollutants exposure and low genetic risk. The respective risk estimates for AAA incidence were 3.18 (2.46, 4.12) for PM2.5, 3.09 (2.39, 4.00) for PM10, 2.41 (1.86, 3.13) for NO2, and 2.01 (1.55, 2.61) for NOx. CONCLUSIONS: In this study, long-term air pollutants exposure was associated with an increased risk of AAA incidence.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Humanos , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Dióxido de Nitrógeno/análisis , Estudios Prospectivos , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis , Material Particulado/efectos adversos , Material Particulado/análisis , Predisposición Genética a la EnfermedadRESUMEN
BACKGROUND: The extent to which genetic susceptibility modifies the associations between air pollutants and the risk of incident stroke is still unclear. This study was designed to investigate the separate and joint associations of long-term exposure to air pollutants and genetic susceptibility on stroke risk. METHODS: The participants of this study were recruited by the UK Biobank between 2006 and 2010. These participants were followed up from the enrollment until the occurrence of stroke events or censoring of data. Hazard ratios (HRs) and 95% CIs for stroke events associated with long-term exposure to air pollutants were estimated by fitting both crude and adjusted Cox proportional hazards models. Additionally, the polygenic risk score was calculated to estimate whether the polygenic risk score modifies the associations between exposure to air pollutants and incident stroke. RESULTS: A total of 502â 480 subjects were included in this study. After exclusion, 452â 196 participants were taken into the final analysis. During a median follow-up time of 11.7 years, 11â 334 stroke events were observed, with a mean age of 61.60 years, and men accounted for 56.2% of the total cases. Long-term exposures to particulate matter with an aerodynamic diameter smaller than 2.5 µm (adjusted HR, 1.70 [95% CI, 1.43-2.03]) or particulate matter with an aerodynamic diameter smaller than 10 µm (adjusted HR, 1.50 [95% CI, 1.36-1.66]), nitrogen dioxide (adjusted HR, 1.10 [95% CI, 1.07-1.12]), and nitrogen oxide (adjusted HR, 1.04 [95% CI, 1.02-1.05]) were pronouncedly associated with increased risk of stroke. Meanwhile, participants with high genetic risk and exposure to high air pollutants had ≈45% (31%, 61%; particulate matter with an aerodynamic diameter smaller than 2.5 µm), 48% (33%, 65%; particulate matter with an aerodynamic diameter smaller than 10 µm), 51% (35%, 69%; nitrogen dioxide), and 39% (25%, 55%; nitrogen oxide) higher risk of stroke compared with those with low genetic risk and exposure to low air pollutants, respectively. Of note, we observed additive and multiplicative interactions between genetic susceptibility and air pollutants on stroke events. CONCLUSIONS: Chronic exposure to air pollutants was associated with an increased risk of stroke, especially in populations at high genetic risk.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Accidente Cerebrovascular , Masculino , Humanos , Persona de Mediana Edad , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Estudios de Cohortes , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Dióxido de Nitrógeno/efectos adversos , Exposición a Riesgos Ambientales/efectos adversos , Material Particulado/efectos adversos , Material Particulado/análisis , Óxidos de Nitrógeno , Predisposición Genética a la Enfermedad , Óxido Nítrico , Accidente Cerebrovascular/epidemiología , Accidente Cerebrovascular/genética , Accidente Cerebrovascular/inducido químicamenteRESUMEN
BACKGROUND: Evidence is lacking regarding long-term patterns of change in Life's Essential 8 (LE8) and their association with the risk of stroke. We aim to evaluate LE8 trajectories and examine their association with the risk of stroke in China. METHODS: This study, conducted in a workplace setting, recruited 26 719 participants (average age, 46.02±11.27 years and a male population of 73.73%) who had no history of stroke and consecutively participated in 6 surveys from 2006 to 2016. Repeated LE8 measurements were determined by taking the unweighted average of the 8 component scores ranging from 0 to 100. People with higher scores had better overall cardiovascular health. By examining the medical records of the participants, stroke cases were identified for the period from 2016 to 2020. A latent mixture model was applied to classify the trajectory clusters of LE8 from 2006 to 2016, and Cox proportional hazard models were used to analyze the data. RESULTS: Five LE8 trajectories were detected between 2006 and 2016. Four hundred ninety-eight incident strokes including 55 (11.04%) hemorrhagic and 458 (91.97%) ischemic strokes were documented. After adjusting for covariates, the hazard ratios and 95% CIs for the association between stable-low, moderate-increasing, moderate-stable, and high-stable trajectories and incident stroke, compared with the moderate-decreasing trajectory, were 1.42 (1.11-1.84), 0.73 (0.56-0.96), 0.49 (0.39-0.62), and 0.19 (0.11-0.32), respectively. Individuals with high LE8 status (LE8≥80) exhibited a significantly reduced risk of stroke compared with those with low one (LE8≤49; P-trend <0.001). A faster annual growth in LE8 was related to a lower risk of stroke. CONCLUSIONS: Maintaining high LE8 over an extended period and high baseline LE8 status were related to a decreased risk of stroke. Despite the initial low level of LE8, improvement in LE8 attenuates or even reverses the risk of stroke.
Asunto(s)
Accidente Cerebrovascular , Humanos , Masculino , Persona de Mediana Edad , Femenino , Accidente Cerebrovascular/epidemiología , Estudios Prospectivos , Adulto , Factores de Riesgo , China/epidemiología , Estudios de Cohortes , Anciano , Accidente Cerebrovascular Isquémico/epidemiologíaRESUMEN
BACKGROUND: The impact of residential greenness on incident idiopathic pulmonary fibrosis (IPF) is unknown. We aimed to assess the association between residential greenness and incident IPF, identify underlying pathways, and further evaluate the effect among different genetic subgroups. METHODS: 469,348 participants in the UK Biobank were included and followed until December 2020. Normalized difference vegetation index (NDVI) within 300-, 500-, 1000-, and 1500-m buffers (NDVI300m, NDVI500m, NDVI1000m, and NDVI1500m) were employed as indicators of greenness. The polygenic risk score (PRS) was constructed based on 13 independent SNPs. Cox models were fitted to assess the association of residential greenness with incident IPF. Casual mediation analyses were applied to evaluate potential mediators. FINDINGS: After a median follow-up of 11.85 years, 1574 IPF cases were identified. We found residential greenness inversely associated with incident IPF. The HRs (95%CIs) for each interquartile increase of NDVI300m, NDVI500m, NDVI1000m, NDVI1500m were 0.93 (0.87, 0.99), 0.92 (0.86, 0.98), 0.89 (0.83, 0.95), and 0.89 (0.83, 0.95), respectively. The association was stronger among individuals with intermediate or high genetic risk. In mediation analyses, the main mediators identified were PM2.5 and NO2, with proportion mediated estimated to be 31.92% and 40.61% respectively for NDVI300m. INTERPRETATION: Residential greenness was associated with reduced risk of incident IPF.
Asunto(s)
Contaminación del Aire , Características de la Residencia , Humanos , Estudios Prospectivos , Factores de Riesgo , ChinaRESUMEN
BACKGROUND: Experimental studies have shown that disinfection byproducts (DBPs) induce coagulotoxicity, but human evidence is scarce. OBJECTIVE: This study aimed to explore the relationships of DBP exposures with blood coagulation parameters. METHODS: Among 858 women from the Tongji Reproductive and Environmental (TREE) study, urinary dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA) were detected as internal biomarkers of DBP exposures. We measured activated partial thromboplastin time (APTT), fibrinogen (Fbg), international normalized ratio (INR), prothrombin time (PT), and thrombin time (TT) as blood coagulation parameters. Multivariable linear regression models were utilized to estimate the relationships between urinary DCAA and TCAA and blood coagulation parameters. The effect modifications by demographic and lifestyle characteristics were further explored. RESULTS: Elevated tertiles of urinary DCAA concentrations were associated with increased PT and INR (11.29%, 95% CI: 1.66%, 20.92% and 0.99%, 95% CI: 0.08%, 1.90% for the third vs. first tertile, respectively; both P for trends < 0.05). Stratification analysis showed that the positive associations were only observed among younger (< 30 years), leaner (body mass index < 24.0 kg/m2), and non-passive smoking women. Moreover, elevated tertiles of urinary TCAA concentrations in positive associations with PT and INR were observed among younger women (17.89%, 95% CI: 2.50%, 33.29% and 1.82%, 95% CI: 0.34%, 3.30% for the third vs. first tertile, respectively; both P for trends < 0.05) but not among older women (both P for interactions < 0.05). CONCLUSION: Higher levels of urinary DCAA and TCAA are associated with prolonged clotting time among women.
Asunto(s)
Desinfección , Reproducción , Humanos , Femenino , Anciano , Desinfección/métodos , Coagulación Sanguínea , Ácido Tricloroacético/orina , Biomarcadores/orina , Ácido Dicloroacético/orinaRESUMEN
BACKGROUND: Research on the association between telomere length (TL) and incident non-alcoholic fatty liver disease (NAFLD) is limited. This study examined this association and further assessed how TL contributes to the association of NAFLD with its known risk factors. METHODS: Quantitative PCR (polymerase chain reaction) was employed to assess leucocyte telomere length. Polygenic risk score (PRS) for NAFLD, air pollution score, and lifestyle index were constructed. Cox proportional hazard models were conducted to estimate the hazard ratios (HRs) and 95% confidence intervals. RESULTS: Among 467,848 participants in UK Biobank, we identified 4809 NAFLD cases over a median follow-up of 12.83 years. We found that long TL was associated with decreased risk of incident NAFLD, as each interquartile range increase in TL resulted in an HR of 0.93 (95% CI 0.89, 0.96). TL partly mediated the association between age and NAFLD (proportion mediated: 15.52%). When assessing the joint effects of TL and other risk factors, the highest risk of NAFLD was found in participants with low TL and old age, low TL and high air pollution score, low TL and unfavorable lifestyle, and low TL and high PRS, compared to each reference group. A positive addictive interaction was observed between high PRS and low TL, accounting for 14.57% (2.51%, 27.14%) of the risk of NAFLD in participants with low telomere length and high genetic susceptibility. CONCLUSIONS: Long telomere length was associated with decreased risk of NAFLD incidence. Telomere length played an important role in NAFLD.
Asunto(s)
Contaminación del Aire , Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/epidemiología , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Estudios Prospectivos , Factores de Riesgo , Telómero/genéticaRESUMEN
BACKGROUND: Air pollutants are considered as non-negligible risk factors of idiopathic pulmonary fibrosis (IPF). However, the relationship between long-term air pollution and the incidence of IPF is unknown. Our objective was to explore the associations of air pollutants with IPF risk and further assess the modification effect of genetic susceptibility. METHODS: We used land-use regression model estimated concentrations of nitrogen dioxide (NO2), nitrogen oxides (NO x ) and particulate matter (fine particulate matter with diameter <2.5â µm (PM2.5) and particulate matter with diameter <10â µm (PM10)). The polygenic risk score (PRS) was constructed using 13 independent single nucleotide polymorphisms. Cox proportional hazard models were used to evaluate the associations of air pollutants with IPF risk and further investigate the modification effect of genetic susceptibility. Additionally, absolute risk was calculated. RESULTS: Among 433 738 participants from the UK Biobank, the incidence of IPF was 27.45 per 100 000â person-years during a median follow-up of 11.78â years. The adjusted hazard ratios of IPF for each interquartile range increase in NO2, NO x and PM2.5 were 1.11 (95% CI 1.03-1.19), 1.07 (95% CI 1.01-1.13) and 1.09 (95% CI 1.02-1.17), respectively. PM2.5 had the highest population attribution risk, followed by NO x and NO2. There were additive interactions between NO2, NO x and PM2.5 and genetic susceptibility. Participants with a high PRS and high air pollution had the highest risk of incident IPF compared with those with a low PRS and low air pollution (adjusted hazard ratio: NO2 3.94 (95% CI 2.77-5.60), NO x 3.08 (95% CI 2.21-4.27), PM2.5 3.65 (95% CI 2.60-5.13) and PM10 3.23 (95% CI 2.32-4.50)). CONCLUSION: Long-term exposures to air pollutants may elevate the risk of incident IPF. There are additive effects of air pollutants and genetic susceptibility on IPF risk.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Fibrosis Pulmonar Idiopática , Humanos , Contaminantes Atmosféricos/efectos adversos , Contaminantes Atmosféricos/análisis , Dióxido de Nitrógeno/efectos adversos , Dióxido de Nitrógeno/análisis , Predisposición Genética a la Enfermedad , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/análisis , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Material Particulado/efectos adversos , Material Particulado/análisis , Fibrosis Pulmonar Idiopática/epidemiología , Fibrosis Pulmonar Idiopática/genéticaRESUMEN
BACKGROUND: Parabens, as suspected endocrine disruptors, are widely used in personal care products and pharmaceuticals. However, variability, predictors, and risk assessments of human exposure to parabens are not well characterized. OBJECTIVE: To evaluate within-day variability, predictors, and risk assessments of exposure to parabens among Chinese adult men. METHODS: We measured four parabens including methylparaben (MeP), ethylparaben (EtP), propylparaben (PrP), and butylparaben (BuP) in repeated urine samples from 850 Chinese adult men. We examined the variability by intraclass correlation coefficients (ICCs) and identified the predictors by multivariable linear mixed models. We assessed risks of paraben exposures based on the estimated daily intake (EDI). RESULTS: The four parabens were detected in >76% of urinary samples. We observed fair to good to high reproducibility (ICCs: 0.71 to 0.86) for urinary paraben concentrations within one day. Use of facial cleanser was associated with higher four urinary paraben concentrations. Increasing age, taking medicine, intravenous injection, and interior decoration in the workplace were related to higher urinary concentrations of specific parabens. Smoking and drinking were associated with lower urinary concentrations of specific parabens. The maximum EDIs for the four parabens ranged from 13.76 to 848.68 µg/kg bw/day, and 0.9% of participants had the hazard quotient values > 1 driven by PrP exposure. CONCLUSIONS: Urinary paraben concentrations were less variable within one day. Several lifestyle characteristics including use of facial cleanser and pharmaceuticals may contribute to paraben exposures.
Asunto(s)
Exposición a Riesgos Ambientales , Parabenos , Masculino , Humanos , Adulto , Parabenos/análisis , Exposición a Riesgos Ambientales/análisis , Pueblos del Este de Asia , Reproducibilidad de los Resultados , Medición de Riesgo , Preparaciones FarmacéuticasRESUMEN
BACKGROUND: Disinfection by-products (DBPs) have been shown to impair female reproductive function. However, epidemiological evidence on reproductive hormones is scarce. OBJECTIVE: To investigate the associations between DBP exposures and reproductive hormones among women undergoing assisted reproductive technology. METHODS: We included 725 women from the Tongji Reproductive and Environmental (TREE) Study, an ongoing cohort conducted in Wuhan, China during December 2018 and January 2020. Urine samples collected at recruitment were quantified for dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA) as biomarkers of DBP exposures. At day 2-5 of menstruation, serum reproductive hormones including luteinizing hormone (LH), estradiol (E2), total testosterone (T), progesterone (PRGE), and prolactin (PRL) were determined. Multivariate linear regression models were performed to assess the associations of urinary DCAA and TCAA concentrations with reproductive hormone levels. Dose-response relationships were investigated using natural cubic spline (NCS) and restricted cubic spline (RCS) models. RESULTS: After adjusting for relevant confounders, we observed that higher urinary DCAA levels were associated with increased serum PRGE (9.2%; 95% CI: -0.55%, 19.8% for the highest vs. lowest tertile; P for trend = 0.06). Based on NCS models, we observed U-shaped associations of urinary DCAA with serum PRGE and PRL; each ln-unit increment in urinary DCAA concentrations above 3.61 µg/L and 6.30 µg/L was associated with 18.9% (95% CI: 4.8%, 34.7%) and 23.3% (95% CI: -0.92%, 53.5%) increase in serum PRGE and PRL, respectively. The U-shaped associations were further confirmed in RCS models (P for overall association ≤0.01 and P for non-linear associations ≤0.04). We did not observe evidence of associations between urinary TCAA and reproductive hormones. CONCLUSION: Urinary DCAA but not TCAA was associated with altered serum PRGE and PRL levels among women undergoing assisted reproductive technology.
Asunto(s)
Desinfección , Ácido Tricloroacético , Biomarcadores/orina , Ácido Dicloroacético/orina , Femenino , Hormonas , Humanos , Ácido Tricloroacético/orinaRESUMEN
Phenols have been shown to influence the cellular proliferation and function of thyroid in experimental models. However, few human studies have investigated the association between phenol exposure and thyroid cancer, and the underlying mechanisms are also poorly understood. We conducted a case-control study by age- and sex-matching 143 thyroid cancer and 224 controls to investigate the associations between phenol exposures and the risk of thyroid cancer, and further to explore the mediating role of oxidative stress. We found that elevated urinary triclosan (TCS), bisphenol A (BPA) and bisphenol S (BPS) levels were associated with increased risk of thyroid cancer (all P for trends < 0.05), and the adjusted odds ratios (ORs) comparing the extreme exposure groups were 3.52 (95% confidence interval (CI): 2.08, 5.95), 2.06 (95% CI: 1.06, 3.97) and 7.15 (95% CI: 3.12, 16.40), respectively. Positive associations were also observed between urinary TCS, BPA and BPS and three oxidative stress biomarkers measured by 8-hydroxy-2'-deoxyguanosine (8-OHdG), 8-iso-prostaglandin F2α (8-isoPGF2α) and 4-hydroxy-2-nonenal-mercapturic acid (HNE-MA), as well as between urinary 8-isoPGF2α and HNE-MA and the risk of thyroid cancer. Mediation analysis showed that urinary 8-isoPGF2α mediated 28.95%, 47.06% and 31.08% of the associations between TCS, BPA and BPS exposures and the risk of thyroid cancer, respectively (all P < 0.05). Our results suggest that exposure to TCS, BPA and BPS may be associated with increased risk of thyroid cancer and lipid peroxidation may be an intermediate mechanism. Further studies are warranted to confirm the findings.
Asunto(s)
Neoplasias de la Tiroides , Triclosán , 8-Hidroxi-2'-Desoxicoguanosina , Biomarcadores , Estudios de Casos y Controles , Humanos , Estrés Oxidativo , Fenol , Fenoles/toxicidad , Neoplasias de la Tiroides/inducido químicamente , Triclosán/toxicidadRESUMEN
Experimental studies have shown that nonradioactive strontium (Sr), in the form of Sr2+, have a positive effect on semen quality, but human evidence is lacking. This study aimed to examine the associations between nonradioactive Sr exposure and semen quality in Chinese men (n = 394). We recruited men who presented at an infertility clinic in Wuhan, China to seek for semen parameter analyses. Urinary Sr concentration as an exposure biomarker was measured using inductively coupled plasma mass spectrometer. We estimated the associations between urinary Sr concentrations and semen parameters using multivariable logistic and linear regression models. In multivariable linear regressions models, positive dose-response associations were estimated for sperm concentration, motility, and count across increasing urinary Sr quartiles (all p for trends<0.05), and the consistent positive associations were also observed for urinary Sr concentration modeled as a continuous exposure. In multivariable logistic models, decreased risks of below-reference sperm concentration, motility, and count were also estimated across increasing urinary Sr quartiles (all p for trends<0.05). Our results suggest that nonradioactive Sr exposure may have a beneficial effect on semen quality, but more investigations are warranted to confirm the results.
Asunto(s)
Exposición a Riesgos Ambientales/análisis , Análisis de Semen , Estroncio/orina , Adulto , Biomarcadores/orina , China , Clínicas de Fertilidad , Humanos , Masculino , Recuento de Espermatozoides , Motilidad Espermática , Espermatozoides/citologíaRESUMEN
Early-life tobacco exposure serves as a non-negligible risk factor for aging-related diseases. To understand the underlying mechanisms, we explored the associations of early-life tobacco exposure with accelerated biological aging and further assessed the joint effects of tobacco exposure and genetic susceptibility. Compared with those without in utero exposure, participants with in utero tobacco exposure had an increase in Klemera-Doubal biological age (KDM-BA) and PhenoAge acceleration of 0.26 and 0.49 years, respectively, but a decrease in telomere length of 5.34% among 276,259 participants. We also found significant dose-response associations between the age of smoking initiation and accelerated biological aging. Furthermore, the joint effects revealed that high-polygenic risk score participants with in utero exposure and smoking initiation in childhood had the highest accelerated biological aging. There were interactions between early-life tobacco exposure and age, sex, deprivation, and diet on KDM-BA and PhenoAge acceleration. These findings highlight the importance of reducing early-life tobacco exposure to improve healthy aging.
Asunto(s)
Envejecimiento , Predisposición Genética a la Enfermedad , Efectos Tardíos de la Exposición Prenatal , Humanos , Femenino , Masculino , Efectos Tardíos de la Exposición Prenatal/genética , Envejecimiento/genética , Adulto , Embarazo , Nicotiana/efectos adversos , Nicotiana/genética , Fumar/efectos adversos , Factores de Riesgo , Persona de Mediana EdadRESUMEN
OBJECTIVE: There are few existing studies that investigate the risk of systemic lupus erythematosus (SLE) associated with long-term exposure to air pollutants. This study aimed to explore associations between long-term exposure to air pollutants and incident SLE and further evaluate interactions and joint effects of genetic risk and air pollutants. METHODS: A total of 459,815 participants were included from UK Biobank. The concentrations of air pollutants (fine particulate matter with diameter ≤2.5 µm [PM2.5], particulate matter diameter ≤10 µm [PM10], nitrogen dioxide [NO2], and nitrogen oxides [NOx]) were estimated by land-use regression model. We applied Cox proportional hazards model to explore linkages of air pollutants and incident SLE. The polygenic risk score (PRS) was used for further assessing the interactions and joint effects of genetic risk and air pollutants. RESULTS: A total of 399 patients with SLE were identified during a median follow-up of 11.77 years. There were positive associations between air pollutant exposure and incident SLE, as the adjusted hazard ratios were 1.18 (95% confidence interval [95% CI] 1.06-1.32), 1.23 (1.10-1.39), 1.27 (1.14-1.41), and 1.13 (1.03-1.23) for each interquartile range increase in PM2.5, PM10, NO2, and NOx, respectively. Moreover, participants with high genetic risk and high air pollution exposure had the highest risk of incident SLE compared with those with low genetic risk and low air pollution exposure (adjusted hazard ratio: PM2.5, 4.16 [95% CI 2.67-6.49]; PM10, 5.31 [95% CI 3.30,-8.55]; NO2, 5.61 [95% CI 3.45-9.13]; and NOx, 4.80 [95% CI 3.00-7.66]). There was a significant multiplicative interaction between NO2 and PRS. CONCLUSION: Long-term exposure to air pollutants (PM2.5, PM10, NO2, and NOx) may increase the risk of developing SLE.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Predisposición Genética a la Enfermedad , Lupus Eritematoso Sistémico , Material Particulado , Modelos de Riesgos Proporcionales , Humanos , Lupus Eritematoso Sistémico/genética , Lupus Eritematoso Sistémico/epidemiología , Femenino , Contaminación del Aire/efectos adversos , Masculino , Estudios Prospectivos , Persona de Mediana Edad , Material Particulado/efectos adversos , Adulto , Contaminantes Atmosféricos/efectos adversos , Incidencia , Reino Unido/epidemiología , Dióxido de Nitrógeno/análisis , Dióxido de Nitrógeno/efectos adversos , Exposición a Riesgos Ambientales/efectos adversos , Factores de Riesgo , Óxidos de Nitrógeno/efectos adversos , Óxidos de Nitrógeno/análisisRESUMEN
To assess the associations of ambient specific-size PM with brachial-ankle pulse wave velocity (baPWV) and the progression of arterial stiffness. Participants were included from the Kailuan study, the cross-sectional study involved 36,486 participants, while the longitudinal study enrolled 16,871 participants. PM exposures was assessed through satellite-based random forest approaches at a 1 km resolution. Initial observations indicated a link between baseline baPWV and heightened levels of PM1, PM2.5, and PM10 exposure, and greater effects were observed for PM1 (ß: 22.52, 95% CI: 18.14-26.89), followed by PM2.5 (ß: 9.76, 95% CI: 7.52-12.00), and PM10 (ß: 8.88, 95% CI: 7.32-10.45). Furthermore, the growth rate of baPWV was higher in participants exposed to high levels of PM1 exposure (ß: 2.77, 95% CI: 1.19-4.35), succeeded by PM2.5 and PM10. Throughout a median follow-up period of 4.04 years, arterial stiffness was diagnosed in 1709 subjects. Long-term exposure to PM was linked with an increased risk of incident arterial stiffness, estimated HR for fixed 10 µg/m3 increments in annual average PM1 was 2.20 (95% CI: 2.01-2.42), PM2.5 was 1.48 (95% CI: 1.41-1.55), and PM10 1.32 (95% CI: 1.27-1.36). PM had a greater impact on men and older individuals (P for interaction <0.001). Long-term exposures to ambient PM1, PM2.5, and PM10 were positively associated with baPWV and an increased risk of arterial stiffness. Higher estimated effects were observed for PM1 than PM2.5 and PM10.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Rigidez Vascular , Masculino , Adulto , Humanos , Material Particulado/toxicidad , Contaminantes Atmosféricos/toxicidad , Contaminantes Atmosféricos/análisis , Estudios Longitudinales , Estudios Transversales , Índice Tobillo Braquial , Exposición a Riesgos Ambientales/análisis , Análisis de la Onda del Pulso , China , Contaminación del Aire/análisisRESUMEN
BACKGROUND: Unraveling gene-environment interaction can provide a novel insight into early disease prevention. Nevertheless, current understanding of the interplay between genetic predisposition and air pollution in relation to myocardial infarction (MI) risk remains limited. Furthermore, the potential long-term influence of air pollutants on MI incidence risk warrants more conclusive evidence in a community population. OBJECTIVE: We investigated interactions between genetic predisposition and exposure to air pollutants on MI incidence. METHODS: This study incorporated a sample of 456,354 UK Biobank participants and annual mean air pollution (PM2.5, PM10, NO2, and NOx) from the UK Department for Environment, Food and Rural Affairs (2006-2021). The Cox proportional hazards model was employed to explore MI incidence after chronic air pollutants exposure. By quantifying genetic risk through the calculation of polygenic risk score (PRS), this study further examined the interactions between genetic risk and exposure to air pollutants in the development of MI on both additive and multiplicative scales. RESULTS: Among 456,354 participants, 9,114 incident MI events were observed during a median follow-up of 12.08 y. Chronic exposure to air pollutants was linked with an increased risk of MI occurrence. Specifically, the hazard ratios (per interquartile range) were 1.12 (95% CI: 1.10, 1.13) for PM2.5, 1.20 (95% CI: 1.19, 1.22) for PM10, 1.13 (95% CI: 1.12, 1.15) for NO2, and 1.12 (95% CI: 1.11, 1.13) for NOx. In terms of the joint effects, participants with high PRS and high level of air pollution exposure exhibited the greatest risk of MI among all study participants (â¼255% to 324%). Remarkably, both multiplicative and additive interactions were detected in the ambient air pollutants exposure and genetic risk on the incidence of MI. DISCUSSION: There were interactions between exposure to ambient air pollutants and genetic susceptibility on the risk of MI onset. Moreover, the joint effects of these two exposures were greater than the effect of each factor alone. https://doi.org/10.1289/EHP14291.
Asunto(s)
Contaminantes Atmosféricos , Contaminación del Aire , Exposición a Riesgos Ambientales , Interacción Gen-Ambiente , Infarto del Miocardio , Humanos , Infarto del Miocardio/epidemiología , Infarto del Miocardio/inducido químicamente , Reino Unido/epidemiología , Incidencia , Masculino , Femenino , Exposición a Riesgos Ambientales/estadística & datos numéricos , Persona de Mediana Edad , Contaminación del Aire/efectos adversos , Contaminación del Aire/estadística & datos numéricos , Material Particulado , Adulto , Anciano , Bancos de Muestras Biológicas , Predisposición Genética a la Enfermedad , Modelos de Riesgos Proporcionales , Biobanco del Reino UnidoRESUMEN
AIMS: Long-term fine particulate matter (PM2.5) exposure has been linked to incident heart failure (HF), but the impacts of its constituents remain unknown. We aimed to investigate the associations of PM2.5 constituents with incident HF, and further evaluate the modification effects of genetic susceptibility. METHODS AND RESULTS: PM2.5 and its constituents, including elemental carbon (EC), organic matter (OM), ammonium (NH4 +), nitrate (NO3 -), and sulfate (SO4 2-), were estimated using the European Monitoring and Evaluation Programme model applied to the UK (EMEP4UK) driven by Weather and Research Forecast model meteorology. A polygenic risk score (PRS) was calculated to represent genetic susceptibility to HF. We employed Cox models to evaluate the associations of PM2.5 constituents with incident HF. Quantile-based g-computation model was used to identify the main contributor of PM2.5 constituents. Among 411 807 individuals in the UK Biobank, 7554 participants developed HF during a median follow-up of 12.05 years. The adjusted hazard ratios of HF for each interquartile range increase in PM2.5, EC, OM, NH4 +, NO3 -, and SO4 2- were 1.50 (1.46-1.54), 1.31 (1.27-1.34), 1.12 (1.09-1.15), 1.42 (1.41-1.44), 1.26 (1.23-1.29), and 1.25 (1.24-1.26), respectively. EC (43%) played the most important role, followed by NH4 + and SO4 2-. Moreover, synergistic additive interactions accounted for 9-16% of the HF events in individuals exposed to both PM2.5, NH4 +, NO3 -, and SO4 2- and PRS. CONCLUSION: Long-term exposure to PM2.5 constituents may elevate HF risk, and EC was the major contributor. Additive effects of PM2.5 constituents and PRS on HF risk were revealed.
RESUMEN
Prenatal exposures to phthalates and bisphenols have been shown to be linked with adverse birth outcomes. Oxidative stress (OS) is considered a potential mechanism. The objective of this study was to explore the individual and mixtures of prenatal exposures to phthalates and bisphenols in associations with OS biomarkers. We measured eight phthalate metabolites and three bisphenols in the urine samples from 105 pregnant women in Wuhan, China. Urinary 8-hydroxydeoxyguanosine (8-OHdG), 8-isoprostaglandin F2α (8-isoPGF2α), and 4-hydroxy-2-nonenal-mercapturic acid (HNE-MA) were determined as OS biomarkers. The OS biomarkers in associations with the individual chemicals were estimated by linear regression models and restricted cubic spline (RCS) models, and their associations with the chemical mixtures were explored by quantile g-computation (qg-comp) models. In single-pollutant analyses, five phthalate metabolites including monomethyl phthalate (MMP), monoethyl phthalate (MEP), mono-(2-ethylhexyl) phthalate (MEHP), (2-ethyl-5-hydroxyhexyl) phthalate (MEHHP), and mono (2-ethyl-5-oxohexyl) phthalate (MEOHP) were positively associated with urinary 8-OHdG levels (all FDR-adjusted P = 0.06). These associations were further confirmed by the RCS models and were linear (P for overall association ≤ 0.05 and P for non-linear association > 0.05). In mixture analyses, qg-comp models showed that a one-quartile increase in the chemical mixtures of phthalate metabolites and bisphenols was positively associated with urinary levels of 8-OHdG and 8-isoPGF2α, and bisphenol A (BPA) and bisphenol F (BPF) were the most contributing chemicals, respectively. Prenatal exposures to individual phthalates and mixtures of phthalates and bisphenols were associated with higher OS levels.
Asunto(s)
Compuestos de Bencidrilo , Dietilhexil Ftalato/análogos & derivados , Contaminantes Ambientales , Fenoles , Ácidos Ftálicos , Efectos Tardíos de la Exposición Prenatal , Humanos , Femenino , Embarazo , Contaminantes Ambientales/análisis , Ácidos Ftálicos/metabolismo , Biomarcadores/metabolismo , 8-Hidroxi-2'-Desoxicoguanosina , Estrés Oxidativo , Exposición a Riesgos Ambientales/análisisRESUMEN
BACKGROUND: Disinfection byproducts (DBPs) have been shown to impair thyroid function in experimental models. However, epidemiological evidence is scarce. METHODS: This study included 1190 women undergoing assisted reproductive technology (ART) treatment from the Tongji Reproductive and Environmental (TREE) cohort from December 2018 to August 2021. Serum thyrotropin (TSH), free triiodothyronine (FT3), and free thyroxine (FT4) were measured as indicators of thyroid function. FT4/FT3 and TSH/FT4 ratios were calculated as markers of thyroid hormone homeostasis. Dichloroacetic acid (DCAA) and trichloroacetic acid (TCAA), the two most abundant HAAs, in urine were detected to assess individual DBP exposures. RESULTS: After adjusting for relevant covariates, positive associations were observed between urinary TCAA concentrations and serum TSH and TSH/FT4 levels (e.g., percent change = 5.82 %, 95 % CI: 0.70 %, 11.21 % for TSH), whereas inverse associations were found for serum FT3 and FT4 (e.g., percent change = -1.29 %, 95 % CI: -2.49 %, -0.07 % for FT3). There also was a negative association between urinary DCAA concentration and serum FT4/FT3 (percent change = -2.49 %, 95 % CI: -4.71 %, -0.23 %). These associations were further confirmed in the restricted cubic spline and generalized additive models with linear or U-shaped dose-response relationships. CONCLUSION: Urinary HAAs were associated with altered thyroid hormone homeostasis among women undergoing ART treatment.
Asunto(s)
Glándula Tiroides , Humanos , Femenino , Adulto , Tiroxina/sangre , Triyodotironina/sangre , Tirotropina/sangre , Hormonas Tiroideas/sangre , Pruebas de Función de la Tiroides , Desinfectantes , Acetatos , ChinaRESUMEN
Importance: Numerous studies have documented the association of self-rated health (SRH) with chronic diseases. However, few studies have investigated its association with semen quality. Objective: To examine the association of SRH with semen quality among men undergoing assisted reproductive technology (ART) in China. Design, Setting, and Participants: This cross-sectional study recruited male partners in couples undergoing ART treatment at the Center for Reproductive Medicine, Tongji Hospital, Wuhan, China. A total of 1262 men underwent 2 semen examinations and completed a questionnaire on SRH between December 2018 and January 2020. Data analysis was performed from November 20, 2022, to March 24, 2023. Exposure: SRH, including overall physical and mental health, as well as reproductive-related physical and mental health specifically, were reported at baseline recruitment. Main Outcomes and Measures: Sperm concentration, sperm progressive motility, sperm motility, and sperm count as semen quality parameters. Results: The study included 1262 men with a mean (SD) age of 32.79 (5.25) years and body mass index of 24.37 (3.68). Men with poorer SRH had lower semen quality (eg, sperm concentration among poor vs very good overall physical health: percentage variation, -14.67%; 95% CI, -23.62% to -4.66%). Among 4 components of SRH, a greater reduction in semen quality was estimated for reproductive-related SRH compared with overall SRH, whereas the greatest reduction was observed for reproductive-related physical SRH. In comparison with men with very good reproductive-related physical SRH, men with poor reproductive-related physical SRH had differences of -24.78% (95% CI, -32.71% to -15.93%) and -25.61% (95% CI, -33.95% to -16.22%) in sperm count and concentration, respectively, and regression coefficients of -9.38 (95% CI, -12.01 to -6.76) and -9.24 (95% CI, -11.82 to -6.66) for sperm motility and sperm progressive motility, respectively. Conclusions and Relevance: In this cross-sectional study of Chinese men, poorer SRH was associated with lower semen quality, and reproductive-related physical SRH was the most pronounced indicator. Our findings suggest that SRH, especially reproductive-related physical SRH, was a good indicator of semen quality, which should inform public and clinical regulatory decisions.