Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
BMC Vet Res ; 18(1): 84, 2022 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-35236347

RESUMEN

BACKGROUND: African swine fever (ASF) is a highly contagious and devastating pig disease that has caused extensive global economic losses. Understanding ASF virus (ASFV) transmission dynamics within a herd is necessary in order to prepare for and respond to an outbreak in the United States. Although the transmission parameters for the highly virulent ASF strains have been estimated in several articles, there are relatively few studies focused on moderately virulent strains. Using an approximate Bayesian computation algorithm in conjunction with Monte Carlo simulation, we have estimated the adequate contact rate for moderately virulent ASFV strains and determined the statistical distributions for the durations of mild and severe clinical signs using individual, pig-level data. A discrete individual based disease transmission model was then used to estimate the time to detect ASF infection based on increased mild clinical signs, severe clinical signs, or daily mortality. RESULTS: Our results indicate that it may take two weeks or longer to detect ASF in a finisher swine herd via mild clinical signs or increased mortality beyond levels expected in routine production. A key factor contributing to the extended time to detect ASF in a herd is the fairly long latently infected period for an individual pig (mean 4.5, 95% P.I., 2.4 - 7.2 days). CONCLUSION: These transmission model parameter estimates and estimated time to detection via clinical signs provide valuable information that can be used not only to support emergency preparedness but also to inform other simulation models of evaluating regional disease spread.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Enfermedades de los Porcinos , Fiebre Porcina Africana/diagnóstico , Fiebre Porcina Africana/epidemiología , Animales , Teorema de Bayes , Brotes de Enfermedades/veterinaria , Porcinos , Enfermedades de los Porcinos/diagnóstico , Enfermedades de los Porcinos/epidemiología
2.
Vet Res ; 51(1): 42, 2020 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-32169091

RESUMEN

The mechanisms of transmission of influenza A virus (IAV) and porcine reproductive and respiratory syndrome virus (PRRSV) in pigs during the pre-weaning period are not fully elucidated. Since viable IAV and PRRSV can be found on the udder skin of lactating sows and the use of nurse sows is a common management practice, we developed a novel nurse sow model to evaluate the transmission of IAV and PRRSV from lactating sows to their adopted piglets. In two studies, we infected pigs with either IAV or PRRSV who then contaminated the udder skin of lactating dams with their nasal and oral secretions while suckling. Once the skin was confirmed virus positive for IAV and PRRSV, the sows were moved to separate empty clean rooms to adopt IAV and PRRSV negative suckling piglets. After adoption, 1 out of eight (12.5%) piglets tested IAV positive 1-day post-adoption (dpa) and the entire litter (8 out of 8) became positive by 4 dpa. In the case of PRRSV, 3 out of 11 (27.3%) pigs tested rRT-PCR positive 2 dpa and there were 7 out of 11 (63.6%) pigs positive at the termination of the study at 7 dpa. This study documented the transmission of IAV and PRRSV between litters of piglets by nurse sows and highlights the importance of the nurse sow-piglet as a unit that contributes to the maintenance of endemic infections in breeding herds. The use of nurse sows in pig farms, though beneficial for minimizing pre-weaning mortality and maximizing farm productivity, is seemingly detrimental as this practice may facilitate the transmission of IAV and PRRSV to piglets prior to weaning.


Asunto(s)
Virus de la Influenza A/fisiología , Infecciones por Orthomyxoviridae/veterinaria , Síndrome Respiratorio y de la Reproducción Porcina/transmisión , Virus del Síndrome Respiratorio y Reproductivo Porcino/fisiología , Enfermedades de los Porcinos/transmisión , Animales , Modelos Animales de Enfermedad , Femenino , Infecciones por Orthomyxoviridae/transmisión , Prueba de Estudio Conceptual , Porcinos
3.
Vet Res ; 51(1): 89, 2020 Jul 09.
Artículo en Inglés | MEDLINE | ID: mdl-32646490

RESUMEN

Influenza A viruses evolve rapidly to escape host immunity. In swine, this viral evolution has resulted in the emergence of multiple H1 and H3 influenza A virus (IAV) lineages in the United States (US) pig populations. The heterologous prime-boost vaccination strategy is a promising way to deal with diverse IAV infection in multiple animal models. However, whether or not this vaccination strategy is applicable to US swine to impart immunity against infection from North American strains of IAV is still unknown. We performed a vaccination-challenge study to evaluate the protective efficacy of using multivalent inactivated vaccine and/or a live attenuated IAV vaccine (LAIV) in pigs following multiple prime-boost vaccination protocols against a simultaneous H1N1 and H3N2 IAV infection. Our data show that pigs in the heterologous prime-boost vaccination group had more favorable outcomes consistent with a better response against virus challenge than non-vaccinated pigs. Additionally, delivering a multivalent heterologous inactivated vaccine boost to pigs following a single LAIV administration was also beneficial. We concluded the heterologous prime boost vaccination strategy may potentiate responses to suboptimal immunogens and holds the potential applicability to control IAV in the North American swine industry. However, more studies are needed to validate the application of this vaccination approach under field conditions.


Asunto(s)
Control de Enfermedades Transmisibles/métodos , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H3N2 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/inmunología , Infecciones por Orthomyxoviridae/veterinaria , Enfermedades de los Porcinos/prevención & control , Vacunación/veterinaria , Animales , Infecciones por Orthomyxoviridae/prevención & control , Infecciones por Orthomyxoviridae/virología , Sus scrofa , Porcinos , Enfermedades de los Porcinos/virología , Vacunas Atenuadas/inmunología
4.
Emerg Infect Dis ; 25(4): 691-700, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30730827

RESUMEN

The genetic diversity of influenza A viruses circulating in swine in Mexico complicates control efforts in animals and presents a threat to humans, as shown by influenza A(H1N1)pdm09 virus. To describe evolution of swine influenza A viruses in Mexico and evaluate strains for vaccine development, we sequenced the genomes of 59 viruses and performed antigenic cartography on strains from 5 regions. We found that genetic and antigenic diversity were particularly high in southeast Mexico because of repeated introductions of viruses from humans and swine in other regions in Mexico. We identified novel reassortant H3N2 viruses with genome segments derived from 2 different viruses that were independently introduced from humans into swine: pandemic H1N1 viruses and seasonal H3N2 viruses. The Mexico swine viruses are antigenically distinct from US swine lineages. Protection against these viruses is unlikely to be afforded by US virus vaccines and would require development of new vaccines specifically targeting these diverse strains.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/genética , Gripe Humana/virología , Infecciones por Orthomyxoviridae/virología , Virus Reordenados/genética , Animales , Antígenos Virales/inmunología , Humanos , Subtipo H1N1 del Virus de la Influenza A/inmunología , Subtipo H3N2 del Virus de la Influenza A/inmunología , Vacunas contra la Influenza/genética , Vacunas contra la Influenza/inmunología , Gripe Humana/epidemiología , Gripe Humana/prevención & control , México , Infecciones por Orthomyxoviridae/epidemiología , Infecciones por Orthomyxoviridae/prevención & control , Porcinos
5.
J Gen Virol ; 98(11): 2663-2675, 2017 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-29058649

RESUMEN

Swine are a key reservoir host for influenza A viruses (IAVs), with the potential to cause global pandemics in humans. Gaps in surveillance in many of the world's largest swine populations impede our understanding of how novel viruses emerge and expand their spatial range in pigs. Although US swine are intensively sampled, little is known about IAV diversity in Canada's population of ~12 million pigs. By sequencing 168 viruses from multiple regions of Canada, our study reveals that IAV diversity has been underestimated in Canadian pigs for many years. Critically, a new H1 clade has emerged in Canada (H1α-3), with a two-amino acid deletion at H1 positions 146-147, that experienced rapid growth in Manitoba's swine herds during 2014-2015. H1α-3 viruses also exhibit a higher capacity to invade US swine herds, resulting in multiple recent introductions of the virus into the US Heartland following large-scale movements of pigs in this direction. From the Heartland, H1α-3 viruses have disseminated onward to both the east and west coasts of the United States, and may become established in Appalachia. These findings demonstrate how long-distance trading of live pigs facilitates the spread of IAVs, increasing viral genetic diversity and complicating pathogen control. The proliferation of novel H1α-3 viruses also highlights the need for expanded surveillance in a Canadian swine population that has long been overlooked, and may have implications for vaccine design.


Asunto(s)
Evolución Molecular , Virus de la Influenza A/clasificación , Virus de la Influenza A/aislamiento & purificación , Infecciones por Orthomyxoviridae/veterinaria , Enfermedades de los Porcinos/epidemiología , Enfermedades de los Porcinos/virología , Animales , Canadá/epidemiología , Virus de la Influenza A/genética , Epidemiología Molecular , Infecciones por Orthomyxoviridae/epidemiología , Infecciones por Orthomyxoviridae/virología , Porcinos , Estados Unidos/epidemiología
6.
Proc Natl Acad Sci U S A ; 111(22): E2241-50, 2014 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-24843157

RESUMEN

Influenza viruses bind to host cell surface glycans containing terminal sialic acids, but as studies on influenza binding become more sophisticated, it is becoming evident that although sialic acid may be necessary, it is not sufficient for productive binding. To better define endogenous glycans that serve as viral receptors, we have explored glycan recognition in the pig lung, because influenza is broadly disseminated in swine, and swine have been postulated as an intermediary host for the emergence of pandemic strains. For these studies, we used the technology of "shotgun glycomics" to identify natural receptor glycans. The total released N- and O-glycans from pig lung glycoproteins and glycolipid-derived glycans were fluorescently tagged and separated by multidimensional HPLC, and individual glycans were covalently printed to generate pig lung shotgun glycan microarrays. All viruses tested interacted with one or more sialylated N-glycans but not O-glycans or glycolipid-derived glycans, and each virus demonstrated novel and unexpected differences in endogenous N-glycan recognition. The results illustrate the repertoire of specific, endogenous N-glycans of pig lung glycoproteins for virus recognition and offer a new direction for studying endogenous glycan functions in viral pathogenesis.


Asunto(s)
Glicómica/métodos , Gripe Aviar/metabolismo , Gripe Humana/metabolismo , Pulmón/virología , Orthomyxoviridae/metabolismo , Receptores Virales/metabolismo , Pruebas de Aglutinación , Animales , Aves , Pollos , Eritrocitos/virología , Glicoproteínas Hemaglutininas del Virus de la Influenza/metabolismo , Humanos , Subtipo H1N1 del Virus de la Influenza A/aislamiento & purificación , Subtipo H1N1 del Virus de la Influenza A/metabolismo , Subtipo H1N1 del Virus de la Influenza A/patogenicidad , Subtipo H1N2 del Virus de la Influenza A/aislamiento & purificación , Subtipo H1N2 del Virus de la Influenza A/metabolismo , Subtipo H1N2 del Virus de la Influenza A/patogenicidad , Subtipo H3N2 del Virus de la Influenza A/aislamiento & purificación , Subtipo H3N2 del Virus de la Influenza A/metabolismo , Subtipo H3N2 del Virus de la Influenza A/patogenicidad , Gripe Aviar/virología , Gripe Humana/virología , Lectinas/metabolismo , Pulmón/metabolismo , Orthomyxoviridae/aislamiento & purificación , Orthomyxoviridae/patogenicidad , Polisacáridos/metabolismo , Especificidad de la Especie , Porcinos , Virulencia
7.
J Virol ; 88(17): 10110-9, 2014 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-24965467

RESUMEN

UNLABELLED: The capacity of influenza A viruses to cross species barriers presents a continual threat to human and animal health. Knowledge of the human-swine interface is particularly important for understanding how viruses with pandemic potential evolve in swine hosts. We sequenced the genomes of 141 influenza viruses collected from North American swine during 2002 to 2011 and identified a swine virus that possessed all eight genome segments of human seasonal A/H3N2 virus origin. A molecular clock analysis indicates that this virus--A/sw/Saskatchewan/02903/2009(H3N2)--has likely circulated undetected in swine for at least 7 years. For historical context, we performed a comprehensive phylogenetic analysis of an additional 1,404 whole-genome sequences from swine influenza A viruses collected globally during 1931 to 2013. Human-to-swine transmission occurred frequently over this time period, with 20 discrete introductions of human seasonal influenza A viruses showing sustained onward transmission in swine for at least 1 year since 1965. Notably, human-origin hemagglutinin (H1 and H3) and neuraminidase (particularly N2) segments were detected in swine at a much higher rate than the six internal gene segments, suggesting an association between the acquisition of swine-origin internal genes via reassortment and the adaptation of human influenza viruses to new swine hosts. Further understanding of the fitness constraints on the adaptation of human viruses to swine, and vice versa, at a genomic level is central to understanding the complex multihost ecology of influenza and the disease threats that swine and humans pose to each other. IMPORTANCE: The swine origin of the 2009 A/H1N1 pandemic virus underscored the importance of understanding how influenza A virus evolves in these animals hosts. While the importance of reassortment in generating genetically diverse influenza viruses in swine is well documented, the role of human-to-swine transmission has not been as intensively studied. Through a large-scale sequencing effort, we identified a novel influenza virus of wholly human origin that has been circulating undetected in swine for at least 7 years. In addition, we demonstrate that human-to-swine transmission has occurred frequently on a global scale over the past decades but that there is little persistence of human virus internal gene segments in swine.


Asunto(s)
Evolución Molecular , Subtipo H3N2 del Virus de la Influenza A/clasificación , Subtipo H3N2 del Virus de la Influenza A/aislamiento & purificación , Gripe Humana/transmisión , Gripe Humana/virología , Infecciones por Orthomyxoviridae/veterinaria , Enfermedades de los Porcinos/virología , Animales , Genoma Viral , Humanos , Subtipo H3N2 del Virus de la Influenza A/genética , Epidemiología Molecular , Infecciones por Orthomyxoviridae/virología , ARN Viral/genética , Análisis de Secuencia de ADN , Porcinos
8.
Emerg Infect Dis ; 20(10): 1620-8, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25279722

RESUMEN

Porcine epidemic diarrhea virus (PEDV), which emerged in the United States in 2013, has spread throughout North America. Limited availability of PEDV complete genomes worldwide has impeded our understanding of PEDV introduction into the United States. To determine the relationship between the North American strains and global emerging and historic PEDV strains, we sequenced and analyzed complete genomes of 74 strains from North America; the strains clustered into 2 distinct clades. Compared with the initially reported virulent US PEDV strains, 7 (9.7%) strains from 4 states contained insertions and deletions in the spike gene (S INDELs). These S INDEL strains share 99.8%-100% nt identity with each other and 96.2%-96.7% nt identity with the initial US strains. Furthermore, the S INDEL strains form a distinct cluster within North American clade II, sharing 98.6%-100% nt identity overall. In the United States, the S INDEL and original PEDV strains are co-circulating and could have been introduced simultaneously.


Asunto(s)
Evolución Biológica , Infecciones por Coronavirus/veterinaria , Virus de la Diarrea Epidémica Porcina/clasificación , Virus de la Diarrea Epidémica Porcina/aislamiento & purificación , Enfermedades de los Porcinos/virología , Animales , Infecciones por Coronavirus/epidemiología , Infecciones por Coronavirus/virología , Variación Genética , Genoma Viral , América del Norte/epidemiología , Sistemas de Lectura Abierta/genética , Virus de la Diarrea Epidémica Porcina/genética , Virus Reordenados , Porcinos , Enfermedades de los Porcinos/epidemiología , Factores de Tiempo , Proteínas Virales/genética , Proteínas Virales/metabolismo
9.
J Gen Virol ; 94(Pt 6): 1236-41, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23695819

RESUMEN

To understand the evolution of swine-origin H3N2v influenza viruses that have infected 320 humans in the USA since August 2011, we performed a phylogenetic analysis at a whole genome scale of North American swine influenza viruses (n = 200). All viral isolates evolved from the prototypical North American H3 cluster 4 (c4), with evidence for further diversification into subclusters. At least ten distinct reassorted H3N2/pandemic H1N1 (rH3N2p) genotypes were identified in swine. Genotype 1 (G1) was most frequently detected in swine and all human H3N2v viruses clustered within a single G1 clade. These data suggest that the genetic requirements for transmission to humans may be restricted to a specific subset of swine viruses. Mutations at putative antigenic sites as well as reduced serological cross-reactivity among the H3 subclusters suggest antigenic drift of these contemporary viruses.


Asunto(s)
Subtipo H3N2 del Virus de la Influenza A/genética , Gripe Humana/virología , Infecciones por Orthomyxoviridae/veterinaria , Virus Reordenados/genética , Enfermedades de los Porcinos/virología , Animales , Reacciones Cruzadas , Genotipo , Humanos , Subtipo H3N2 del Virus de la Influenza A/clasificación , Subtipo H3N2 del Virus de la Influenza A/inmunología , Subtipo H3N2 del Virus de la Influenza A/aislamiento & purificación , Gripe Humana/inmunología , Datos de Secuencia Molecular , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/virología , Filogenia , Virus Reordenados/clasificación , Virus Reordenados/inmunología , Virus Reordenados/aislamiento & purificación , Porcinos , Enfermedades de los Porcinos/inmunología , Estados Unidos
10.
Porcine Health Manag ; 9(1): 13, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-37183258

RESUMEN

Indirect transmission of influenza A virus (IAV) contributes to virus spread in pigs. To identify farm management activities with the ability to contaminate farmworkers' hands and clothing that then could be a source of virus spread to other pigs, we conducted a within-farm, prospective IAV surveillance study. Hands and clothes from farmworkers performing the activities of piglet processing, vaccination, or weaning were sampled before and after the activities were performed. Samples were tested by IAV rRT-PCR and virus viability was assessed by cell culture. A multivariate generalized linear model was used to detect associations of the activities with IAV contamination. Of the samples collected for IAV rRT-PCR testing, there were 16% (12/76) collected immediately after processing, 96% (45/48) collected after vaccination, and 94% (29/31) collected after weaning that tested positive. Samples collected immediately after vaccination and weaning, i.e., activities that took place during the peri-weaning period when pigs were about 3 weeks of age, had almost 6 times higher risk of IAV detection and had more samples IAV positive (p-value < 0.0001) than samples collected after processing, i.e., an activity that took place in the first few days of life. Both, hands and clothes had similar contamination rates (46% and 55% respectively, p-value = 0.42) and viable virus was isolated from both. Our results indicate that activities that involve the handling of infected piglets close to weaning age represent a significant risk for IAV dissemination due to the high level of IAV contamination found in farmworkers' hands and coveralls involved in the activities. Biosecurity protocols that include hand sanitation and changing clothing after performing activities with a high-risk of influenza contamination should be recommended to farmworkers to control and limit the mechanical spread of IAV between pigs.

11.
Front Genet ; 14: 1172048, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37229191

RESUMEN

Introduction: The unpredictable evolution of avian influenza viruses (AIVs) presents an ongoing threat to agricultural production and public and wildlife health. Severe outbreaks of highly pathogenic H5N1 viruses in US poultry and wild birds since 2022 highlight the urgent need to understand the changing ecology of AIV. Surveillance of gulls in marine coastal environments has intensified in recent years to learn how their long-range pelagic movements potentially facilitate inter-hemispheric AIV movements. In contrast, little is known about inland gulls and their role in AIV spillover, maintenance, and long-range dissemination. Methods: To address this gap, we conducted active AIV surveillance in ring-billed gulls (Larus delawarensis) and Franklin's gulls (Leucophaeus pipixcan) in Minnesota's natural freshwater lakes during the summer breeding season and in landfills during fall migration (1,686 samples). Results: Whole-genome AIV sequences obtained from 40 individuals revealed three-lineage reassortants with a mix of genome segments from the avian Americas lineage, avian Eurasian lineage, and a global "Gull" lineage that diverged more than 50 years ago from the rest of the AIV global gene pool. No poultry viruses contained gull-adapted H13, NP, or NS genes, pointing to limited spillover. Geolocators traced gull migration routes across multiple North American flyways, explaining how inland gulls imported diverse AIV lineages from distant locations. Migration patterns were highly varied and deviated far from assumed "textbook" routes. Discussion: Viruses circulating in Minnesota gulls during the summer breeding season in freshwater environments reappeared in autumn landfills, evidence of AIV persistence in gulls between seasons and transmission between habitats. Going forward, wider adoption of technological advances in animal tracking devices and genetic sequencing is needed to expand AIV surveillance in understudied hosts and habitats.

12.
Front Vet Sci ; 10: 1079918, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36908521

RESUMEN

Introduction: Diagnostic test evaluation for African swine fever (ASF) in field settings like Vietnam is critical to understanding test application in intended populations for surveillance and control strategies. Bayesian latent class analysis (BLCA) uses the results of multiple imperfect tests applied to an individual of unknown disease status to estimate the diagnostic sensitivity and specificity of each test, forgoing the need for a reference test. Methods: Here, we estimated and compared the diagnostic sensitivity and specificity of a novel indirect ELISA (iELISA) for ASF virus p30 antibody (Innoceleris LLC.) and the VetAlert™ ASF virus DNA Test Kit (qPCR, Tetracore Inc.) in field samples from Vietnam by assuming that disease status 1) is known and 2) is unknown using a BLCA model. In this cross-sectional study, 398 paired, individual swine serum/oral fluid (OF) samples were collected from 30 acutely ASF-affected farms, 37 chronically ASF-affected farms, and 20 ASF-unaffected farms in Vietnam. Samples were tested using both diagnostic assays. Diagnostic sensitivity was calculated assuming samples from ASF-affected farms were true positives and diagnostic sensitivity by assuming samples from unaffected farms were true negatives. ROC curves were plotted and AUC calculated for each test/sample combination. For comparison, a conditionally dependent, four test/sample combination, three population BLCA model was fit. Results: When considering all assumed ASF-affected samples, qPCR sensitivity was higher for serum (65.2%, 95% Confidence Interval [CI] 58.1-71.8) and OF (52%, 95%CI 44.8-59.2) compared to the iELISA (serum: 42.9%, 95%CI 35.9-50.1; OF: 33.3%, 95%CI 26.8-40.4). qPCR-serum had the highest AUC (0.895, 95%CI 0.863-0.928). BLCA estimates were nearly identical to those obtained when assuming disease status and were robust to changes in priors. qPCR sensitivity was considerably higher than ELISA in the acutely-affected population, while ELISA sensitivity was higher in the chronically-affected population. Specificity was nearly perfect for all test/sample types. Discussion: The effect of disease chronicity on sensitivity and specificity could not be well characterized here due to limited data, but future studies should aim to elucidate these trends to understand the best use of virus and antibody detection methods for ASF. Results presented here will help the design of surveillance and control strategies in Vietnam and other countries affected by ASF.

13.
Front Vet Sci ; 9: 1011975, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36337199

RESUMEN

Senecavirus A (SVA) is a non-enveloped, single-stranded, positive-sense RNA virus belonging to the Picornaviridae family. Senecavirus A is constantly associated with outbreaks of vesicular disease in pigs and has been reported in several countries since its first large-scale outbreak in 2014. Senecavirus A's clinical disease and lesions are indistinguishable from other vesicular foreign animal diseases (FAD). Therefore, an FAD investigation needs to be conducted for every SVA case. For this reason, SVA has been attributed as the cause of an alarming increase in the number of yearly FAD investigations performed by the United States Department of Agriculture (USDA). The objectives of this study were to estimate the seroprevalence of SVA antibodies in breeding and growing pig farms in the United States and to determine the farm-level risk factors associated with seropositivity. A total of 5,794 blood samples were collected from 98 and 95 breeding and growing pig farms in 17 states. A farm characteristics questionnaire was sent to all farms, to which 80% responded. The responses were used to conduct logistic regression analyses to assess the risk factors associated with SVA seropositivity. The estimated farm-level seroprevalences were 17.3% and 7.4% in breeding and growing pig farms, respectively. Breeding farms had 2.64 times higher odds of SVA seropositivity than growing pig farms. One key risk factor identified in breeding farms was the practice of rendering dead animal carcasses. However, the adoption of a higher number of farm biosecurity measures was associated with a protective effect against SVA seropositivity in breeding farms.

14.
Zoonoses Public Health ; 69(5): 560-571, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35445551

RESUMEN

Interspecies transmission of influenza A virus (IAV) between pigs and people represents a threat to both animal and public health. To better understand the risks of influenza transmission at the human-animal interface, we evaluated 1) the rate of IAV detection in swine farmworkers before and after work during two human influenza seasons, 2) assessed risk factors associated with IAV detection in farmworkers and 3) characterized the genetic sequences of IAV detected in both workers and pigs. Of 58 workers providing nasal passage samples during 8-week periods during the 2017/18 and 2018/19 influenza seasons, 33 (57%) tested positive by rRT-PCR at least once. Sixteen (27%) workers tested positive before work and 24 (41%) after work. At the sample level, 58 of 1,785 nasal swabs (3.2%) tested rRT-PCR positive, of which 20 of 898 (2.2%) were collected prior to work and 38 of 887 (4.3%) after work. Although farmworkers were more likely to test positive at the end of the working day (OR = 1.98, 95% CI 1.14-3.41), there were no influenza-like illness (ILI) symptoms, or other risk indicators, associated with IAV detection before or after reporting to work. Direct whole-genome sequencing from samples obtained from worker nasal passages indicated evidence of infection of a worker with pandemic 2009 H1N1 of human-origin IAV (H1-pdm 1A 3.3.2) when reporting to work, and exposure of several workers to a swine-origin IAV (H1-alpha 1A 1.1) circulating in the pigs on the farm where they were employed. Our study provides evidence of 1) risk of IAV transmission between pigs and people, 2) pandemic H1N1 IAV infected workers reporting to work and 3) workers exposed to swine harbouring swine-origin IAV in their nasal passages temporarily. Overall, our results emphasize the need to implement surveillance and transmission preventive protocols at the pig/human interface.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Virus de la Influenza A , Gripe Humana , Infecciones por Orthomyxoviridae , Enfermedades de los Porcinos , Animales , Agricultores , Humanos , Subtipo H1N1 del Virus de la Influenza A/genética , Virus de la Influenza A/genética , Gripe Humana/epidemiología , Infecciones por Orthomyxoviridae/epidemiología , Infecciones por Orthomyxoviridae/veterinaria , Porcinos
15.
Elife ; 112022 09 02.
Artículo en Inglés | MEDLINE | ID: mdl-36052992

RESUMEN

Although vaccination is broadly used in North American swine breeding herds, managing swine influenza is challenging primarily due to the continuous evolution of influenza A virus (IAV) and the ability of the virus to transmit among vaccinated pigs. Studies that have simultaneously assessed the impact of vaccination on the emergence of IAV reassortment and genetic variation in pigs are limited. Here, we directly sequenced 28 bronchoalveolar lavage fluid (BALF) samples collected from vaccinated and unvaccinated pigs co-infected with H1N1 and H3N2 IAV strains, and characterized 202 individual viral plaques recovered from 13 BALF samples. We identified 54 reassortant viruses that were grouped in 17 single and 16 mixed genotypes. Notably, we found that prime-boost vaccinated pigs had less reassortant viruses than nonvaccinated pigs, likely due to a reduction in the number of days pigs were co-infected with both challenge viruses. However, direct sequencing from BALF samples revealed limited impact of vaccination on viral variant frequency, evolutionary rates, and nucleotide diversity in any IAV coding regions. Overall, our results highlight the value of IAV vaccination not only at limiting virus replication in pigs but also at protecting public health by restricting the generation of novel reassortants with zoonotic and/or pandemic potential.


Swine influenza A viruses cause severe illness among pigs and financial losses on pig farms worldwide. These viruses can also infect humans and have caused deadly human pandemics in the past. Influenza A viruses are dangerous because viruses can be transferred between humans, birds and pigs. These co-infections can allow the viruses to swap genetic material. Viral genetic exchanges can result in new virus strains that are more dangerous or that can infect other types of animals more easily. Farmers vaccinate their pigs to control the swine influenza A virus. The vaccines are regularly updated to match circulating virus strains. But the virus evolves rapidly to escape vaccine-induced immunity, and infections are common even in vaccinated pigs. Learning about how vaccination affects the evolution of influenza A viruses in pigs could help scientists prevent outbreaks on pig farms and avoid spillover pandemics in humans. Li et al. show that influenza A viruses are less likely to swap genetic material in vaccinated and boosted pigs than in unvaccinated animals. In the experiments, Li et al. collected swine influenza A samples from the lungs of pigs that had received different vaccination protocols. Next, Li et al. used next-generation sequencing to identify new mutations in the virus or genetic swaps among different strains. In pigs infected with both the H1N1 and H3N2 strains of influenza, the two viruses began trading genes within a week. But less genetic mixing occurred in vaccinated and boosted pigs because they spent less time infected with both viruses than in unvaccinated pigs. The vaccination status of the pig did not have much effect on how many new mutations occurred in the viruses. The experiments show that vaccinating and boosting pigs against influenza A viruses may protect against genetic swapping among influenza viruses. If future studies on pig farms confirm the results, the information gleaned from the study could help scientists improve farm vaccine protocols to further reduce influenza risks to animals and people.


Asunto(s)
Subtipo H1N1 del Virus de la Influenza A , Virus de la Influenza A , Infecciones por Orthomyxoviridae , Enfermedades de los Porcinos , Animales , Subtipo H1N1 del Virus de la Influenza A/genética , Subtipo H3N2 del Virus de la Influenza A/genética , Virus de la Influenza A/genética , Infecciones por Orthomyxoviridae/prevención & control , Infecciones por Orthomyxoviridae/veterinaria , Virus Reordenados/genética , Porcinos , Enfermedades de los Porcinos/prevención & control , Vacunación/veterinaria
16.
Open Vet J ; 12(6): 787-796, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36650882

RESUMEN

Background: African swine fever (ASF) is one of the most important foreign animal diseases to the U.S. swine industry. Stakeholders in the swine production sector are on high alert as they witness the devastation of ongoing outbreaks in some of its most important trade partner countries. Efforts to improve preparedness for ASF outbreak management are proceeding in earnest and mathematical modeling is an integral part of these efforts. Aim: This study aimed to assess the impact on within-herd transmission dynamics of ASF when the models used to simulate transmission assume there is homogeneous mixing of animals within a barn. Methods: Barn-level heterogeneity was explicitly captured using a stochastic, individual pig-based, heterogeneous transmission model that considers three types of infection transmission, (1) within-pen via nose-to-nose contact; (2) between-pen via nose-to-nose contact with pigs in adjacent pens; and (3) both between- and within-pen via distance-independent mechanisms (e.g., via fomites). Predictions were compared between the heterogeneous and the homogeneous Gillespie models. Results: Results showed that the predicted mean number of infectious pigs at specific time points differed greatly between the homogeneous and heterogeneous models for scenarios with low levels of between-pen contacts via distance-independent pathways and the differences between the two model predictions were more pronounced for the slow contact rate scenario. The heterogeneous transmission model results also showed that it may take significantly longer to detect ASF, particularly in large barns when transmission predominantly occurs via nose-to-nose contact between pigs in adjacent pens. Conclusion: The findings emphasize the need for completing preliminary explorations when working with homogeneous mixing models to ascertain their suitability to predict disease outcomes.


Asunto(s)
Virus de la Fiebre Porcina Africana , Fiebre Porcina Africana , Enfermedades de los Porcinos , Porcinos , Animales , Fiebre Porcina Africana/epidemiología , Brotes de Enfermedades/veterinaria , Enfermedades de los Porcinos/epidemiología
17.
Transbound Emerg Dis ; 68(1): 62-75, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-32187882

RESUMEN

Suckling piglets play an important role at maintaining influenza A virus (IAV) infections in breeding herds and disseminating them to other farms at weaning. However, the role they play at weaning to support and promote genetic variability of IAV is not fully understood. The objective here was to evaluate the genetic diversity of IAV in pigs at weaning in farms located in the Midwestern USA. Nasal swabs (n = 9,090) collected from piglets in breed-to-wean farms (n = 52) over a six-month period across seasons were evaluated for the presence of IAV. Nasal swabs (n = 391) from 23 IAV-positive farms were whole-genome sequenced. Multiple lineages of HA (n = 7) and NA (n = 3) were identified in 96% (22/23) and 61% (237/391) of the investigated farms and individual piglets, respectively. Co-circulation of multiple types of functional HA and NA was identified in most (83%) farms. Whole IAV genomes were completed for 126 individual piglet samples and 25 distinct and 23 mixed genotypes were identified, highlighting significant genetic variability of IAV in piglets. Co-circulation of IAV in the farms and co-infection of individual piglets at weaning was observed at multiple time points over the investigation period and appears to be common in the investigated farms. Statistically significant genetic variability was estimated within and between farms by AMOVA, and varying levels of diversity between farms were detected using the Shannon-Weiner Index. Results reported here demonstrate previously unreported levels of molecular complexity and genetic variability among IAV at the farm and piglet levels at weaning. Movement of such piglets infected at weaning may result in emergence of new strains and maintenance of endemic IAV infection in the US swine herds. Results presented here highlight the need for developing and implementing novel, effective strategies to prevent or control the introduction and transmission of IAV within and between farms in the country.


Asunto(s)
Genotipo , Virus de la Influenza A/genética , Infecciones por Orthomyxoviridae/veterinaria , Sus scrofa/fisiología , Enfermedades de los Porcinos/virología , Destete , Animales , Femenino , Masculino , Medio Oeste de Estados Unidos , Infecciones por Orthomyxoviridae/virología , Porcinos
18.
Prev Vet Med ; 188: 105257, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33472145

RESUMEN

Piglets prior to weaning play a central role in maintaining influenza infections in breeding herds and the use of nurse sows is a common practice to adopt piglets that fall behind and that otherwise would die. Transmission of influenza A virus (IAV) from nurse sows to adopted pigs has been reported experimentally, however, the importance of this route of transmission under field conditions has not yet been elucidated. A cohort study to assess the IAV status in nurse and control sows and their respective litters was carried out in three influenza positive breed-to-wean farms. A total of 94 control and 90 nurse sows were sampled by collecting udder skin wipes and oral swabs at enrollment (∼ 5-7 days after farrowing) and at weaning. Six piglets per litter were sampled randomly at enrollment, 2 days post-enrollment (DPE), 4 DPE, at day 14 of lactation (14DL) and at weaning. At enrollment, 76 % (69/91) of udder wipes and 3 % (3/89) of oral swabs from nurse sows were positive by rRT-PCR compared with 23 % (21/92) of udder wipes and 0 % (0/85) of oral swabs from control sows. Of the 94 control litters sampled, 11.7 %, 14.9 %, 22.9 %, 46.8 % and 63.9 % tested rRT-PCR IAV positive at enrollment, 2DPE, 4DPE, 14 DL and weaning, respectively. Corresponding prevalence for nurse sow litters were 12.2 %, 30.2 %, 37.0 %, 59.4 % and 56.4 %. The odds of IAV positivity were significantly higher (p < 0.05) for litters from nurse sows 2 DPE (odd ratio (OR) = 6.13, 95 % CI = 1.8-21.2), 4 DPE (OR = 5.5, 95 % CI = 1.7-17.8) and 14 DL (OR = 3.7, 95 % CI = 1.1-12.3). However, there were no differences in the proportion of positive samples at weaning. Moreover, approximately 18 % of the control sows and 11 % of nurse sows that tested IAV negative in oral swabs at enrollment, tested IAV positive at weaning. This study indicates that nurse sows can contribute to the transmission and perpetuation of IAV infections in pigs prior to weaning, particularly during the first week after adoption.


Asunto(s)
Crianza de Animales Domésticos/métodos , Virus de la Influenza A/fisiología , Infecciones por Orthomyxoviridae/veterinaria , Enfermedades de los Porcinos/transmisión , Animales , Estudios de Cohortes , Femenino , Iowa , Minnesota , Infecciones por Orthomyxoviridae/transmisión , Infecciones por Orthomyxoviridae/virología , Sus scrofa , Porcinos , Enfermedades de los Porcinos/virología
19.
Avian Dis ; 65(3): 474-482, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-34699146

RESUMEN

The 2015 highly pathogenic avian influenza (HPAI) H5N2 outbreak affected more than 200 Midwestern U.S. poultry premises. Although each affected poultry operation incurred substantial losses, some operations of the same production type and of similar scale had differences between one another in their ability to recognize evidence of the disease before formal diagnoses and in their ability to make proactive, farm-level disease containment decisions. In this case comparison study, we examine the effect of HPAI infection on two large egg production facilities and the epidemiologic and financial implications resulting from differences in detection and decision-making processes. Each egg laying facility had more than 1 million caged birds distributed among 18 barns on one premises (Farm A) and 17 barns on the other premises (Farm B). We examine how farm workers' awareness of disease signs, as well as how management's immediate or delayed decisions to engage in depopulation procedures, affected flock mortality, levels of environmental contamination, time intervals for re population, and farm profits on each farm. By predictive mathematical modeling, we estimated the time of virus introduction to examine how quickly infection was identified on the farms and then estimated associated contact rates within barns. We found that the farm that implemented depopulation immediately after detection of abnormal mortality (Farm A) was able to begin repopulation of barns 37 days sooner than the farm that began depopulation well after the detection of abnormally elevated mortality (Farm B). From average industry economic data, we determined that the loss associated with delayed detection using lost profit per day in relation to down time was an additional $3.3 million for Farm B when compared with Farm A.


Estudio retrospectivo de detección viral temprana y tardía y despoblación en granjas de gallinas de postura infectadas con el virus de la influenza aviar altamente patógeno durante el brote de H5N2 del año 2015 en los Estados Unidos. El brote de influenza aviar altamente patógena (HPAI) H5N2 del año 2015 afectó a más de 200 granjas avícolas del medio oeste de los Estados Unidos. Aunque cada operación avícola afectada incurrió en pérdidas sustanciales, algunas operaciones del mismo tipo de producción y de escala similar tuvieron diferencias entre sí en su capacidad para reconocer evidencias de la enfermedad antes de los diagnósticos formales y en su capacidad para realizar decisiones proactivas para la contención de la enfermedad a nivel de granja. En este estudio de caso, se examinó el efecto de la infección por influenza aviar altamente patógena en dos instalaciones grandes de producción de huevo y las implicaciones epidemiológicas y financieras que fueron resultado de los diferentes procesos de detección y toma de decisiones. Cada instalación de postura de huevo tenía más de un millón de aves enjauladas distribuidas en 18 casetas en una granja (Granja A) y 17 casetas en las otras instalaciones (Granja B). Se examinó cómo el conocimiento de los trabajadores agrícolas sobre los signos de la enfermedad, así como cómo las decisiones de manejo inmediatas o tardías para establecer procedimientos de despoblación, afectaron la mortalidad de las parvadas, los niveles de contaminación ambiental, los intervalos de tiempo para la repoblación y las ganancias en cada granja. Mediante un modelo matemático predictivo, se estimó el tiempo de introducción del virus para examinar la rapidez con la que se identificó la infección en las granjas y luego se estimaron las tasas de contacto asociadas dentro de las casetas. Se encontró que la granja que implementó la despoblación inmediatamente después de la detección de mortalidad anormal (Granja A) pudo comenzar la repoblación de las casetas 37 días antes que la granja que comenzó la despoblación mucho después de la detección de mortalidad anormalmente elevada (Granja B). A partir de los datos económicos promedio de la industria, se determinó que la pérdida asociada con la detección tardía utilizando las pérdidas de ganancias por día en relación con el tiempo de inactividad fue de $3.3 millones adicionales para la Granja B en comparación con la Granja A.


Asunto(s)
Subtipo H5N2 del Virus de la Influenza A , Gripe Aviar , Enfermedades de las Aves de Corral , Animales , Pollos , Brotes de Enfermedades/veterinaria , Granjas , Gripe Aviar/epidemiología , Enfermedades de las Aves de Corral/epidemiología , Estudios Retrospectivos , Estados Unidos/epidemiología
20.
Viruses ; 13(12)2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34960777

RESUMEN

Understanding the amount of virus shed at the flock level by birds infected with low pathogenicity avian influenza virus (LPAIV) over time can help inform the type and timing of activities performed in response to a confirmed LPAIV-positive premises. To this end, we developed a mathematical model which allows us to estimate viral shedding by 10,000 turkey toms raised in commercial turkey production in the United States, and infected by H7 LPAIV strains. We simulated the amount of virus shed orally and from the cloaca over time, as well as the amount of virus in manure. In addition, we simulated the threshold cycle value (Ct) of pooled oropharyngeal swabs from birds in the infected flock tested by real-time reverse transcription polymerase chain reaction. The simulation model predicted that little to no shedding would occur once the highest threshold of seroconversion was reached. Substantial amounts of virus in manure (median 1.5×108 and 5.8×109; 50% egg infectious dose) were predicted at the peak. Lastly, the model results suggested that higher Ct values, indicating less viral shedding, are more likely to be observed later in the infection process as the flock approaches recovery.


Asunto(s)
Gripe Aviar/virología , Pavos/virología , Esparcimiento de Virus , Animales , Gripe Aviar/transmisión , Modelos Teóricos , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda