Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Proc Natl Acad Sci U S A ; 119(27): e2119015119, 2022 Jul 05.
Artículo en Inglés | MEDLINE | ID: mdl-35759664

RESUMEN

Controlled electrobreakdown of graphene is important for the fabrication of stable nanometer-size tunnel gaps, large-scale graphene quantum dots, and nanoscale resistive switches, etc. However, owing to the complex thermal, electronic, and electrochemical processes at the nanoscale that dictate the rupture of graphene, it is difficult to generate conclusions from individual devices. We describe here a way to explore the statistical signature of the graphene electrobreakdown process. Such analysis tells us that feedback-controlled electrobreakdown of graphene in the air first shows signs of joule heating-induced cleaning followed by rupturing of the graphene lattice that is manifested by the lowering of its conductance. We show that when the conductance of the graphene becomes smaller than around 0.1 G0, the effective graphene notch width starts to decrease exponentially slower with time. Further, we show how this signature gets modified as we change the environment and or the substrate. Using statistical analysis, we show that the electrobreakdown under a high vacuum could lead to substrate modification and resistive-switching behavior, without the application of any electroforming voltage. This is attributed to the formation of a semiconducting filament that makes a Schottky barrier with the graphene. We also provide here the statistically extracted Schottky barrier threshold voltages for various substrate studies. Such analysis not only gives a better understanding of the electrobreakdown of graphene but also can serve as a tool in the future for single-molecule diagnostics.

2.
Nanoscale ; 13(13): 6513-6520, 2021 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-33885530

RESUMEN

Significant advances in the synthesis of low-dimensional materials with unique and tuneable electrical, optical and magnetic properties has led to an explosion of possibilities for realising hybrid nanomaterial devices with unconventional and desirable characteristics. However, the lack of ability to precisely integrate individual nanoparticles into devices at scale limits their technological application. Here, we report on a graphene nanogap based platform which employs the large electric fields generated around the point-like, atomically sharp nanogap electrodes to capture single nanoparticles from solution at predefined locations. We demonstrate how gold nanoparticles can be trapped and contacted to form single-electron transistors with a large coupling to a buried electrostatic gate. This platform offers a route to the creation of novel low-dimensional devices, nano- and optoelectronic applications, and the study of fundamental transport phenomena.

3.
Nat Commun ; 11(1): 5641, 2020 11 06.
Artículo en Inglés | MEDLINE | ID: mdl-33159061

RESUMEN

Single-molecule Förster Resonance Energy Transfer (smFRET) is a powerful technique capable of resolving both relative and absolute distances within and between structurally dynamic biomolecules. High instrument costs, and a lack of open-source hardware and acquisition software have limited smFRET's broad application by non-specialists. Here, we present the smfBox, a cost-effective confocal smFRET platform, providing detailed build instructions, open-source acquisition software, and full validation, thereby democratising smFRET for the wider scientific community.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda