RESUMEN
The order Lamniformes contains charismatic species such as the white shark Carcharodon carcharias and extinct megatooth shark Otodus megalodon, and is of particular interest given their influence on marine ecosystems, and because some members exhibit regional endothermy. However, there remains significant debate surrounding the prevalence and evolutionary origin of regional endothermy in the order, and therefore the development of phenomena such as gigantism and filter-feeding in sharks generally. Here we show a basal lamniform shark, the smalltooth sand tiger shark Odontaspis ferox, has centralized skeletal red muscle and a thick compact-walled ventricle; anatomical features generally consistent with regionally endothermy. This result, together with the recent discovery of probable red muscle endothermy in filter feeding basking sharks Cetorhinus maximus, suggests that this thermophysiology is more prevalent in the Lamniformes than previously thought, which in turn has implications for understanding the evolution of regional endothermy, gigantism, and extinction risk of warm-bodied shark species both past and present.
Asunto(s)
Gigantismo , Tiburones , Animales , Tiburones/fisiología , Ecosistema , Prevalencia , Músculo EsqueléticoRESUMEN
Despite their ban and restriction under the 2001 Stockholm Convention, persistent organic pollutants (POPs) are still widespread and pervasive in the environment. Releases of these toxic and bioaccumulative chemicals are ongoing, and their contribution to population declines of marine mammals is of global concern. To safeguard their survival, it is of paramount importance to understand the effectiveness of mitigation measures. Using one of the world's largest marine mammals strandings data sets, we combine published and unpublished data to examine pollutant concentrations in 11 species that stranded along the coast of Great Britain to quantify spatiotemporal trends over three decades and identify species and regions where pollutants pose the greatest threat. We find that although levels of pollutants have decreased overall, there is significant spatial and taxonomic heterogeneity such that pollutants remain a threat to biodiversity in several species and regions. Of individuals sampled within the most recent five years (2014-2018), 48% of individuals exhibited a concentration known to exceed toxic thresholds. Notably, pollutant concentrations are highest in long-lived, apex odontocetes (e.g., killer whales (Orcinus orca), bottlenose dolphins (Tursiops truncatus), and white-beaked dolphins (Lagenorhynchus albirostris)) and were significantly higher in animals that stranded on more industrialized coastlines. At the present concentrations, POPs are likely to be significantly impacting marine mammal health. We conclude that more effective international elimination and mitigation strategies are urgently needed to address this critical issue for the global ocean health.
Asunto(s)
Delfín Mular , Caniformia , Contaminantes Ambientales , Bifenilos Policlorados , Contaminantes Químicos del Agua , Orca , Animales , Contaminantes Químicos del Agua/toxicidad , Monitoreo del AmbienteRESUMEN
Three Odontaspis ferox (confirmed by mtDNA barcoding) were found in the English Channel and Celtic Sea in 2023 at Lepe, UK (50.7846, -1.3508), Kilmore Quay, Ireland (52.1714, -6.5937), and Lyme Bay, UK (50.6448, -2.9302). These are the first records of O. ferox in either country, and extend the species' range by over three degrees of latitude, to >52° N. They were ~275 (female), 433 (female), and 293 cm (male) total length, respectively. These continue a series of new records, possibly indicative of a climate change-induced shift in the species' range.
Asunto(s)
Tiburones , Masculino , Femenino , Animales , Tiburones/genética , Irlanda , ADN Mitocondrial/genética , Reino Unido , Cambio ClimáticoRESUMEN
Mapping and predicting the potential risk of fishing activities to large marine protected areas (MPAs), where management capacity is low but fish biomass may be globally important, is vital to prioritizing enforcement and maximizing conservation benefits. Drifting fish aggregating devices (dFADs) are a highly effective fishing method employed in purse seine fisheries that attract and accumulate biomass fish, making fish easier to catch. However, dFADs are associated with several negative impacts, including high bycatch rates and lost or abandoned dFADs becoming beached on sensitive coastal areas (e.g., coral reefs). Using Lagrangian particle modeling, we determined the potential transit of dFADs in a large MPA around the Chagos Archipelago in the central Indian Ocean. We then quantified the risk of dFADs beaching on the archipelago's reefs and atolls and determined the potential for dFADs to pass through the MPA, accumulate biomass while within, and export it into areas where it can be legally fished (i.e., transit). Over one-third (37.51%) of dFADs posed a risk of either beaching or transiting the MPA for >14 days, 17.70% posed a risk of beaching or transiting the MPA for >30 days, and 13.11% posed a risk of beaching or transiting the MPA for >40 days. Modeled dFADs deployed on the east and west of the perimeter were more likely to beach and have long transiting times (i.e., posed the highest risk). The Great Chagos Bank, the largest atoll in the archipelago, was the most likely site to be affected by dFADs beaching. Overall, understanding the interactions between static MPAs and drifting fishing gears is vital to developing suitable management plans to support enforcement of MPA boundaries and the functioning and sustainability of their associated biomass.
Riesgos para las Grandes Áreas Marinas Protegidas Ocasionados por los Dispositivos Agregadores de Peces a la Deriva Resumen El mapeo y la predicción del riesgo potencial que las actividades de pesca representan para las grandes áreas marinas (AMP), en donde la capacidad de manejo es baja pero la biomasa de peces puede ser de importancia global, son vitales para priorizar la aplicación y maximizar los beneficios de conservación. Los dispositivos agregadores de peces a la deriva (DAPds) son un método de pesca altamente efectivo y empleado en las pesquerías de redes de cerco. Estos dispositivos atraen y acumulan biomasa de peces, facilitando así la captura de peces. Sin embargo, los DAPd están asociados con varios impactos negativos, incluyendo tasas altas de captura accesoria y DAPd perdidos o abandonados que terminan varados en áreas costeras sensibles (p. ej.: arrecifes de coral). Mediante el modelado de partículas langrangianas, determinamos el tránsito potencial de los DAPd en una AMP grande alrededor del Archipiélago Chagos en el centro del Océano Índico. Después cuantificamos el riesgo de varamiento de los DAPd en los arrecifes y atolones del arrecife y determinamos el potencial que tienen los DAPd de pasar por la AMP, acumular biomasa durante el trayecto y exportarla a áreas en las que es legal su pesca (es decir, transitar). Más de un tercio (37.51%) de los DAPd representaron un riesgo de varamiento o tránsito a través de la AMP durante >14 días y el 17.70% representó un riesgo de varamiento o tránsito a través de la AMP durante >40 días. Los DAPd modelados desplegados en el este y en el oeste del perímetro tuvieron mayor probabilidad de varamiento o de tener tiempos de tránsito largos (es decir, representaron el riesgo más alto). El Gran Banco de Chagos, el atolón más grande en el archipiélago, fue el sitio con mayor probabilidad de ser afectado por el varamiento de los DAPd. En general, el entendimiento de las interacciones entre las AMP estáticas y el equipo de pesca a la deriva es vital para el desarrollo de planes de manejo adecuados para respaldar el cumplimiento de los límites de las AMP y el funcionamiento y sostenibilidad de la biomasa asociada a ellas.
Asunto(s)
Conservación de los Recursos Naturales , Explotaciones Pesqueras , Animales , Biomasa , Arrecifes de Coral , Peces , Océano ÍndicoRESUMEN
Polychlorinated biphenyls (PCBs) are toxic, persistent, and lipophilic chemical compounds that accumulate to high levels in harbor porpoises (Phocoena phocoena) and other cetaceans. It is important to monitor PCBs in wildlife, particularly in highly exposed populations to understand if concentrations are declining and how levels relate to toxicological thresholds and indices of health like infectious disease mortality. Here we show, using generalized additive models and tissue samples of 814 U.K.-stranded harbor porpoises collected between 1990 and 2017, that mean blubber PCB concentrations have fallen below the proposed thresholds for toxic effects. However, we found they are still associated with increased rates of infectious disease mortality such that an increase in PCB blubber concentrations of 1 mg kg-1 lipid corresponds with a 5% increase in risk of infectious disease mortality. Moreover, rates of decline and levels varied geographically, and the overall rate of decline is slow in comparison to other pollutants. We believe this is evidence of long-term preservation in the population and continued environmental contamination from diffuse sources. Our findings have serious implications for the management of PCB contamination in the U.K. and reinforce the need to prevent PCBs entering the marine environment to ensure that levels continue to decline.
Asunto(s)
Phocoena , Bifenilos Policlorados , Marsopas , Contaminantes Químicos del Agua , Tejido Adiposo , Animales , Animales SalvajesRESUMEN
Stable-isotope analyses (δ13 C, δ15 N and δ34 S) of multiple tissues (fin, muscle, red blood cells and plasma), revealed ontogenetic shifts in resource use by grey reef sharks Carcharhinus amblyrhynchos and resource partitioning with silvertip sharks Carcharhinus albimarginatus within the British Indian Ocean Territory marine protected area (MPA). Resource partitioning varied temporally, with C. albimarginatus feeding on more pelagic prey during October to January, potentially attributable to an influx of pelagic prey from outside the MPA at that time. Reef sharks may therefore be affected by processes outside an MPA, even if the sharks do not leave the MPA.
Asunto(s)
Conducta Animal , Tiburones/fisiología , África Oriental , Animales , Océano Índico , Isótopos/análisis , Isótopos/metabolismo , Funciones de Verosimilitud , Estaciones del Año , Tiburones/metabolismoRESUMEN
Coral reef ecosystems are highly threatened and can be extremely sensitive to the effects of climate change. Multiple shark species rely on coral reefs as important habitat and, as such, play a number of significant ecological roles in these ecosystems. How environmental stress impacts routine, site-attached reef shark behavior, remains relatively unexplored. Here, we combine 8 years of acoustic tracking data (2013-2020) from grey reef sharks resident to the remote coral reefs of the Chagos Archipelago in the Central Indian Ocean, with a satellite-based index of coral reef environmental stress exposure. We show that on average across the region, increased stress on the reefs significantly reduces grey reef shark residency, promoting more diffuse space use and increasing time away from shallow forereefs. Importantly, this impact has a lagged effect for up to 16 months. This may have important physiological and conservation consequences for reef sharks, as well as broader implications for reef ecosystem functioning. As climate change is predicted to increase environmental stress on coral reef ecosystems, understanding how site-attached predators respond to stress will be crucial for forecasting the functional significance of altering predator behavior and the potential impacts on conservation for both reef sharks and coral reefs themselves.
Asunto(s)
Cambio Climático , Arrecifes de Coral , Tiburones , Estrés Fisiológico , Animales , Tiburones/fisiología , Océano Índico , Ecosistema , Conservación de los Recursos NaturalesRESUMEN
Polychlorinated biphenyls (PCBs) are highly toxic and persistent aquatic pollutants that are known to bioaccumulate in a variety of marine mammals. They have been associated with reduced recruitment rates and population declines in multiple species. Evidence to date documents effects of PCB exposures on female reproduction, but few studies have investigated whether PCB exposure impacts male fertility. Using blubber tissue samples of 99 adult and 168 juvenile UK-stranded harbour porpoises (Phocoena phocoena) collected between 1991 and 2017, here we show that PCBs exposures are associated with reduced testes weights in adults with good body condition. In animals with poor body condition, however, the impact of PCBs on testes weights was reduced, conceivably due to testes weights being limited by nutritional stress. This is the first study to investigate the relationship between PCB contaminant burden and testes weights in cetaceans and represents a substantial advance in our understanding of the relationship between PCB exposures and male reproductive biology in cetaceans. As testes weight is a strong indicator of male fertility in seasonally breeding mammals, we suggest the inclusion of such effects in population level impact assessments involving PCB exposures. Given the re-emergent PCB threat our findings are globally significant, with potentially serious implications for long-lived mammals. We show that more effective PCB controls could have a substantial impact on the reproductive health of coastal cetacean species and that management actions may need to be escalated to ensure adequate protection of the most vulnerable cetacean populations.
Asunto(s)
Phocoena , Bifenilos Policlorados , Marsopas , Testículo/efectos de los fármacos , Contaminantes Químicos del Agua , Animales , Masculino , Bifenilos Policlorados/análisis , Bifenilos Policlorados/toxicidad , Contaminantes Químicos del Agua/análisis , Contaminantes Químicos del Agua/toxicidadRESUMEN
A wide array of technologies are available for gaining insight into the movement of wild aquatic animals. Although acoustic telemetry can lack the fine-scale spatial resolution of some satellite tracking technologies, the substantially longer battery life can yield important long-term data on individual behavior and movement for low per-unit cost. Typically, however, receiver arrays are designed to maximize spatial coverage at the cost of positional accuracy leading to potentially longer detection gaps as individuals move out of range between monitored locations. This is particularly true when these technologies are deployed to monitor species in hard-to-access locations.Here, we develop a novel approach to analyzing acoustic telemetry data, using the timing and duration of gaps between animal detections to infer different behaviors. Using the durations between detections at the same and different receiver locations (i.e., detection gaps), we classify behaviors into "restricted" or potential wider "out-of-range" movements synonymous with longer distance dispersal. We apply this method to investigate spatial and temporal segregation of inferred movement patterns in two sympatric species of reef shark within a large, remote, marine protected area (MPA). Response variables were generated using network analysis, and drivers of these movements were identified using generalized linear mixed models and multimodel inference.Species, diel period, and season were significant predictors of "out-of-range" movements. Silvertip sharks were overall more likely to undertake "out-of-range" movements, compared with gray reef sharks, indicating spatial segregation, and corroborating previous stable isotope work between these two species. High individual variability in "out-of-range" movements in both species was also identified.We present a novel gap analysis of telemetry data to help infer differential movement and space use patterns where acoustic coverage is imperfect and other tracking methods are impractical at scale. In remote locations, inference may be the best available tool and this approach shows that acoustic telemetry gap analysis can be used for comparative studies in fish ecology, or combined with other research techniques to better understand functional mechanisms driving behavior.
RESUMEN
We report the first mitochondrial genome sequences for the gray reef shark, Carcharhinus amblyrhynchos. Two specimens from the British Indian Ocean Territory were sequenced independently using two different next generation sequencing methods, namely short read sequencing on the Illumina HiSeq and long read sequencing on the Oxford Nanopore Technologies' MinION sequencer. The two sequences are 99.9% identical and are 16,705 base pairs (bp) and 16,706 bp in length. The mitogenome contains 22 tRNA genes, two rRNA genes, 13 protein-coding genes and two non-coding regions; the control region and the origin of light-strand replication (OL).
RESUMEN
The Chagos archipelago in the British Indian Ocean Territory (BIOT) has been lacking in detailed genetic studies of its chondrichthyan populations. Chondrichthyes in Chagos continue to be endangered through illegal fishing operations, necessitating species distribution and abundance studies to facilitate urgent monitoring and conservation of the species. Here, we present a complete mitochondrial genome of the Silvertip Shark, Carcharhinus albimarginatus sampled in the Chagos archipelago. The mitochondrial genome of C. albimarginatus was 16,706 bp in length and consisted of 13 protein-coding genes, 22 tRNA genes, two rRNA genes, a replication origin and a D-loop region. GC content was at 38.7% and the control region was 1,065 bp in length. We expect that mitogenomes presented here will aid development of molecular assays for species distribution studies. Overall these studies will promote effective conservation of marine ecosystemes in the BIOT.
RESUMEN
Polychlorinated biphenyls (PCBs) are a group of 209 persistent and bio-accumulative toxic pollutants present as complex mixtures in human and animal tissues. Harbor porpoises accumulate some of the highest levels of PCBs because they are long-lived mammals that feed at a high trophic level. Studies typically use the sum of a suite of individual chlorobiphenyl congeners (CBs) to investigate PCBs in wildlife. However, toxic effects and thresholds of CB congeners differ, therefore population health risks of exposure may be under or over-estimated dependent on the congener profiles present. In this study, we found congener profiles varied with age, sex and location, particularly between adult females and juveniles. We found that adult females had the highest proportions of octa-chlorinated congeners whilst juveniles had the highest proportions of tri- and tetra-chlorinated congeners. This is likely to be a consequence of pollutant offloading between mothers and calves during lactation. Analysis of the individual congener toxicities found that juveniles were exposed to a more neurotoxic CB mixture at a time when they were most vulnerable to its effects. These findings are an important contribution towards our understanding of variation in congener profiles and the potential effects and threats of PCB exposure in cetaceans.
Asunto(s)
Phocoena , Animales , Animales Salvajes , Contaminantes Ambientales , Femenino , Bifenilos Policlorados , Reino UnidoRESUMEN
Scientific monitoring has recorded only a recent fraction of the oceans' alteration history. This biases our understanding of marine ecosystems. Remote coral reef ecosystems are often considered pristine because of high shark abundance. However, given the long history and global nature of fishing, sharks' vulnerability, and the ecological consequences of shark declines, these states may not be natural. In the Chagos archipelago, one of the remotest coral reef systems on the planet, protected by a very large marine reserve, we integrated disparate fisheries and scientific survey data to reconstruct baselines and long-term population trajectories of two dominant sharks. In 2012, we estimated 571,310 gray reef and 31,693 silvertip sharks, about 79 and 7% of their baseline levels. These species were exploited longer and more intensively than previously thought and responded to fishing and protection with variable and compensatory population trajectories. Our approach highlights the value of integrative and historical analyses to evaluate large marine ecosystems currently considered pristine.
Asunto(s)
Conservación de los Recursos Naturales , Arrecifes de Coral , Tiburones/fisiología , Animales , Biodiversidad , Islas , Factores de TiempoRESUMEN
On 1st April 2010, the British Government announced designation of the British Indian Ocean Territory--or Chagos Archipelago--as the world's largest marine protected area (MPA). This near pristine ocean ecosystem now represents 16% of the worlds fully protected coral reef, 60% of the world's no-take protected areas and an uncontaminated reference site for ecological studies. In addition these gains for biodiversity conservation, the Chagos/BIOT MPA also offers subsidiary opportunities to act as a fisheries management tool for the western Indian Ocean, considering its size and location. While the benefits of MPAs for coral-reef dwelling species are established, there is uncertainty about their effects on pelagic migratory species. This paper reviews the increasing body of evidence to demonstrate that positive, measurable reserve effects exist for pelagic populations and that migratory species can benefit from no-take marine reserves.