Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Biotechnol Appl Biochem ; 69(2): 479-491, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33580532

RESUMEN

Our novel strategy for the rational design of immobilized derivatives (RDID) is directed to predict the behavior of the protein immobilized derivative before its synthesis, by the usage of mathematic algorithms and bioinformatics tools. However, this approach needs to be validated for each target enzyme. The objective of this work was to validate the RDID strategy for covalent immobilization of the enzyme laccase from Trametes maxima MUCL 44155 on glyoxyl- and monoaminoethyl-N-aminoethyl (MANA)-Sepharose CL 4B supports. Protein surface clusters, more probable configurations of the protein-supports systems at immobilization pHs, immobilized enzyme activity, and protein load were predicted by RDID1.0 software. Afterward, immobilization was performed and predictions were experimentally confirmed. As a result, the laccase-MANA-Sepharose CL 4B immobilized derivative is better than laccase-glyoxyl-Sepharose CL 4B in predicted immobilized derivative activity (63.6% vs. 29.5%). Activity prediction was confirmed by an experimentally expressed enzymatic activity of 68%, using 2,6-dimethoxyphenol as substrate. Experimental maximum protein load matches the estimated value (11.2 ± 1.3 vs. 12.1 protein mg/support mL). The laccase-MANA-Sepharose CL 4B biocatalyst has a high specificity for the acid blue 62 colorant. The results obtained in this work suggest the possibility of using this biocatalyst for wastewater treatment.


Asunto(s)
Lacasa , Trametes , Estabilidad de Enzimas , Enzimas Inmovilizadas/metabolismo , Concentración de Iones de Hidrógeno , Lacasa/metabolismo , Polyporaceae , Sefarosa/análogos & derivados
2.
Enzyme Microb Technol ; 171: 110323, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37703637

RESUMEN

Acylases catalyze the hydrolysis of amide bonds. Penicillin G acylase (PGA) is used for the semi-synthesis of penicillins and cephalosporins. Although protein immobilization increases enzyme stability, the design of immobilized systems is difficult and usually it is empirically performed. We describe a novel application of our strategy for the Rational Design of Immobilized Derivatives (RDID) to produce optimized acylase-based immobilized biocatalysts for enzymatic bioconversion. We studied the covalent immobilization of the porcine kidney aminoacylase-1 onto aldehyde-based supports. Predictions of the RDID1.0 software and the experimental results led to the selection of glyoxyl-Sepharose CL 4B support and pH 10.0. One of the predicted clusters of reactive amino groups generates an enzyme-support configuration with highly accessible active sites, contributing with 82% of the biocatalyst's total activity. For Escherichia coli PGA, the predictions and experimental results show similar maximal amounts of immobilized protein and activity at pH 8.0 and 10.0 on glyoxyl-Sepharose CL 10B. However, thermal stability of the immobilized derivative is higher at pH 10.0 due to an elevated probability of multipoint covalent attachment. In this case, two clusters of amino groups are predicted to be relevant for PGA immobilization in catalytically competent configurations at pH 10.0, showing accessible active sites and contributing with 36% and 44% of the total activity, respectively. Our results support the usefulness of the RDID strategy to model different protein engineering approaches (site-directed mutagenesis or obtainment of fusion proteins) and select the most promising ones, saving time and laboratory work, since the in silico-designed modified proteins could have higher probabilities of success on bioconversion processes.


Asunto(s)
Enzimas Inmovilizadas , Penicilina Amidasa , Animales , Porcinos , Enzimas Inmovilizadas/metabolismo , Amidohidrolasas/metabolismo , Estabilidad de Enzimas , Escherichia coli/metabolismo , Concentración de Iones de Hidrógeno , Penicilina Amidasa/química
3.
Methods Mol Biol ; 1835: 243-283, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30109657

RESUMEN

Immobilization of lipases and phospholipases, mainly on water-insoluble carriers, helps in their economic reusing and in the development of continuous bioprocesses. Design of efficient lipase and phospholipase-immobilized systems is rather a difficult task. A lot of research work has been done in order to optimize immobilization techniques and procedures and to develop efficient immobilized systems. We conceived a new strategy for the rational design of immobilized derivatives (RDID) in favor of the successful synthesis of optimal lipase and phospholipase-immobilized derivatives, aiming the prediction of the immobilized derivative's functionality and the optimization of load studies. The RDID strategy begins with the knowledge of structural and functional features of synthesis components (protein and carrier) and the practical goal of the immobilized product. The RDID strategy was implemented in a software named RDID1.0. The employment of RDID allows selecting the most appropriate way to prepare immobilized derivatives more efficient in enzymatic bioconversion processes and racemic mixture resolution.


Asunto(s)
Enzimas Inmovilizadas , Lipasa , Fosfolipasas , Biología Sintética , Biocatálisis , Activación Enzimática , Interacciones Hidrofóbicas e Hidrofílicas , Lipasa/química , Lipasa/aislamiento & purificación , Lipasa/metabolismo , Modelos Moleculares , Fosfolipasas/química , Fosfolipasas/aislamiento & purificación , Fosfolipasas/metabolismo , Programas Informáticos , Relación Estructura-Actividad , Biología Sintética/métodos
4.
Methods Mol Biol ; 861: 343-82, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22426729

RESUMEN

Immobilization of lipases and phospholipases on, mainly, water insoluble carriers, helps in their economic reuse and in the development of continuous bioprocesses. Design of efficient lipases and phospholipases-immobilized system is rather a difficult task. A lot of research work has been done in order to optimize immobilization techniques and procedures and to develop an efficient immobilized system. A new rational design of immobilized derivatives strategy (RDID) has been conceived in favor of the successful synthesis of optimal lipases and phospholipases-immobilized derivatives, aiming prediction of the immobilized derivative's functionality and the optimization of load studies. RDID begins with the knowledge of structural and functional features of synthesis components (protein and carrier), and the practical goal of immobilized product. RDID was implemented in software named RDID ( 1.0 ). The employment of RDID allows selecting the most appropriate way to prepare immobilized derivatives more efficient in enzymatic bioconversion processes and racemic mixture resolution.


Asunto(s)
Enzimas Inmovilizadas/química , Modelos Moleculares , Fosfolipasas/química , Ingeniería de Proteínas/métodos , Programas Informáticos , Algoritmos , Animales , Aspergillus niger/química , Aspergillus niger/enzimología , Venenos de Abeja/química , Venenos de Abeja/enzimología , Abejas , Candida , Biología Computacional , Venenos Elapídicos/química , Venenos Elapídicos/enzimología , Elapidae , Lipasa/química , Proyectos de Investigación , Electricidad Estática , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda