Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Annu Rev Biochem ; 2024 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-38594920

RESUMEN

DEAD- and DExH-box ATPases (DDX/DHXs) are abundant and highly conserved cellular enzymes ubiquitously involved in RNA processing. By remodeling RNA-RNA and RNA-protein interactions, they often function as gatekeepers that control the progression of diverse RNA maturation steps. Intriguingly, most DDX/DHXs localize to membraneless organelles (MLOs) such as nucleoli, nuclear speckles, stress granules, or processing bodies. Recent findings suggest not only that localization to MLOs can promote interaction between DDX/DHXs and their targets but also that DDX/DHXs are key regulators of MLO formation and turnover through their condensation and ATPase activity.In this review, we describe the molecular function of DDX/DHXs in ribosome biogenesis, messenger RNA splicing, export, translation, and storage or decay as well as their association with prominent MLOs. We discuss how the enzymatic function of DDX/DHXs in RNA processing is linked to DDX/DHX condensation, the accumulation of ribonucleoprotein particles and MLO dynamics. Future research will reveal how these processes orchestrate the RNA life cycle in MLO space and DDX/DHX time.

2.
EMBO J ; 42(7): e112699, 2023 04 03.
Artículo en Inglés | MEDLINE | ID: mdl-36762427

RESUMEN

The assembly of ribosomal subunits is a highly orchestrated process that involves a huge cohort of accessory factors. Most eukaryotic ribosome biogenesis factors were first identified by genetic screens and proteomic approaches of pre-ribosomal particles in Saccharomyces cerevisiae. Later, research on human ribosome synthesis not only demonstrated that the requirement for many of these factors is conserved in evolution, but also revealed the involvement of additional players, reflecting a more complex assembly pathway in mammalian cells. Yet, it remained a challenge for the field to assign a function to many of the identified factors and to reveal their molecular mode of action. Over the past decade, structural, biochemical, and cellular studies have largely filled this gap in knowledge and led to a detailed understanding of the molecular role that many of the players have during the stepwise process of ribosome maturation. Such detailed knowledge of the function of ribosome biogenesis factors will be key to further understand and better treat diseases linked to disturbed ribosome assembly, including ribosomopathies, as well as different types of cancer.


Asunto(s)
Proteínas Ribosómicas , Proteínas de Saccharomyces cerevisiae , Humanos , Proteínas Ribosómicas/genética , Proteómica , Ribosomas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , ARN Ribosómico/genética , ARN Ribosómico/metabolismo
3.
Nucleic Acids Res ; 50(5): 2872-2888, 2022 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-35150276

RESUMEN

Ribosome assembly is an essential process that is linked to human congenital diseases and tumorigenesis. While great progress has been made in deciphering mechanisms governing ribosome biogenesis in eukaryotes, an inventory of factors that support ribosome synthesis in human cells is still missing, in particular regarding the maturation of the large 60S subunit. Here, we performed a genome-wide RNAi screen using an imaging-based, single cell assay to unravel the cellular machinery promoting 60S subunit assembly in human cells. Our screen identified a group of 310 high confidence factors. These highlight the conservation of the process across eukaryotes and reveal the intricate connectivity of 60S subunit maturation with other key cellular processes, including splicing, translation, protein degradation, chromatin organization and transcription. Intriguingly, we also identified a cluster of hits comprising metabolic enzymes of the polyamine synthesis pathway. We demonstrate that polyamines, which have long been used as buffer additives to support ribosome assembly in vitro, are required for 60S maturation in living cells. Perturbation of polyamine metabolism results in early defects in 60S but not 40S subunit maturation. Collectively, our data reveal a novel function for polyamines in living cells and provide a rich source for future studies on ribosome synthesis.


Asunto(s)
Poliaminas , Proteínas de Saccharomyces cerevisiae , Humanos , Poliaminas/metabolismo , Interferencia de ARN , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
4.
Nat Commun ; 12(1): 6211, 2021 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-34707094

RESUMEN

Ribosomal biogenesis has been studied by biochemical, genetic and electron microscopic approaches, but live cell data on the in vivo kinetics are still missing. Here we analyse the export kinetics of the large ribosomal subunit (pre-60S particle) through single NPCs in human cells. We established a stable cell line co-expressing Halo-tagged eIF6 and GFP-fused NTF2 to simultaneously label pre-60S particles and NPCs, respectively. By combining single molecule tracking and super resolution confocal microscopy we visualize the dynamics of single pre-60S particles during export through single NPCs. For export events, maximum particle accumulation is found in the centre of the pore, while unsuccessful export terminates within the nuclear basket. The export has a single rate limiting step and a duration of ∼24 milliseconds. Only about 1/3 of attempted export events are successful. Our results show that the mass flux through a single NPC can reach up to ~125 MDa·s-1 in vivo.


Asunto(s)
Poro Nuclear/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Transporte Activo de Núcleo Celular/efectos de los fármacos , Transporte Activo de Núcleo Celular/ética , Núcleo Celular/metabolismo , Factores Eucarióticos de Iniciación/genética , Factores Eucarióticos de Iniciación/metabolismo , Ácidos Grasos Insaturados/farmacología , Células HeLa , Humanos , Microscopía Confocal , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Biogénesis de Organelos , Proteínas Gestacionales/genética , Proteínas Gestacionales/metabolismo , Imagen Individual de Molécula
5.
Elife ; 102021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-34318747

RESUMEN

In humans and other holozoan organisms, the ribosomal protein eS30 is synthesized as a fusion protein with the ubiquitin-like protein FUBI. However, FUBI is not part of the mature 40S ribosomal subunit and cleaved off by an as-of-yet unidentified protease. How FUBI-eS30 processing is coordinated with 40S subunit maturation is unknown. To study the mechanism and importance of FUBI-eS30 processing, we expressed non-cleavable mutants in human cells, which affected late steps of cytoplasmic 40S maturation, including the maturation of 18S rRNA and recycling of late-acting ribosome biogenesis factors. Differential affinity purification of wild-type and non-cleavable FUBI-eS30 mutants identified the deubiquitinase USP36 as a candidate FUBI-eS30 processing enzyme. Depletion of USP36 by RNAi or CRISPRi indeed impaired FUBI-eS30 processing and moreover, purified USP36 cut FUBI-eS30 in vitro. Together, these data demonstrate the functional importance of FUBI-eS30 cleavage and identify USP36 as a novel protease involved in this process.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas , Ubiquitina Tiolesterasa/metabolismo , Ubiquitinas/metabolismo , Clonación Molecular , Eliminación de Gen , Células HeLa , Humanos , Procesamiento Postranscripcional del ARN , Proteínas Ribosómicas/genética , Ubiquitina Tiolesterasa/genética , Ubiquitinas/genética
6.
Elife ; 92020 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-32129764

RESUMEN

Establishment of translational competence represents a decisive cytoplasmic step in the biogenesis of 40S ribosomal subunits. This involves final 18S rRNA processing and release of residual biogenesis factors, including the protein kinase RIOK1. To identify novel proteins promoting the final maturation of human 40S subunits, we characterized pre-ribosomal subunits trapped on RIOK1 by mass spectrometry, and identified the deubiquitinase USP16 among the captured factors. We demonstrate that USP16 constitutes a component of late cytoplasmic pre-40S subunits that promotes the removal of ubiquitin from an internal lysine of ribosomal protein RPS27a/eS31. USP16 deletion leads to late 40S subunit maturation defects, manifesting in incomplete processing of 18S rRNA and retarded recycling of late-acting ribosome biogenesis factors, revealing an unexpected contribution of USP16 to the ultimate step of 40S synthesis. Finally, ubiquitination of RPS27a appears to depend on active translation, pointing at a potential connection between 40S maturation and protein synthesis.


Asunto(s)
Regulación de la Expresión Génica/fisiología , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas , Ubiquitina Tiolesterasa/metabolismo , Ubiquitinas/metabolismo , Clonación Molecular , Eliminación de Gen , Células HEK293 , Humanos , Biosíntesis de Proteínas , Proteínas Ribosómicas/genética , Ubiquitina Tiolesterasa/genética , Ubiquitinación , Ubiquitinas/genética
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda