Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Angew Chem Int Ed Engl ; 58(40): 14365-14373, 2019 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-31390131

RESUMEN

The synthesis of carboxylic acids is of fundamental importance in the chemical industry and the corresponding products find numerous applications for polymers, cosmetics, pharmaceuticals, agrochemicals, and other manufactured chemicals. Although hydroxycarbonylations of olefins have been known for more than 60 years, currently known catalyst systems for this transformation do not fulfill industrial requirements, for example, stability. Presented herein for the first time is an aqueous-phase protocol that allows conversion of various olefins, including sterically hindered and demanding tetra-, tri-, and 1,1-disubstituted systems, as well as terminal alkenes, into the corresponding carboxylic acids in excellent yields. The outstanding stability of the catalyst system (26 recycling runs in 32 days without measurable loss of activity), is showcased in the preparation of an industrially relevant fatty acid. Key-to-success is the use of a built-in-base ligand under acidic aqueous conditions. This catalytic system is expected to provide a basis for new cost-competitive processes for the industrial production of carboxylic acids.

2.
Angew Chem Int Ed Engl ; 56(39): 11976-11980, 2017 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-28766868

RESUMEN

A new class of palladium catalysts, based on heterocyclic diphosphines, was rationally designed and synthesized. Application of one of these catalysts allows novel Markovnikov-selective carbonylation of non-activated alkynes with heteroarenes to give the corresponding branched α,ß-unsaturated ketones in excellent yields (up to 97 %) and regioselectivities (b/l up to 99:1). In addition to heteroarenes, other common nucloephiles (alcohol, phenol, amine, and amide) furnish the desired carbonylation products smoothly in high yields.

3.
Chem Commun (Camb) ; 56(39): 5235-5238, 2020 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-32270163

RESUMEN

Hydroxy- and alkoxycarbonylation reactions constitute important industrial processes in homogeneous catalysis. Nowadays, palladium complexes constitute state-of-the-art catalysts for these transformations. Herein, we report the first efficient platinum-catalysed alkoxycarbonylations of olefins including sterically hindered and functionalized ones. This atom-efficient catalytic transformation provides straightforward access to a variety of valuable esters in good to excellent yields and often with high selectivities. In kinetic experiments the activities of Pd- and Pt-based catalysts were compared. Even at low catalyst loading, Pt shows high catalytic activity.

4.
Chem Sci ; 9(9): 2510-2516, 2018 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-29732128

RESUMEN

Mechanistic studies of the catalyst [Pd2(dba)3/1,1'-bis(tert-butyl(pyridin-2-yl)phosphanyl)ferrocene, L2] for olefin alkoxycarbonylation reactions are described. X-ray crystallography reveals the coordination of the pyridyl nitrogen atom in L2 to the palladium center of the catalytic intermediates. DFT calculations on the elementary steps of the industrially relevant carbonylation of ethylene (the Lucite α-process) indicate that the protonated pyridyl moiety is formed immediately, which facilitates the formation of the active palladium hydride complex. The insertion of ethylene and CO into this intermediate leads to the corresponding palladium acyl species, which is kinetically reversible. Notably, this key species is stabilized by the hemilabile coordination of the pyridyl nitrogen atom in L2. The rate-determining alcoholysis of the acyl palladium complex is substantially facilitated by metal-ligand cooperation. Specifically, the deprotonation of the alcohol by the built-in base of the ligand allows a facile intramolecular nucleophilic attack on the acyl palladium species concertedly. Kinetic measurements support this mechanistic proposal and show that the rate of the carbonylation step is zero-order dependent on ethylene and CO. Comparing CH3OD and CH3OH as nucleophiles suggests the involvement of (de)protonation in the rate-determining step.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda