Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Int J Mol Sci ; 22(18)2021 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-34576276

RESUMEN

Antimicrobial resistance is a growing public health concern that requires urgent action. Biofilm-associated resistance to antimicrobials begins at the attachment phase and increases as the biofilms maturate. Hence, interrupting the initial binding process of bacteria to surfaces is essential to effectively prevent biofilm-associated problems. Herein, we have evaluated the antibacterial and anti-biofilm activities of three ruthenium complexes in different oxidation states with 2-pyridin-2-yl-1H-benzimidazole (L1 = 2,2'-PyBIm): [(η6-p-cymene)RuIIClL1]PF6 (Ru(II) complex), mer-[RuIIICl3(CH3CN)L1]·L1·3H2O (Ru(III) complex), (H2L1)2[RuIIICl4(CH3CN)2]2[RuIVCl4(CH3CN)2]·2Cl·6H2O (Ru(III/IV) complex). The biological activity of the compounds was screened against Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa strains. The results indicated that the anti-biofilm activity of the Ru complexes at concentration of 1 mM was better than that of the ligand alone against the P. aeruginosa PAO1. It means that ligand, in combination with ruthenium ion, shows a synergistic effect. The effect of the Ru complexes on cell surface properties was determined by the contact angle and zeta potential values. The electric and physical properties of the microbial surface are useful tools for the examined aggregation phenomenon and disruption of the adhesion. Considering that intermolecular interactions are important and largely define the functions of compounds, we examined interactions in the crystals of the Ru complexes using the Hirshfeld surface analysis.


Asunto(s)
Antiinfecciosos/farmacología , Bencimidazoles/química , Biopelículas/efectos de los fármacos , Diseño de Fármacos , Piridinas/farmacología , Rutenio/química , Bencimidazoles/metabolismo , Bencimidazoles/farmacología , Línea Celular , Supervivencia Celular , Complejos de Coordinación/química , Evaluación Preclínica de Medicamentos , Electroquímica/métodos , Escherichia coli/efectos de los fármacos , Humanos , Concentración de Iones de Hidrógeno , Cinética , Ligandos , Pruebas de Sensibilidad Microbiana , Oxígeno/química , Pseudomonas aeruginosa/efectos de los fármacos , Piridinas/metabolismo , Staphylococcus aureus/efectos de los fármacos , Propiedades de Superficie
2.
Biofouling ; 35(1): 59-74, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30727772

RESUMEN

Pseudomonas aeruginosa biofilm-associated infections are a serious medical problem, and new compounds and therapies acting through novel mechanisms are much needed. Herein, the authors report a ruthenium(IV) complex that reduces P. aeruginosa PAO1 biofilm formation by 84%, and alters biofilm morphology and the living-to-dead cell ratio at 1 mM concentration. Including the compound in the culture medium altered the pigments secreted by PAO1, and fluorescence spectra revealed a decrease in pyoverdine. Scanning electron microscopy showed that the ruthenium complex did not penetrate the bacterial cell wall, but accumulated on external cell structures. Fluorescence quenching experiments indicated strong binding of the ruthenium complex to both plasmid DNA and bovine serum albumin. Formamidopyrimidine DNA N-glycosylase (Fpg) protein digestion of plasmid DNA isolated after ruthenium(IV) complex treatment revealed the generation of oxidative stress, which was further proved by the observed upregulation of catalase and superoxide dismutase gene expression.


Asunto(s)
Bencimidazoles/farmacología , Biopelículas/efectos de los fármacos , Estrés Oxidativo , Pseudomonas aeruginosa/efectos de los fármacos , Rutenio/farmacología , Sideróforos/química , Animales , Sitios de Unión , Bovinos , Pared Celular/efectos de los fármacos , Interacciones Hidrofóbicas e Hidrofílicas , Microscopía Electrónica de Rastreo , Modelos Teóricos , Oligopéptidos , Plásmidos/metabolismo , Infecciones por Pseudomonas/prevención & control , Pseudomonas aeruginosa/fisiología , Albúmina Sérica Bovina/química
3.
Arch Microbiol ; 198(9): 877-84, 2016 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-27262948

RESUMEN

Biofilms formed by Proteus mirabilis strains are a serious medical problem, especially in the case of urinary tract infections. Early stages of biofilm formation, such as reversible and irreversible adhesion, are essential for bacteria to form biofilm and avoid eradication by antibiotic therapy. Adhesion to solid surfaces is a complex process where numerous factors play a role, where hydrophobic and electrostatic interactions with solid surface seem to be substantial. Cell surface hydrophobicity and electrokinetic potential of bacterial cells depend on their surface composition and structure, where lipopolysaccharide, in Gram-negative bacteria, is prevailing. Our studies focused on clinical and laboratory P. mirabilis strains, where laboratory strains have determined LPS structures. Adherence and biofilm formation tests revealed significant differences between strains adhered in early stages of biofilm formation. Amounts of formed biofilm were expressed by the absorption of crystal violet. Higher biofilm amounts were formed by the strains with more negative values of zeta potential. In contrast, high cell surface hydrophobicity correlated with low biofilm amount.


Asunto(s)
Adhesión Bacteriana/fisiología , Biopelículas/crecimiento & desarrollo , Pared Celular/fisiología , Proteus mirabilis/fisiología , Electroforesis , Vidrio , Interacciones Hidrofóbicas e Hidrofílicas , Proteus mirabilis/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda