Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Cell ; 178(3): 567-584.e19, 2019 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-31348886

RESUMEN

The vaccine-mediated elicitation of antibodies (Abs) capable of neutralizing diverse HIV-1 strains has been a long-standing goal. To understand how broadly neutralizing antibodies (bNAbs) can be elicited, we identified, characterized, and tracked five neutralizing Ab lineages targeting the HIV-1-fusion peptide (FP) in vaccinated macaques over time. Genetic and structural analyses revealed two of these lineages to belong to a reproducible class capable of neutralizing up to 59% of 208 diverse viral strains. B cell analysis indicated each of the five lineages to have been initiated and expanded by FP-carrier priming, with envelope (Env)-trimer boosts inducing cross-reactive neutralization. These Abs had binding-energy hotspots focused on FP, whereas several FP-directed Abs induced by immunization with Env trimer-only were less FP-focused and less broadly neutralizing. Priming with a conserved subregion, such as FP, can thus induce Abs with binding-energy hotspots coincident with the target subregion and capable of broad neutralization.


Asunto(s)
Vacunas contra el SIDA/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Anti-VIH/inmunología , Péptidos/inmunología , Secuencia de Aminoácidos , Animales , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/clasificación , Linfocitos B/citología , Linfocitos B/metabolismo , Cristalografía por Rayos X , Femenino , Células HEK293 , Anticuerpos Anti-VIH/química , Anticuerpos Anti-VIH/clasificación , VIH-1/metabolismo , Humanos , Macaca mulatta , Masculino , Péptidos/química , Estructura Terciaria de Proteína , Productos del Gen env del Virus de la Inmunodeficiencia Humana/química , Productos del Gen env del Virus de la Inmunodeficiencia Humana/inmunología , Productos del Gen env del Virus de la Inmunodeficiencia Humana/metabolismo
2.
Mol Cell ; 83(20): 3692-3706.e5, 2023 10 19.
Artículo en Inglés | MEDLINE | ID: mdl-37832548

RESUMEN

The senataxin (SETX, Sen1 in yeasts) RNA-DNA hybrid resolving helicase regulates multiple nuclear transactions, including DNA replication, transcription, and DNA repair, but the molecular basis for Sen1 activities is ill defined. Here, Sen1 cryoelectron microscopy (cryo-EM) reconstructions reveal an elongated inchworm-like architecture. Sen1 is composed of an amino terminal helical repeat Sen1 N-terminal (Sen1N) regulatory domain that is flexibly linked to its C-terminal SF1B helicase motor core (Sen1Hel) via an intrinsically disordered tether. In an autoinhibited state, the Sen1Sen1N domain regulates substrate engagement by promoting occlusion of the RNA substrate-binding cleft. The X-ray structure of an activated Sen1Hel engaging single-stranded RNA and ADP-SO4 shows that the enzyme encircles RNA and implicates a single-nucleotide power stroke in the Sen1 RNA translocation mechanism. Together, our data unveil dynamic protein-protein and protein-RNA interfaces underpinning helicase regulation and inactivation of human SETX activity by RNA-binding-deficient mutants in ataxia with oculomotor apraxia 2 neurodegenerative disease.


Asunto(s)
Enfermedades Neurodegenerativas , ARN , Humanos , ARN/genética , Microscopía por Crioelectrón , ARN Helicasas/genética , ARN Helicasas/química , Enzimas Multifuncionales/genética , ADN/genética , Homeostasis , ADN Helicasas/genética
3.
Mol Cell ; 78(4): 683-699.e11, 2020 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-32386575

RESUMEN

Mycobacterium tuberculosis causes tuberculosis, a disease that kills over 1 million people each year. Its cell envelope is a common antibiotic target and has a unique structure due, in part, to two lipidated polysaccharides-arabinogalactan and lipoarabinomannan. Arabinofuranosyltransferase D (AftD) is an essential enzyme involved in assembling these glycolipids. We present the 2.9-Å resolution structure of M. abscessus AftD, determined by single-particle cryo-electron microscopy. AftD has a conserved GT-C glycosyltransferase fold and three carbohydrate-binding modules. Glycan array analysis shows that AftD binds complex arabinose glycans. Additionally, AftD is non-covalently complexed with an acyl carrier protein (ACP). 3.4- and 3.5-Å structures of a mutant with impaired ACP binding reveal a conformational change, suggesting that ACP may regulate AftD function. Mutagenesis experiments using a conditional knockout constructed in M. smegmatis confirm the essentiality of the putative active site and the ACP binding for AftD function.


Asunto(s)
Proteína Transportadora de Acilo/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Membrana Celular/metabolismo , Microscopía por Crioelectrón/métodos , Glicosiltransferasas/metabolismo , Mycobacterium smegmatis/enzimología , Proteína Transportadora de Acilo/genética , Proteínas Bacterianas/genética , Dominio Catalítico , Pared Celular/metabolismo , Galactanos/metabolismo , Glicosiltransferasas/genética , Lipopolisacáridos/metabolismo , Mutación , Mycobacterium smegmatis/genética , Mycobacterium smegmatis/crecimiento & desarrollo , Filogenia , Conformación Proteica , Especificidad por Sustrato
4.
Nature ; 569(7755): 280-283, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30971825

RESUMEN

Neurite self-recognition and avoidance are fundamental properties of all nervous systems1. These processes facilitate dendritic arborization2,3, prevent formation of autapses4 and allow free interaction among non-self neurons1,2,4,5. Avoidance among self neurites is mediated by stochastic cell-surface expression of combinations of about 60 isoforms of α-, ß- and γ-clustered protocadherin that provide mammalian neurons with single-cell identities1,2,4-13. Avoidance is observed between neurons that express identical protocadherin repertoires2,5, and single-isoform differences are sufficient to prevent self-recognition10. Protocadherins form isoform-promiscuous cis dimers and isoform-specific homophilic trans dimers10,14-20. Although these interactions have previously been characterized in isolation15,17-20, structures of full-length protocadherin ectodomains have not been determined, and how these two interfaces engage in self-recognition between neuronal surfaces remains unknown. Here we determine the molecular arrangement of full-length clustered protocadherin ectodomains in single-isoform self-recognition complexes, using X-ray crystallography and cryo-electron tomography. We determine the crystal structure of the clustered protocadherin γB4 ectodomain, which reveals a zipper-like lattice that is formed by alternating cis and trans interactions. Using cryo-electron tomography, we show that clustered protocadherin γB6 ectodomains tethered to liposomes spontaneously assemble into linear arrays at membrane contact sites, in a configuration that is consistent with the assembly observed in the crystal structure. These linear assemblies pack against each other as parallel arrays to form larger two-dimensional structures between membranes. Our results suggest that the formation of ordered linear assemblies by clustered protocadherins represents the initial self-recognition step in neuronal avoidance, and thus provide support for the isoform-mismatch chain-termination model of protocadherin-mediated self-recognition, which depends on these linear chains11.


Asunto(s)
Cadherinas/metabolismo , Cadherinas/ultraestructura , Microscopía por Crioelectrón , Neuronas/química , Neuronas/metabolismo , Animales , Cadherinas/química , Cadherinas/genética , Cristalografía por Rayos X , Liposomas/química , Liposomas/metabolismo , Ratones , Modelos Moleculares , Neuronas/ultraestructura , Dominios Proteicos , Multimerización de Proteína , Protocadherinas
5.
Proc Natl Acad Sci U S A ; 119(18): e2201433119, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35476528

RESUMEN

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike is a trimer of S1/S2 heterodimers with three receptor-binding domains (RBDs) at the S1 subunit for human angiotensin-converting enzyme 2 (hACE2). Due to their small size, nanobodies can recognize protein cavities that are not accessible to conventional antibodies. To isolate high-affinity nanobodies, large libraries with great diversity are highly desirable. Dromedary camels (Camelus dromedarius) are natural reservoirs of coronaviruses like Middle East respiratory syndrome CoV (MERS-CoV) that are transmitted to humans. Here, we built large dromedary camel VHH phage libraries to isolate nanobodies that broadly neutralize SARS-CoV-2 variants. We isolated two VHH nanobodies, NCI-CoV-7A3 (7A3) and NCI-CoV-8A2 (8A2), which have a high affinity for the RBD via targeting nonoverlapping epitopes and show broad neutralization activity against SARS-CoV-2 and its emerging variants of concern. Cryoelectron microscopy (cryo-EM) complex structures revealed that 8A2 binds the RBD in its up mode with a long CDR3 loop directly involved in the ACE2 binding residues and that 7A3 targets a deeply buried region that uniquely extends from the S1 subunit to the apex of the S2 subunit regardless of the conformational state of the RBD. At a dose of ≥5 mg/kg, 7A3 efficiently protected transgenic mice expressing hACE2 from the lethal challenge of variants B.1.351 or B.1.617.2, suggesting its therapeutic use against COVID-19 variants. The dromedary camel VHH phage libraries could be helpful as a unique platform ready for quickly isolating potent nanobodies against future emerging viruses.


Asunto(s)
COVID-19 , Anticuerpos de Dominio Único , Animales , Camelus , Humanos , Ratones , SARS-CoV-2/genética , Anticuerpos de Dominio Único/genética
6.
Nature ; 556(7699): 122-125, 2018 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-29512653

RESUMEN

The insulin receptor is a dimeric protein that has a crucial role in controlling glucose homeostasis, regulating lipid, protein and carbohydrate metabolism, and modulating brain neurotransmitter levels. Insulin receptor dysfunction has been associated with many diseases, including diabetes, cancer and Alzheimer's disease. The primary sequence of the receptor has been known since the 1980s, and is composed of an extracellular portion (the ectodomain, ECD), a single transmembrane helix and an intracellular tyrosine kinase domain. Binding of insulin to the dimeric ECD triggers auto-phosphorylation of the tyrosine kinase domain and subsequent activation of downstream signalling molecules. Biochemical and mutagenesis data have identified two putative insulin-binding sites, S1 and S2. The structures of insulin bound to an ECD fragment containing S1 and of the apo ectodomain have previously been reported, but details of insulin binding to the full receptor and the signal propagation mechanism are still not understood. Here we report single-particle cryo-electron microscopy reconstructions of the 1:2 (4.3 Å) and 1:1 (7.4 Å) complexes of the insulin receptor ECD dimer with insulin. The symmetrical 4.3 Å structure shows two insulin molecules per dimer, each bound between the leucine-rich subdomain L1 of one monomer and the first fibronectin-like domain (FnIII-1) of the other monomer, and making extensive interactions with the α-subunit C-terminal helix (α-CT helix). The 7.4 Å structure has only one similarly bound insulin per receptor dimer. The structures confirm the binding interactions at S1 and define the full S2 binding site. These insulin receptor states suggest that recruitment of the α-CT helix upon binding of the first insulin changes the relative subdomain orientations and triggers downstream signal propagation.


Asunto(s)
Microscopía por Crioelectrón , Insulina/química , Insulina/metabolismo , Multimerización de Proteína , Receptor de Insulina/química , Receptor de Insulina/ultraestructura , Apoproteínas/química , Apoproteínas/metabolismo , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Receptor de Insulina/metabolismo , Transducción de Señal , Imagen Individual de Molécula
7.
Proc Natl Acad Sci U S A ; 118(51)2021 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-34916296

RESUMEN

The human extracellular calcium-sensing (CaS) receptor controls plasma Ca2+ levels and contributes to nutrient-dependent maintenance and metabolism of diverse organs. Allosteric modulation of the CaS receptor corrects disorders of calcium homeostasis. Here, we report the cryogenic-electron microscopy reconstructions of a near-full-length CaS receptor in the absence and presence of allosteric modulators. Activation of the homodimeric CaS receptor requires a break in the transmembrane 6 (TM6) helix of each subunit, which facilitates the formation of a TM6-mediated homodimer interface and expansion of homodimer interactions. This transformation in TM6 occurs without a positive allosteric modulator. Two modulators with opposite functional roles bind to overlapping sites within the transmembrane domain through common interactions, acting to stabilize distinct rotamer conformations of key residues on the TM6 helix. The positive modulator reinforces TM6 distortion and maximizes subunit contact to enhance receptor activity, while the negative modulator strengthens an intact TM6 to dampen receptor function. In both active and inactive states, the receptor displays symmetrical transmembrane conformations that are consistent with its homodimeric assembly.


Asunto(s)
Calcio/metabolismo , Regulación de la Expresión Génica/fisiología , Homeostasis/fisiología , Receptores Sensibles al Calcio/metabolismo , Microscopía por Crioelectrón , Células HEK293 , Humanos , Modelos Moleculares , Conformación Proteica , Dominios Proteicos , Receptores Sensibles al Calcio/genética , Transducción de Señal
8.
Nat Methods ; 17(9): 897-900, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32778833

RESUMEN

We present an approach for preparing cryo-electron microscopy (cryo-EM) grids to study short-lived molecular states. Using piezoelectric dispensing, two independent streams of ~50-pl droplets of sample are deposited within 10 ms of each other onto the surface of a nanowire EM grid, and the mixing reaction stops when the grid is vitrified in liquid ethane ~100 ms later. We demonstrate this approach for four biological systems where short-lived states are of high interest.


Asunto(s)
Microscopía por Crioelectrón/métodos , Nanocables , Robótica , Manejo de Especímenes/métodos , Factores de Tiempo
9.
J Biol Chem ; 295(26): 8692-8705, 2020 06 26.
Artículo en Inglés | MEDLINE | ID: mdl-32265298

RESUMEN

Myelin protein P2 is a peripheral membrane protein of the fatty acid-binding protein family that functions in the formation and maintenance of the peripheral nerve myelin sheath. Several P2 gene mutations cause human Charcot-Marie-Tooth neuropathy, but the mature myelin sheath assembly mechanism is unclear. Here, cryo-EM of myelin-like proteolipid multilayers revealed an ordered three-dimensional (3D) lattice of P2 molecules between stacked lipid bilayers, visualizing supramolecular assembly at the myelin major dense line. The data disclosed that a single P2 layer is inserted between two bilayers in a tight intermembrane space of ∼3 nm, implying direct interactions between P2 and two membrane surfaces. X-ray diffraction from P2-stacked bicelle multilayers revealed lateral protein organization, and surface mutagenesis of P2 coupled with structure-function experiments revealed a role for both the portal region of P2 and its opposite face in membrane interactions. Atomistic molecular dynamics simulations of P2 on model membrane surfaces suggested that Arg-88 is critical for P2-membrane interactions, in addition to the helical lid domain. Negatively charged lipid headgroups stably anchored P2 on the myelin-like bilayer surface. Membrane binding may be accompanied by opening of the P2 ß-barrel structure and ligand exchange with the apposing bilayer. Our results provide an unprecedented view into an ordered, multilayered biomolecular membrane system induced by the presence of a peripheral membrane protein from human myelin. This is an important step toward deciphering the 3D assembly of a mature myelin sheath at the molecular level.


Asunto(s)
Proteína P2 de Mielina/química , Proteína P2 de Mielina/ultraestructura , Colesterol/metabolismo , Microscopía por Crioelectrón , Ácidos Grasos/metabolismo , Humanos , Membrana Dobles de Lípidos/metabolismo , Simulación de Dinámica Molecular , Proteína P2 de Mielina/genética , Proteína P2 de Mielina/metabolismo , Mutación Puntual , Unión Proteica , Conformación Proteica , Difracción de Rayos X
10.
Nat Methods ; 15(10): 793-795, 2018 10.
Artículo en Inglés | MEDLINE | ID: mdl-30250056

RESUMEN

Most protein particles prepared in vitreous ice for single-particle cryo-electron microscopy (cryo-EM) are adsorbed to air-water or substrate-water interfaces, which can cause the particles to adopt preferred orientations. By using a rapid plunge-freezing robot and nanowire grids, we were able to reduce some of the deleterious effects of the air-water interface by decreasing the dwell time of particles in thin liquid films. We demonstrated this by using single-particle cryo-EM and cryo-electron tomography (cryo-ET) to examine hemagglutinin, insulin receptor complex, and apoferritin.


Asunto(s)
Aire , Apoferritinas/ultraestructura , Microscopía por Crioelectrón/métodos , Hemaglutininas/ultraestructura , Receptor de Insulina/ultraestructura , Agua/química , Humanos
11.
J Struct Biol ; 202(2): 170-174, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29317278

RESUMEN

We have developed a self-blotting TEM grid for use with a novel instrument for vitrifying samples for cryo-electron microscopy (cryoEM). Nanowires are grown on the copper surface of the grid using a simple chemical reaction and the opposite smooth side is used to adhere to a holey sample substrate support, for example carbon or gold. When small volumes of sample are applied to the nanowire grids the wires effectively act as blotting paper to rapidly wick away the liquid, leaving behind a thin film. In this technical note, we present a detailed description of how we make these grids using a variety of substrates fenestrated with either lacey or regularly spaced holes. We explain how we characterize the quality of the grids and we describe their behavior under a variety of conditions.


Asunto(s)
Microscopía por Crioelectrón/instrumentación , Nanocables/química , Vitrificación , Acción Capilar , Carbono/química , Cobre , Oro/química , Manejo de Especímenes
12.
J Struct Biol ; 202(2): 161-169, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29366716

RESUMEN

We present an update describing new features and applications of Spotiton, a novel instrument for vitrifying samples for cryoEM. We have used Spotiton to prepare several test specimens that can be reconstructed using routine single particle analysis to ∼3 Šresolution, indicating that the process has no apparent deleterious effect on the sample integrity. The system is now in routine and continuous use in our lab and has been used to successfully vitrify a wide variety of samples.


Asunto(s)
Microscopía por Crioelectrón/instrumentación , Pinzas Ópticas , Manejo de Especímenes/métodos , Vitrificación , Nanocables/química , Robótica/instrumentación
13.
Proc Natl Acad Sci U S A ; 112(43): 13237-42, 2015 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-26464513

RESUMEN

Inflammasomes are multiprotein complexes that control the innate immune response by activating caspase-1, thus promoting the secretion of cytokines in response to invading pathogens and endogenous triggers. Assembly of inflammasomes is induced by activation of a receptor protein. Many inflammasome receptors require the adapter protein ASC [apoptosis-associated speck-like protein containing a caspase-recruitment domain (CARD)], which consists of two domains, the N-terminal pyrin domain (PYD) and the C-terminal CARD. Upon activation, ASC forms large oligomeric filaments, which facilitate procaspase-1 recruitment. Here, we characterize the structure and filament formation of mouse ASC in vitro at atomic resolution. Information from cryo-electron microscopy and solid-state NMR spectroscopy is combined in a single structure calculation to obtain the atomic-resolution structure of the ASC filament. Perturbations of NMR resonances upon filament formation monitor the specific binding interfaces of ASC-PYD association. Importantly, NMR experiments show the rigidity of the PYD forming the core of the filament as well as the high mobility of the CARD relative to this core. The findings are validated by structure-based mutagenesis experiments in cultured macrophages. The 3D structure of the mouse ASC-PYD filament is highly similar to the recently determined human ASC-PYD filament, suggesting evolutionary conservation of ASC-dependent inflammasome mechanisms.


Asunto(s)
Proteínas Reguladoras de la Apoptosis/química , Inflamasomas/química , Modelos Moleculares , Animales , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/aislamiento & purificación , Western Blotting , Proteínas Adaptadoras de Señalización CARD , Clonación Molecular , Microscopía por Crioelectrón , Inflamasomas/aislamiento & purificación , Espectroscopía de Resonancia Magnética , Ratones , Ratones Noqueados , Microscopía Confocal , Conformación Proteica
14.
bioRxiv ; 2024 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-38559232

RESUMEN

During formation of the transcription-competent open complex (RPo) by bacterial RNA polymerases (RNAP), transient intermediates pile up before overcoming a rate-limiting step. Structural descriptions of these interconversions in real time are unavailable. To address this gap, time-resolved cryo-electron microscopy (cryo-EM) was used to capture four intermediates populated 120 or 500 milliseconds (ms) after mixing Escherichia coli σ70-RNAP and the λPR promoter. Cryo-EM snapshots revealed the upstream edge of the transcription bubble unpairs rapidly, followed by stepwise insertion of two conserved nontemplate strand (nt-strand) bases into RNAP pockets. As nt-strand "read-out" extends, the RNAP clamp closes, expelling an inhibitory σ70 domain from the active-site cleft. The template strand is fully unpaired by 120 ms but remains dynamic, indicating yet unknown conformational changes load it in subsequent steps. Because these events likely describe DNA opening at many bacterial promoters, this study provides needed insights into how DNA sequence regulates steps of RPo formation.

15.
Nat Struct Mol Biol ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951624

RESUMEN

During formation of the transcription-competent open complex (RPo) by bacterial RNA polymerases (RNAPs), transient intermediates pile up before overcoming a rate-limiting step. Structural descriptions of these interconversions in real time are unavailable. To address this gap, here we use time-resolved cryogenic electron microscopy (cryo-EM) to capture four intermediates populated 120 ms or 500 ms after mixing Escherichia coli σ70-RNAP and the λPR promoter. Cryo-EM snapshots revealed that the upstream edge of the transcription bubble unpairs rapidly, followed by stepwise insertion of two conserved nontemplate strand (nt-strand) bases into RNAP pockets. As the nt-strand 'read-out' extends, the RNAP clamp closes, expelling an inhibitory σ70 domain from the active-site cleft. The template strand is fully unpaired by 120 ms but remains dynamic, indicating that yet unknown conformational changes complete RPo formation in subsequent steps. Given that these events likely describe DNA opening at many bacterial promoters, this study provides insights into how DNA sequence regulates steps of RPo formation.

16.
bioRxiv ; 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38915480

RESUMEN

PUF RNA-binding proteins are broadly conserved stem cell regulators. Nematode PUF proteins maintain germline stem cells (GSCs) and, with key partner proteins, repress differentiation mRNAs, including gld-1. Here we report that PUF protein FBF-2 and its partner LST-1 form a ternary complex that represses gld-1 via a pair of adjacent FBF-2 binding elements (FBEs) in its 3ÚTR. One LST-1 molecule links two FBF-2 molecules via motifs in the LST-1 intrinsically-disordered region; the gld-1 FBE pair includes a well-established 'canonical' FBE and a newly-identified noncanonical FBE. Remarkably, this FBE pair drives both full RNA repression in GSCs and full RNA activation upon differentiation. Discovery of the LST-1-FBF-2 ternary complex, the gld-1 adjacent FBEs, and their in vivo significance predicts an expanded regulatory repertoire of different assemblies of PUF-partner complexes in nematode germline stem cells. It also suggests analogous PUF controls may await discovery in other biological contexts and organisms.

17.
PNAS Nexus ; 1(4): pgac118, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-36090660

RESUMEN

Rix7 is an essential AAA+ ATPase that functions during the early stages of ribosome biogenesis. Rix7 is composed of three domains including an N-terminal domain (NTD) and two AAA+ domains (D1 and D2) that assemble into an asymmetric stacked hexamer. It was recently established that Rix7 is a presumed protein translocase that removes substrates from preribosomes by translocating them through its central pore. However, how the different domains of Rix7 coordinate their activities within the overall hexameric structure was unknown. We captured cryo-electron microscopy (EM) structures of single and double Walker B variants of full length Rix7. The disordered NTD was not visible in the cryo-EM reconstructions, but cross-linking mass spectrometry revealed that the NTD can associate with the central channel in vitro. Deletion of the disordered NTD enabled us to obtain a structure of the Rix7 hexamer to 2.9 Å resolution, providing high resolution details of critical motifs involved in substrate translocation and interdomain communication. This structure coupled with cell-based assays established that the linker connecting the D1 and D2 domains as well as the pore loops lining the central channel are essential for formation of the large ribosomal subunit. Together, our work shows that Rix7 utilizes a complex communication network to drive ribosome biogenesis.

18.
Nat Commun ; 12(1): 636, 2021 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-33504779

RESUMEN

Nsp15, a uridine specific endoribonuclease conserved across coronaviruses, processes viral RNA to evade detection by host defense systems. Crystal structures of Nsp15 from different coronaviruses have shown a common hexameric assembly, yet how the enzyme recognizes and processes RNA remains poorly understood. Here we report a series of cryo-EM reconstructions of SARS-CoV-2 Nsp15, in both apo and UTP-bound states. The cryo-EM reconstructions, combined with biochemistry, mass spectrometry, and molecular dynamics, expose molecular details of how critical active site residues recognize uridine and facilitate catalysis of the phosphodiester bond. Mass spectrometry revealed the accumulation of cyclic phosphate cleavage products, while analysis of the apo and UTP-bound datasets revealed conformational dynamics not observed by crystal structures that are likely important to facilitate substrate recognition and regulate nuclease activity. Collectively, these findings advance understanding of how Nsp15 processes viral RNA and provide a structural framework for the development of new therapeutics.


Asunto(s)
Endorribonucleasas/química , Endorribonucleasas/ultraestructura , SARS-CoV-2/enzimología , Proteínas no Estructurales Virales/química , Proteínas no Estructurales Virales/ultraestructura , Secuencia de Aminoácidos , Dominio Catalítico , Microscopía por Crioelectrón , Endorribonucleasas/metabolismo , Modelos Químicos , Modelos Moleculares , SARS-CoV-2/química , Uridina Trifosfato/metabolismo , Proteínas no Estructurales Virales/metabolismo
19.
bioRxiv ; 2021 Oct 29.
Artículo en Inglés | MEDLINE | ID: mdl-34751270

RESUMEN

With the emergence of SARS-CoV-2 variants, there is urgent need to develop broadly neutralizing antibodies. Here, we isolate two V H H nanobodies (7A3 and 8A2) from dromedary camels by phage display, which have high affinity for the receptor-binding domain (RBD) and broad neutralization activities against SARS-CoV-2 and its emerging variants. Cryo-EM complex structures reveal that 8A2 binds the RBD in its up mode and 7A3 inhibits receptor binding by uniquely targeting a highly conserved and deeply buried site in the spike regardless of the RBD conformational state. 7A3 at a dose of ≥5 mg/kg efficiently protects K18-hACE2 transgenic mice from the lethal challenge of B.1.351 or B.1.617.2, suggesting that the nanobody has promising therapeutic potentials to curb the COVID-19 surge with emerging SARS-CoV-2 variants. ONE-SENTENCE SUMMARY: Dromedary camel ( Camelus dromedarius ) V H H phage libraries were built for isolation of the nanobodies that broadly neutralize SARS-CoV-2 variants.

20.
bioRxiv ; 2020 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-32803198

RESUMEN

New therapeutics are urgently needed to inhibit SARS-CoV-2, the virus responsible for the on-going Covid-19 pandemic. Nsp15, a uridine-specific endoribonuclease found in all coronaviruses, processes viral RNA to evade detection by RNA-activated host defense systems, making it a promising drug target. Previous work with SARS-CoV-1 established that Nsp15 is active as a hexamer, yet how Nsp15 recognizes and processes viral RNA remains unknown. Here we report a series of cryo-EM reconstructions of SARS-CoV-2 Nsp15. The UTP-bound cryo-EM reconstruction at 3.36 Å resolution provides molecular details into how critical residues within the Nsp15 active site recognize uridine and facilitate catalysis of the phosphodiester bond, whereas the apo-states reveal active site conformational heterogeneity. We further demonstrate the specificity and mechanism of nuclease activity by analyzing Nsp15 products using mass spectrometry. Collectively, these findings advance understanding of how Nsp15 processes viral RNA and provide a structural framework for the development of new therapeutics.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda