Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Opt Express ; 27(4): 5719-5728, 2019 Feb 18.
Artículo en Inglés | MEDLINE | ID: mdl-30876168

RESUMEN

An array of micro spectrometers for parallel spectral sensing is designed, set up and tested. It utilizes a planar prism grating combination to obtain an almost linear optical system of 6 mm length only. Arranging such micro spectrometers in an array configuration yields 2'000 spectrometers when utilizing a common 4/3" CCD image sensor well adapted to e.g. microscopic image dimensions. The application in microscopic imaging in the 450-900 nm spectral range is demonstrated as proof of concept, which can be adapted to massively parallel sensing in the frame of integrated sensor concepts.

2.
Opt Lett ; 44(8): 1932-1935, 2019 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-30985778

RESUMEN

Understanding how a fluid flows at the boundaries when it is confined at the microscale/nanoscale is crucial for a broad range of engineering and biology applications. We propose an experimental technique based on Bloch surface waves sustained by a one-dimensional photonic crystal to evaluate the speed of the contact line, i.e., the triple junction separating three phases, in the low Reynold's number regime, and with a nanometric resolution. Here, we report on the experimental characterization of the translatory motion of the contact line that separates two water solutions with a relatively high refractive index mismatch (7.35×10-3) and its slipping over a solid surface. The advantages are the relative simplicity and economy of the experimental configuration.

3.
ACS Appl Mater Interfaces ; 10(39): 33611-33618, 2018 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-30152997

RESUMEN

A combined label-free and fluorescence surface optical technique was used to quantify the mass deposited in binary biomolecular coatings. These coatings were constituted by fibronectin (FN), to stimulate endothelialization, and phosphorylcholine (PRC), for its hemocompatibility, which are two properties of relevance for cardiovascular applications. One-dimensional photonic crystals sustaining a Bloch surface wave were used to characterize different FN/PRC coatings deposited by a combination of adsorption and grafting processes. In particular, the label-free results permitted to quantitatively assess the mass deposited in FN adsorbed (185 ng/cm2) and grafted (160 ng/cm2). PRC binding to grafted FN coatings was also quantified, showing a coverage as low as 10 and 12 ng/cm2 for adsorbed and grafted PRC, respectively. Moreover, desorption of FN deposited by adsorption was detected and quantified upon the addition of PRC. The data obtained by the surface optical technique were complemented by water contact angle and X-ray photoelectron spectroscopy (XPS) analyses. The results were in accordance with those obtained previously by qualitative and semiquantitative techniques (XPS, time-of-flight secondary ion mass spectrometry) on several substrates (PTFE and stainless steel), confirming that grafted FN coatings show higher stability than those obtained by FN adsorption.


Asunto(s)
Técnicas Biosensibles/métodos , Adsorción , Fibronectinas/química , Óptica y Fotónica/métodos , Fosforilcolina/química , Espectroscopía de Fotoelectrones
4.
Sci Rep ; 7(1): 1826, 2017 05 12.
Artículo en Inglés | MEDLINE | ID: mdl-28500306

RESUMEN

The non-isotropic alignment of molecules can increase the interaction efficiency with propagating light fields. This applies to both emissive and absorptive systems and can be exploited for achieving unprecedented efficiencies of organic opto-electronic devices such as organic light-emitting diodes. Optical analysis has revealed certain phosphorescent emitters to align spontaneously in an advantageous orientation. Unfortunately, established approaches only determine an average orientation because emission patterns solely depend on the second moments of the transition dipole vector distribution. In order to resolve further details of such a distribution, additional differences in the emission characteristics of parallel and perpendicularly oriented emitters need to be introduced. A thin metal layer near the emitters introduces plasmon mediated losses mostly for perpendicular emitters. Then, analyzing the emission at different polarizations allows one to measure emission lifetimes of mostly parallel or mostly perpendicular oriented emitters. This should alter the transient emission when observing the temporal phosphorescence decay under different directions and/or polarizations. The angular width of the orientation distribution can be derived from the degree of such lifetime splitting. Our results suggest a narrow but obliquely oriented molecular ensemble of Ir(MDQ)2(acac) doped into the α-NPD host inside an Organic LED stack.

5.
Opt Lett ; 34(6): 839-41, 2009 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-19282950

RESUMEN

We experimentally demonstrate propagation of surface plasmon polaritons in the near-IR window lambda (1.45 microm,1.59 microm) at the interface of indium-tin-oxide films with different thicknesses deposited on glass. Dispersion of such polaritons is strongly dependent on the film thickness, putting into evidence a regime in which polaritons at both films's interfaces are coupled in surface supermodes. The experimental data are shown to be in good agreement with the analytical model for thin and absorbing conducting films. Measurements on aluminum-doped zinc oxide, characterized by a redshifted plasma resonance, do not show any surface plasmon polariton excitation in the same wavelength window.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda