Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 37
Filtrar
1.
PLoS Pathog ; 19(6): e1011468, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-37384799

RESUMEN

Controlled human malaria infections (CHMI) are a valuable tool to study parasite gene expression in vivo under defined conditions. In previous studies, virulence gene expression was analyzed in samples from volunteers infected with the Plasmodium falciparum (Pf) NF54 isolate, which is of African origin. Here, we provide an in-depth investigation of parasite virulence gene expression in malaria-naïve European volunteers undergoing CHMI with the genetically distinct Pf 7G8 clone, originating in Brazil. Differential expression of var genes, encoding major virulence factors of Pf, PfEMP1s, was assessed in ex vivo parasite samples as well as in parasites from the in vitro cell bank culture that was used to generate the sporozoites (SPZ) for CHMI (Sanaria PfSPZ Challenge (7G8)). We report broad activation of mainly B-type subtelomeric located var genes at the onset of a 7G8 blood stage infection in naïve volunteers, mirroring the NF54 expression study and suggesting that the expression of virulence-associated genes is generally reset during transmission from the mosquito to the human host. However, in 7G8 parasites, we additionally detected a continuously expressed single C-type variant, Pf7G8_040025600, that was most highly expressed in both pre-mosquito cell bank and volunteer samples, suggesting that 7G8, unlike NF54, maintains expression of some previously expressed var variants during transmission. This suggests that in a new host, the parasite may preferentially express the variants that previously allowed successful infection and transmission. Trial registration: ClinicalTrials.gov - NCT02704533; 2018-004523-36.


Asunto(s)
Culicidae , Malaria Falciparum , Malaria , Parásitos , Animales , Humanos , Culicidae/genética , Expresión Génica , Malaria Falciparum/genética , Malaria Falciparum/parasitología , Parásitos/genética , Plasmodium falciparum/genética , Esporozoítos , Virulencia/genética
2.
Antimicrob Agents Chemother ; 68(5): e0139023, 2024 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-38546223

RESUMEN

Dihydroartemisinin-piperaquine is efficacious for the treatment of uncomplicated malaria and its use is increasing globally. Despite the positive results in fighting malaria, inhibition of the Kv11.1 channel (hERG; encoded by the KCNH2 gene) by piperaquine has raised concerns about cardiac safety. Whether genetic factors could modulate the risk of piperaquine-mediated QT prolongations remained unclear. Here, we first profiled the genetic landscape of KCNH2 variability using data from 141,614 individuals. Overall, we found 1,007 exonic variants distributed over the entire gene body, 555 of which were missense. By optimizing the gene-specific parametrization of 16 partly orthogonal computational algorithms, we developed a KCNH2-specific ensemble classifier that identified a total of 116 putatively deleterious missense variations. To evaluate the clinical relevance of KCNH2 variability, we then sequenced 293 Malian patients with uncomplicated malaria and identified 13 variations within the voltage sensing and pore domains of Kv11.1 that directly interact with channel blockers. Cross-referencing of genetic and electrocardiographic data before and after piperaquine exposure revealed that carriers of two common variants, rs1805121 and rs41314375, experienced significantly higher QT prolongations (ΔQTc of 41.8 ms and 61 ms, respectively, vs 14.4 ms in controls) with more than 50% of carriers having increases in QTc >30 ms. Furthermore, we identified three carriers of rare population-specific variations who experienced clinically relevant delayed ventricular repolarization. Combined, our results map population-scale genetic variability of KCNH2 and identify genetic biomarkers for piperaquine-induced QT prolongation that could help to flag at-risk patients and optimize efficacy and adherence to antimalarial therapy.


Asunto(s)
Antimaláricos , Artemisininas , Canal de Potasio ERG1 , Piperazinas , Quinolinas , Humanos , Canal de Potasio ERG1/genética , Antimaláricos/uso terapéutico , Antimaláricos/efectos adversos , Quinolinas/uso terapéutico , Quinolinas/efectos adversos , Artemisininas/uso terapéutico , Artemisininas/efectos adversos , Masculino , Femenino , Adulto , Malaria/tratamiento farmacológico , Electrocardiografía , Síndrome de QT Prolongado/genética , Síndrome de QT Prolongado/inducido químicamente , Polimorfismo de Nucleótido Simple/genética
3.
Antimicrob Agents Chemother ; 66(12): e0100122, 2022 12 20.
Artículo en Inglés | MEDLINE | ID: mdl-36321830

RESUMEN

The discovery and development of transmission-blocking therapies challenge malaria elimination and necessitate standard and reproducible bioassays to measure the blocking properties of antimalarial drugs and candidate compounds. Most of the current bioassays evaluating the transmission-blocking activity of compounds rely on laboratory-adapted Plasmodium strains. Transmission-blocking data from clinical gametocyte isolates could help select novel transmission-blocking candidates for further development. Using freshly collected Plasmodium falciparum gametocytes from asymptomatic individuals, we first optimized ex vivo culture conditions to improve gametocyte viability and infectiousness by testing several culture parameters. We next pre-exposed ex vivo field-isolated gametocytes to chloroquine, dihydroartemisinin, primaquine, KDU691, GNF179, and oryzalin for 48 h prior to direct membrane feeding. We measured the activity of the drug on the ability of gametocytes to resume the sexual life cycle in Anopheles after drug exposure. Using 57 blood samples collected from Malian volunteers aged 6 to 15 years, we demonstrate that the infectivity of freshly collected field gametocytes can be preserved and improved ex vivo in a culture medium supplemented with 10% horse serum at 4% hematocrit for 48 h. Moreover, our optimized drug assay displays the weak transmission-blocking activity of chloroquine and dihydroartemisinin, while primaquine and oryzalin exhibited a transmission-blocking activity of ~50% at 1 µM. KDU691 and GNF179 both interrupted Plasmodium transmission at 1 µM and 5 nM, respectively. This new approach, if implemented, has the potential to accelerate the screening of compounds with transmission-blocking activity.


Asunto(s)
Antimaláricos , Malaria Falciparum , Humanos , Plasmodium falciparum , Primaquina , Malaria Falciparum/prevención & control , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Cloroquina/farmacología , Cloroquina/uso terapéutico
4.
Malar J ; 20(1): 356, 2021 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-34461901

RESUMEN

BACKGROUND: Artemisinin-based combination therapy (ACT) was deployed in 2005 as an alternative to chloroquine and is considered the most efficacious treatment currently available for uncomplicated falciparum malaria. While widespread artemisinin resistance has not been reported to date in Africa, recent studies have reported partial resistance in Rwanda. The purpose of this study is to provide a current systematic review and meta-analysis on ACT at Mali study sites, where falciparum malaria is highly endemic. METHODS: A systematic review of the literature maintained in the bibliographic databases accessible through the PubMed, ScienceDirect and Web of Science search engines was performed to identify research studies on ACT occurring at Mali study sites. Selected studies included trials occurring at Mali study sites with reported polymerase chain reaction (PCR)-corrected adequate clinical and parasite response rates (ACPRcs) at 28 days. Data were stratified by treatment arm (artemether-lumefantrine (AL), the first-line treatment for falciparum malaria in Mali and non-AL arms) and analysed using random-effects, meta-analysis approaches. RESULTS: A total of 11 studies met the inclusion criteria, and a risk of bias assessment carried out by two independent reviewers determined low risk of bias among all assessed criteria. The ACPRc for the first-line AL at Mali sites was 99.0% (95% CI (98.3%, 99.8%)), while the ACPRc among non-AL treatment arms was 98.9% (95% CI (98.3%, 99.5%)). The difference in ACPRcs between non-AL treatment arms and AL treatment arms was not statistically significant (p = .752), suggesting that there are potential treatment alternatives beyond the first-line of AL in Mali. CONCLUSIONS: ACT remains highly efficacious in treating uncomplicated falciparum malaria in Mali. Country-specific meta-analyses on ACT are needed on an ongoing basis for monitoring and evaluating drug efficacy patterns to guide local malaria treatment policies, particularly in the wake of observed artemisinin resistance in Southeast Asia and partial resistance in Rwanda.


Asunto(s)
Antimaláricos/uso terapéutico , Combinación Arteméter y Lumefantrina/uso terapéutico , Malaria Falciparum/tratamiento farmacológico , Plasmodium falciparum/efectos de los fármacos , Humanos , Malí
5.
Malar J ; 18(1): 361, 2019 Nov 12.
Artículo en Inglés | MEDLINE | ID: mdl-31718631

RESUMEN

BACKGROUND: Drug resistance is one of the greatest challenges of malaria control programme in Mali. Recent advances in next-generation sequencing (NGS) technologies provide new and effective ways of tracking drug-resistant malaria parasites in Africa. The diversity and the prevalence of Plasmodium falciparum drug-resistance molecular markers were assessed in Dangassa and Nioro-du-Sahel in Mali, two sites with distinct malaria transmission patterns. Dangassa has an intense seasonal malaria transmission, whereas Nioro-du-Sahel has an unstable and short seasonal malaria transmission. METHODS: Up to 270 dried blood spot samples (214 in Dangassa and 56 in Nioro-du-Sahel) were collected from P. falciparum positive patients in 2016. Samples were analysed on the Agena MassARRAY® iPLEX platform. Specific codons were targeted in Pfcrt, Pfmdr1, Pfdhfr, and Pfdhps, Pfarps10, Pfferredoxin, Pfexonuclease and Pfmdr2 genes. The Sanger's 101-SNPs-barcode method was used to assess the genetic diversity of P. falciparum and to determine the parasite species. RESULTS: The Pfcrt_76T chloroquine-resistance genotype was found at a rate of 64.4% in Dangassa and 45.2% in Nioro-du-Sahel (p = 0.025). The Pfdhfr_51I-59R-108N pyrimethamine-resistance genotype was 14.1% and 19.6%, respectively in Dangassa and Nioro-du-Sahel. Mutations in the Pfdhps_S436-A437-K540-A581-613A sulfadoxine-resistance gene was significantly more prevalent in Dangassa as compared to Nioro-du-Sahel (p = 0.035). Up to 17.8% of the isolates from Dangassa vs 7% from Nioro-du-Sahel harboured at least two codon substitutions in this haplotype. The amodiaquine-resistance Pfmdr1_N86Y mutation was identified in only three samples (two in Dangassa and one in Nioro-du-Sahel). The lumefantrine-reduced susceptibility Pfmdr1_Y184F mutation was found in 39.9% and 48.2% of samples in Dangassa and Nioro-du-Sahel, respectively. One piperaquine-resistance Exo_E415G mutation was found in Dangassa, while no artemisinin resistance genetic-background were identified. A high P. falciparum diversity was observed, but no clear genetic aggregation was found at either study sites. Higher multiplicity of infection was observed in Dangassa with both COIL (p = 0.04) and Real McCOIL (p = 0.02) methods relative to Nioro-du-Sahel. CONCLUSIONS: This study reveals high prevalence of chloroquine and pyrimethamine-resistance markers as well as high codon substitution rate in the sulfadoxine-resistance gene. High genetic diversity of P. falciparum was observed. These observations suggest that the use of artemisinins is relevant in both Dangassa and Nioro-du-Sahel.


Asunto(s)
Antimaláricos/farmacología , Resistencia a Medicamentos/genética , Variación Genética , Plasmodium falciparum/genética , Biomarcadores/análisis , Malí , Plasmodium falciparum/efectos de los fármacos
6.
Malar J ; 18(1): 273, 2019 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-31409360

RESUMEN

BACKGROUND: Plasmodium falciparum erythrocyte membrane protein-1 (PfEMP1) antigens play a critical role in host immune evasion. Serologic responses to these antigens have been associated with protection from clinical malaria, suggesting that antibodies to PfEMP1 antigens may contribute to natural immunity. The first N-terminal constitutive domain in a PfEMP1 is the Duffy binding-like alpha (DBL-α) domain, which contains a 300 to 400 base pair region unique to each particular protein (the DBL-α "tag"). This DBL-α tag has been used as a marker of PfEMP1 diversity and serologic responses in malaria-exposed populations. In this study, using sera from a malaria-endemic region, responses to DBL-α tags were compared to responses to the corresponding entire DBL-α domain (or "parent" domain) coupled with the succeeding cysteine-rich interdomain region (CIDR). METHODS: A protein microarray populated with DBL-α tags, the parent DBL-CIDR head structures, and downstream PfEMP1 protein fragments was probed with sera from Malian children (aged 1 to 6 years) and adults from the control arms of apical membrane antigen 1 (AMA1) vaccine clinical trials before and during a malaria transmission season. Serological responses to the DBL-α tag and the DBL-CIDR head structure were measured and compared in children and adults, and throughout the season. RESULTS: Malian serologic responses to a PfEMP1's DBL-α tag region did not correlate with seasonal malaria exposure, or with responses to the parent DBL-CIDR head structure in either children or adults. Parent DBL-CIDR head structures were better indicators of malaria exposure. CONCLUSIONS: Larger PfEMP1 domains may be better indicators of malaria exposure than short, variable PfEMP1 fragments such as DBL-α tags. PfEMP1 head structures that include conserved sequences appear particularly well suited for study as serologic predictors of malaria exposure.


Asunto(s)
Antígenos de Protozoos/inmunología , Malaria Falciparum/inmunología , Plasmodium falciparum/fisiología , Proteínas Protozoarias/inmunología , Adulto , Niño , Preescolar , Secuencia Conservada , Humanos , Lactante , Persona de Mediana Edad , Estructura Terciaria de Proteína , Adulto Joven
7.
Malar J ; 17(1): 347, 2018 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-30290808

RESUMEN

BACKGROUND: Artemether-lumefantrine (AL) and artesunate-amodiaquine are first-line treatment for uncomplicated malaria in many endemic countries, including Mali. Dihydroartemisinin-piperaquine (DHA-PQ) is also an alternative first-line artemisinin-based combination therapy, but only few data are available on DHA-PQ efficacy in sub-Saharan Africa. The main aim of this study was to compare clinical efficacy of DHA-PQ versus AL, using the World Health Organization (WHO) 42-day in vivo protocol. METHODS: The efficacy of three-dose regimens of DHA-PQ was compared to AL combination in a randomized, comparative open label trial using the WHO 42-day follow-up protocol from 2013 to 2015 in Doneguebougou and Torodo, Mali. The primary endpoint was to access the PCR-corrected Adequate Clinical and Parasitological Responses at day 28. RESULTS: A total of 317 uncomplicated malaria patients were enrolled, with 159 in DHA-PQ arm and 158 in AL arm. The parasite positivity rate decreased from 68.4% (95% CI 60.5-75.5) on day 1 to 3.8% (95% CI 1.4-8.1) on day 2 for DHA-PQ and 79.8% (95% CI 72.3-85.7) on day 1 to 9.5% (95% CI 5.4-15.2) on day 2 for AL, (p = 0.04). There was a significant difference in the uncorrected ACPR between DHA-PQ and AL, both at 28-day and 42-day follow-up with 97.4% (95% CI 93.5-99.3) in DHA-PQ vs 84.5% (95% CI 77.8-89.8) in AL (p < 0.001) and 94.2% (95% CI 89.3-97.3) in DHA-PQ vs 73.4% (95% CI 65.7-80.2) in AL, respectively (p < 0.001). After molecular correction, there was no significant difference in ACPRc between DHA-PQ and AL, both at the 28-day and 42-day follow-up with 99.4% (95% CI 96.5-100) in DHA-PQ versus 98.1% (95% CI 94.5-99.6) in AL (p = 0.3) and 99.3% (95% CI 96.5-100) in DHA-PQ vs 97.4% (95% CI 93.5-99.3) in AL (p = 0.2). There was no significant difference between DHA-PQ and AL in QTc prolongation 12.1% vs 7%, respectively (p = 0.4). CONCLUSION: The results showed that dihydroartemisinin-piperaquine and artemether-lumefantrine were clinically efficacious on Plasmodium falciparum parasites in Mali.


Asunto(s)
Antimaláricos/uso terapéutico , Artemisininas/uso terapéutico , Malaria Falciparum/prevención & control , Quinolinas/uso terapéutico , Adolescente , Adulto , Combinación Arteméter y Lumefantrina , Niño , Preescolar , Combinación de Medicamentos , Etanolaminas/uso terapéutico , Femenino , Fluorenos/uso terapéutico , Humanos , Lactante , Masculino , Malí , Persona de Mediana Edad , Plasmodium falciparum/efectos de los fármacos , Adulto Joven
8.
Malar J ; 16(1): 343, 2017 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-28818101

RESUMEN

BACKGROUND: VAR2CSA, a member of the Plasmodium falciparum erythrocyte membrane protein 1 (PfEMP1) family, mediates the binding of P. falciparum-infected erythrocytes to chondroitin sulfate A, a surface-associated molecule expressed in placental cells, and plays a central role in the pathogenesis of placental malaria. VAR2CSA is a target of naturally acquired immunity and, as such, is a leading vaccine candidate against placental malaria. This protein is very polymorphic and technically challenging to sequence. Published var2csa sequences, mostly limited to specific domains, have been generated through the sequencing of cloned PCR amplicons using capillary electrophoresis, a method that is both time consuming and costly, and that performs poorly when applied to clinical samples that are commonly polyclonal. A next-generation sequencing platform, Pacific Biosciences (PacBio), offers an alternative approach to overcome these issues. METHODS: PCR primers were designed that target a 5 kb segment in the 5' end of var2csa and the resulting amplicons were sequenced using PacBio sequencing. The primers were optimized using two laboratory strains and were validated on DNA from 43 clinical samples, extracted from dried blood spots on filter paper or from cryopreserved P. falciparum-infected erythrocytes. Sequence reads were assembled using the SMRT-analysis ConsensusTools module. RESULTS: Here, a PacBio sequencing-based approach for recovering a segment encoding the majority of VAR2CSA's extracellular region is described; this segment includes the totality of the first four domains in the 5' end of var2csa (~5 kb), from clinical malaria samples. The feasibility of the method is demonstrated, showing a high success rate from cryopreserved samples and more limited success from dried blood spots stored at room temperature, and characterized the genetic variation of the var2csa locus. CONCLUSIONS: This method will facilitate a detailed analysis of var2csa genetic variation and can be adapted to sequence other hypervariable P. falciparum genes.


Asunto(s)
Antígenos de Protozoos/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Plasmodium falciparum/genética , Análisis de Secuencia de ADN/métodos , Pruebas con Sangre Seca , Eritrocitos/parasitología , Humanos
9.
Malar J ; 16(1): 59, 2017 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-28148267

RESUMEN

BACKGROUND: Artemisinin-based combination therapy is the recommended first-line treatment for uncomplicated falciparum malaria worldwide. However, recent studies conducted in Mali showed an increased frequency of recurrent parasitaemia following artemether-lumefantrine (AL) treatment. METHODS: Study samples were collected during a large WANECAM study. Ex-vivo Plasmodium falciparum sensitivity to artemether and lumefantrine was assessed using the tritiated hypoxanthine-based assay. The prevalence of molecular markers of anti-malarial drug resistance (pfcrt K76T, pfmdr1 N86Y and K13-propeller) were measured by PCR and/or sequencing. RESULTS: Overall 61 samples were successfully analysed in ex vivo studies. Mean IC50s increased significantly between baseline and recurrent parasites for both artemether (1.6 nM vs 3.2 nM, p < 0.001) and lumefantrine (1.4 nM vs 3.4 nM, p = 0.004). Wild type Pfmdr1 N86 allele was selected after treatment (71 vs 91%, 112 of 158 vs 95 of 105, p < 0.001) but not the wild type pfcrt K76 variant (23.5 vs 24.8%, 40 of 170 vs 26 of 105, p = 0.9). Three non-synonymous K13-propeller SNPs (A522C, A578S, and G638R) were found with allele frequencies <2%. CONCLUSION: Malian post-AL P. falciparum isolates were less susceptible to artemether and lumefantrine than baseline isolates.


Asunto(s)
Antimaláricos/farmacología , Artemisininas/farmacología , Resistencia a Medicamentos , Etanolaminas/farmacología , Fluorenos/farmacología , Plasmodium falciparum/efectos de los fármacos , Administración Oral , Combinación Arteméter y Lumefantrina , Combinación de Medicamentos , Humanos , Malaria Falciparum/parasitología , Malí , Parasitemia/parasitología , Recurrencia
10.
Malar J ; 15: 150, 2016 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-26961973

RESUMEN

BACKGROUND: The host response to infection by Plasmodium falciparum, the parasite most often responsible for severe malaria, ranges from asymptomatic parasitaemia to death. The clinical trajectory of malaria is influenced by host genetics and parasite load, but the factors determining why some infections produce uncomplicated malaria and some proceed to severe disease remain incompletely understood. METHODS: To identify molecular markers of severe falciparum malaria, human gene expression patterns were compared between children aged 6 months to 5 years with severe and uncomplicated malaria who were enrolled in a case-control study in Bandiagara, Mali. Microarrays were used to obtain expression data on severe cases and uncomplicated controls at the time of acute disease presentation (five uncomplicated and five severe), 1 week after presentation (three uncomplicated and three severe) and treatment initiation, and in the subsequent dry season (late convalescence, four uncomplicated and four severe). This is a pilot study for the first use of microarray technology in Mali. RESULTS: Complement and toll-like receptor (TLR) pathways were differentially expressed, with severe cases showing higher expression of the C1q, TLR2, TLR4, TLR8, and CR1 genes. Other genes previously associated with malaria pathogenesis, GZMB, FOS and HSPA6, were also higher among severe cases. TLR2, TLR4, TLR8, CR1, GZMB, FOS, and HSPA6 genes were expressed at lower levels in severe cases at late convalescence. CONCLUSIONS: Overexpression of genes previously associated with uncomplicated malaria was associated with severe disease. Low baseline expression of these genes may represent candidate markers for severe malaria. Despite the small sample size, results of this pilot study offer promising targets for follow-up analyses.


Asunto(s)
Proteínas del Sistema Complemento/genética , Malaria Falciparum/epidemiología , Malaria Falciparum/genética , Receptores Toll-Like/genética , Biomarcadores/metabolismo , Estudios de Casos y Controles , Preescolar , Análisis por Conglomerados , Proteínas del Sistema Complemento/metabolismo , Femenino , Perfilación de la Expresión Génica , Humanos , Lactante , Malaria Falciparum/metabolismo , Malaria Falciparum/fisiopatología , Masculino , Malí , Epidemiología Molecular , Análisis de Secuencia por Matrices de Oligonucleótidos , Proyectos Piloto , Plasmodium falciparum , Receptores Toll-Like/metabolismo
11.
Malar J ; 14: 64, 2015 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-25889633

RESUMEN

BACKGROUND: Plasmodium falciparum resistance to artemisinin has been reported in South-East Asia. Long half-life drugs are increasingly being used for malaria prevention. The potential spread of parasite resistance to these regimens is real and makes regular efficacy surveillance a priority. METHODS: From August to December 2004 and July to December 2005, a randomized open label trial of sulphadoxine-pyrimethamine (SP) + artesunate (AS) versus SP + amodiaquine (AQ), and SP alone, was conducted in two villages of Mali. PCR was used to distinguish new infections from recrudescent P. falciparum infections. Patients were followed for 28 days to assess treatment efficacy. RESULTS: Overall 912 children aged between six to 59 months, with uncomplicated P. falciparum malaria were recruited. Baseline characteristics were similar in the three treatment arms. Crude ACPRs were 94.9%; 98.6% and 93.5% for SP + AS; SP + AQ and SP alone arms respectively (SP + AS versus SP + AQ, p = 0.01; SP + AS versus SP, p = 0.5; SP + AQ versus SP, p = 0.001). After PCR adjustment, cACPRs were 99%; 100% and 97.2% for SP + AS; SP + AQ and SP alone arms, respectively (SP + AS versus SP + AQ, p = 0.25; SP + AS versus SP, p = 0.12; SP + AQ versus SP, p = 0.007). CONCLUSION: Sulphadoxine-pyrimethamine + amodiaquine therapy was as efficacious as sulphadoxine-pyrimethamine + artesunate, but more efficacious than sulphadoxine-pyrimethamine alone in the treatment of uncomplicated P. falciparum malaria in Mali.


Asunto(s)
Amodiaquina/uso terapéutico , Antimaláricos/uso terapéutico , Artemisininas/uso terapéutico , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/prevención & control , Pirimetamina/uso terapéutico , Sulfadoxina/uso terapéutico , Preescolar , Combinación de Medicamentos , Femenino , Humanos , Lactante , Masculino , Malí
12.
J Infect Dis ; 207(3): 520-7, 2013 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-23162138

RESUMEN

BACKGROUND: The mechanism of Plasmodium falciparum resistance to quinine is not known. In vitro quantitative trait loci mapping suggests involvement of a predicted P. falciparum sodium-hydrogen exchanger (pfnhe-1) on chromosome 13. METHODS: We conducted prospective quinine efficacy studies in 2 villages, Kollé and Faladié, Mali. Cases of clinical malaria requiring intravenous therapy were treated with standard doses of quinine and followed for 28 days. Treatment outcomes were classified using modified World Health Organization protocols. Molecular markers of parasite polymorphisms were used to distinguish recrudescent parasites from new infections. The prevalence of pfnhe-1 ms4760-1 among parasites before versus after quinine treatment was determined by direct sequencing. RESULTS: Overall, 163 patients were enrolled and successfully followed. Without molecular correction, the mean adequate clinical and parasitological response (ACPR) was 50.3% (n = 163). After polymerase chain reaction correction to account for new infections, the corrected ACPR was 100%. The prevalence of ms4760-1 increased significantly, from 26.2% (n = 107) before quinine treatment to 46.3% (n = 54) after therapy (P = .01). In a control sulfadoxine-pyrimethamine study, the prevalence of ms4760-1 was similar before and after treatment. CONCLUSIONS: This study supports a role for pfnhe-1 in decreased susceptibility of P. falciparum to quinine in the field.


Asunto(s)
Antimaláricos/uso terapéutico , Resistencia a Medicamentos/genética , Malaria Falciparum/tratamiento farmacológico , Plasmodium falciparum/genética , Polimorfismo de Nucleótido Simple , Quinina/uso terapéutico , Intercambiadores de Sodio-Hidrógeno/genética , Secuencia de Aminoácidos , Antimaláricos/farmacología , Humanos , Malaria Falciparum/parasitología , Malí , Repeticiones de Microsatélite , Datos de Secuencia Molecular , Plasmodium falciparum/efectos de los fármacos , Quinina/farmacología , Alineación de Secuencia
13.
Science ; 384(6695): eadj4088, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38696552

RESUMEN

The developmental decision made by malaria parasites to become sexual underlies all malaria transmission. Here, we describe a rich atlas of short- and long-read single-cell transcriptomes of over 37,000 Plasmodium falciparum cells across intraerythrocytic asexual and sexual development. We used the atlas to explore transcriptional modules and exon usage along sexual development and expanded it to include malaria parasites collected from four Malian individuals naturally infected with multiple P. falciparum strains. We investigated genotypic and transcriptional heterogeneity within and among these wild strains at the single-cell level, finding differential expression between different strains even within the same host. These data are a key addition to the Malaria Cell Atlas interactive data resource, enabling a deeper understanding of the biology and diversity of transmission stages.


Asunto(s)
Eritrocitos , Malaria Falciparum , Plasmodium falciparum , Desarrollo Sexual , Humanos , Eritrocitos/parasitología , Malaria Falciparum/parasitología , Malaria Falciparum/transmisión , Plasmodium falciparum/genética , Plasmodium falciparum/crecimiento & desarrollo , Desarrollo Sexual/genética , Análisis de la Célula Individual , Transcriptoma , Atlas como Asunto
14.
Microorganisms ; 11(8)2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37630530

RESUMEN

Malaria elimination may never succeed without the implementation of transmission-blocking strategies. The transmission of Plasmodium spp. parasites from the human host to the mosquito vector depends on circulating gametocytes in the peripheral blood of the vertebrate host. Once ingested by the mosquito during blood meals, these sexual forms undergo a series of radical morphological and metabolic changes to survive and progress from the gut to the salivary glands, where they will be waiting to be injected into the vertebrate host. The design of effective transmission-blocking strategies requires a thorough understanding of all the mechanisms that drive the development of gametocytes, gametes, sexual reproduction, and subsequent differentiation within the mosquito. The drastic changes in Plasmodium falciparum shape and function throughout its life cycle rely on the tight regulation of stage-specific gene expression. This review outlines the mechanisms involved in Plasmodium falciparum sexual stage development in both the human and mosquito vector, and zygote to oocyst differentiation. Functional studies unravel mechanisms employed by P. falciparum to orchestrate the expression of stage-specific functional products required to succeed in its complex life cycle, thus providing us with potential targets for developing new therapeutics. These mechanisms are based on studies conducted with various Plasmodium species, including predominantly P. falciparum and the rodent malaria parasites P. berghei. However, the great potential of epigenetics, genomics, transcriptomics, proteomics, and functional genetic studies to improve the understanding of malaria as a disease remains partly untapped because of limitations in studies using human malaria parasites and field isolates.

15.
Genes (Basel) ; 14(12)2023 11 24.
Artículo en Inglés | MEDLINE | ID: mdl-38136946

RESUMEN

Imidazolopiperazine (IPZ), KAF156, a close analogue of GNF179, is a promising antimalarial candidate. IPZ is effective against Plasmodium falciparum and Plasmodium vivax clinical malaria in human with transmission blocking property in animal models and effective against liver stage parasites. Despite these excellent drug efficacy properties, in vitro parasites have shown resistance to IPZ. However, the mechanism of action and resistance of IPZ remained not fully understood. Here, we used transcriptomic analysis to elucidate mode of action of IPZs. We report, in wild-type parasites GNF179 treatment down regulated lipase enzymes, two metabolic pathways: the hydrolysis of Phosphoinositol 4,5-bipohosphate (PIP2) that produce diacyglycerol (DAG) and the cytosolic calcium Ca2+ homeostasis which are known to be essential for P. falciparum survival and proliferation, as well for membrane permeability and protein trafficking. Furthermore, in wild-type parasites, GNF179 repressed expression of Acyl CoA Synthetase, export lipase 1 and esterase enzymes. Thus, in wild-type parasites only, GNF179 treatment affected enzymes leading lipid metabolism, transport, and synthesis. Lastly, our data revealed that IPZs did not perturb known IPZ resistance genes markers pfcarl, pfact, and pfugt regulations, which are all instead possibly involved in the drug resistance that disturb membrane transport targeted by IPZ.


Asunto(s)
Malaria Falciparum , Malaria Vivax , Parásitos , Animales , Humanos , Plasmodium falciparum , Malaria Falciparum/parasitología , Perfilación de la Expresión Génica , Lipasa/metabolismo
16.
Nat Commun ; 14(1): 5205, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37626093

RESUMEN

We report an analysis of the propensity of the antimalarial agent cabamiquine, a Plasmodium-specific eukaryotic elongation factor 2 inhibitor, to select for resistant Plasmodium falciparum parasites. Through in vitro studies of laboratory strains and clinical isolates, a humanized mouse model, and volunteer infection studies, we identified resistance-associated mutations at 11 amino acid positions. Of these, six (55%) were present in more than one infection model, indicating translatability across models. Mathematical modelling suggested that resistant mutants were likely pre-existent at the time of drug exposure across studies. Here, we estimated a wide range of frequencies of resistant mutants across the different infection models, much of which can be attributed to stochastic differences resulting from experimental design choices. Structural modelling implicates binding of cabamiquine to a shallow mRNA binding site adjacent to two of the most frequently identified resistance mutations.


Asunto(s)
Antimaláricos , Parásitos , Animales , Ratones , Antimaláricos/farmacología , Aminoácidos , Sitios de Unión , Modelos Animales de Enfermedad
17.
Res Sq ; 2023 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-37461533

RESUMEN

Background: Effective approaches to fight against malaria include disease prevention, an early diagnosis of malaria cases, and rapid management of confirmed cases by treatment with effective antimalarials. Artemisinin-based combination therapies are first-line treatments for uncomplicated malaria in endemic areas. However, cases of resistance to artemisinin have already been described in South-East Asia resulting in prolonged parasite clearance time after treatment. In Mali, though mutations in the K13 gene associated with delayed clearance in Asia are absent, a significant difference in parasite clearance time following treatment with artesunate was observed between two malaria endemic sites, Bougoula-Hameau and Faladje. Hypothetically, differences in complexity of Plasmodium falciparum infections may be accounted for this difference. Hence, the aims of this study were to assess the complexity of infection (COI) and genetic diversity of P. falciparum parasites during malaria treatment in Bougoula-Hameau and Faladje in Mali. Methods: Thirty (30) patients per village were randomly selected from 221 patients enrolled in a prospective artesunate monotherapy study conducted in Faladje and Bougoula-Hameau in 2016. All parasitemic blood samples of patients from enrollment to last positive slide were retained to assess malaria parasite COI and polymorphisms. DNA were extracted with a Qiagen kit and Pfcsp and Pfama1 encoding gene were amplified by nested PCR and sequenced using the Illumina platform. The parasite clearance time (PCT) was determined using the parasite clearance estimator of Worldwide Antimarial Resistance Network (WWARN). Data were analyzed with R®. Results: The median number of genetically distinct parasite clones was similar at enrollment, 7 (IQR of 5-9) in Faladje and 6 (IQR of 4-10) in Bougoula-Hameau (p-value = 0.1). On the first day after treatment initiation, the COI was higher in Faladje (6; CI:4-8) than in Bougoula-Hameau (4; CI:4-6) with a p-value =0. 02. Overall, COI was high with higher PCT. Finally, there was a low genetic diversity between Faladje and Bougoula-Hameau. Conclusion: This study demonstrated that the difference in PCT observed between the two villages could be due to differences in the complexity of infection of these two villages.

18.
Trop Med Infect Dis ; 8(9)2023 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-37755899

RESUMEN

Up-to-date knowledge of key epidemiological aspects of each Plasmodium species is necessary for making informed decisions on targeted interventions and control strategies to eliminate each of them. This study aims to describe the epidemiology of plasmodial species in Mali, where malaria is hyperendemic and seasonal. Data reports collected during high-transmission season over six consecutive years were analyzed to summarize malaria epidemiology. Malaria species and density were from blood smear microscopy. Data from 6870 symptomatic and 1740 asymptomatic participants were analyzed. The median age of participants was 12 years, and the sex ratio (male/female) was 0.81. Malaria prevalence from all Plasmodium species was 65.20% (95% CI: 60.10-69.89%) and 22.41% (CI: 16.60-28.79%) for passive and active screening, respectively. P. falciparum was the most prevalent species encountered in active and passive screening (59.33%, 19.31%). This prevalence was followed by P. malariae (1.50%, 1.15%) and P. ovale (0.32%, 0.06%). Regarding frequency, P. falciparum was more frequent in symptomatic individuals (96.77% vs. 93.24%, p = 0.014). In contrast, P. malariae was more frequent in asymptomatic individuals (5.64% vs. 2.45%, p < 0.001). P. ovale remained the least frequent species (less than 1%), and no P. vivax was detected. The most frequent coinfections were P. falciparum and P. malariae (0.56%). Children aged 5-9 presented the highest frequency of P. falciparum infections (41.91%). Non-falciparum species were primarily detected in adolescents (10-14 years) with frequencies above 50%. Only P. falciparum infections had parasitemias greater than 100,000 parasites per µL of blood. P. falciparum gametocytes were found with variable prevalence across age groups. Our data highlight that P. falciparum represented the first burden, but other non-falciparum species were also important. Increasing attention to P. malariae and P. ovale is essential if malaria elimination is to be achieved.

19.
mSphere ; 8(5): e0045123, 2023 10 24.
Artículo en Inglés | MEDLINE | ID: mdl-37791774

RESUMEN

Antibody responses to variant surface antigens (VSAs) produced by the malaria parasite Plasmodium falciparum may contribute to age-related natural immunity to severe malaria. One VSA family, P. falciparum erythrocyte membrane protein-1 (PfEMP1), includes a subset of proteins that binds endothelial protein C receptor (EPCR) in human hosts and potentially disrupts the regulation of inflammatory responses, which may lead to the development of severe malaria. We probed peptide microarrays containing segments spanning five PfEMP1 EPCR-binding domain variants with sera from 10 Malian adults and 10 children to determine the differences between adult and pediatric immune responses. We defined serorecognized peptides and amino acid residues as those that elicited a significantly higher antibody response than malaria-naïve controls. We aimed to identify regions consistently serorecognized among adults but not among children across PfEMP1 variants, potentially indicating regions that drive the development of immunity to severe malaria. Adult sera consistently demonstrated broader and more intense serologic responses to constitutive PfEMP1 peptides than pediatric sera, including peptides in EPCR-binding domains. Both adults and children serorecognized a significantly higher proportion of EPCR-binding peptides than peptides that do not directly participate in receptor binding, indicating a preferential development of serologic responses at functional residues. Over the course of a single malaria transmission season, pediatric serological responses increased between the start and the peak of the season, but waned as the transmission season ended. IMPORTANCE Severe malaria and death related to malaria disproportionately affect sub-Saharan children under 5 years of age, commonly manifesting as cerebral malaria and/or severe malarial anemia. In contrast, adults in malaria-endemic regions tend to experience asymptomatic or mild disease. Our findings indicate that natural immunity to malaria targets specific regions within the EPCR-binding domain, particularly peptides containing EPCR-binding residues. Epitopes containing these residues may be promising targets for vaccines or therapeutics directed against severe malaria. Our approach provides insight into the development of natural immunity to a binding target linked to severe malaria by characterizing an "adult-like" response as recognizing a proportion of epitopes within the PfEMP1 protein, particularly regions that mediate EPCR binding. This "adult-like" response likely requires multiple years of malaria exposure, as increases in pediatric serologic response over a single malaria transmission season do not appear significant.


Asunto(s)
Malaria Falciparum , Malaria , Adulto , Niño , Humanos , Preescolar , Receptor de Proteína C Endotelial/metabolismo , Proteínas Protozoarias/metabolismo , Malaria Falciparum/parasitología , Epítopos , Péptidos
20.
Biol Open ; 11(8)2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35972051

RESUMEN

Structural biology is an essential tool for understanding the molecular basis of diseases, which can guide the rational design of new drugs, vaccines, and the optimisation of existing medicines. However, most African countries do not conduct structural biology research due to limited resources, lack of trained persons, and an exodus of skilled scientists. The most urgent requirement is to build on the emerging centres in Africa - some well-established, others growing. This can be achieved through workshops that improve networking, grow skills, and develop mechanisms for access to light source beamlines for defining X-ray structures across the continent. These would encourage the growth of structural biology, which is central to understanding biological functions and developing new antimicrobials and other drugs. In this light, a hands-on training workshop in structural biology series 4 was organised by BioStruct-Africa and the Malaria Research and Training Center (MRTC) in Bamako, Mali, to help bridge this gap. The workshop was hosted by MRTC from the 25th to 28th of April 2022. Through a series of lectures and practicals, the workshop enlightened the participants on how structural biology can be utilised to find solutions to the prevalent diseases in Africa. The short training gave them an overview of target selection, protein production and purification, structural determination techniques, and analysis in combination with high-throughput, structure-guided, fragment-based drug design.


Asunto(s)
Biología , Desarrollo Sostenible , África , Humanos
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda