Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Magn Reson Med ; 90(4): 1695-1712, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37278990

RESUMEN

PURPOSE: To introduce the dipolectric antenna: a novel RF coil design for high-field MRI using a combination of a dipole antenna with a loop-coupled dielectric resonator antenna. METHODS: Simulations in human voxel model Duke involving 8-, 16-, and 38-channel dipolectric antenna arrays for brain MRI were conducted. An 8-channel dipolectric antenna for occipital lobe MRI at 7 T was designed and constructed. The array was built of four dielectric resonator antennas (dielectric constant = 1070) and four segmented dipole antennas. In vivo MRI experiments were conducted in one subject, and the SNR performance was benchmarked against a commercial 32-channel head coil. RESULTS: A 38-channel dipolectric antenna array provided the highest whole-brain SNR (up to a 2.3-fold SNR gain in the center of the Duke's head vs. an 8-channel dipolectric antenna array). Dipolectric antenna arrays driven in dipole-only mode (with dielectric resonators used as receive-only) yielded the highest transmit performance. The constructed 8-channel dipolectric antenna array provided up to threefold higher in vivo peripheral SNR when compared with a 32-channel commercial head coil. CONCLUSION: Dipolectric antenna can be considered a promising approach to enhance SNR in human brain MRI at 7 T. This strategy can be used to develop novel multi-channel arrays for different high-field MRI applications.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Humanos , Diseño de Equipo , Fantasmas de Imagen , Encéfalo/diagnóstico por imagen , Lóbulo Occipital , Relación Señal-Ruido
2.
MAGMA ; 36(2): 227-243, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37017828

RESUMEN

OBJECTIVE: To determine whether a multi-feed, loop-dipole combined approach can be used to improve performance of rectangular dielectric resonator antenna (DRA) arrays human brain for MRI at 7 T. MATERIALS AND METHODS: Electromagnetic field simulations in a spherical phantom and human voxel model "Duke" were conducted for different rectangular DRA geometries and dielectric constants εr. Three types of RF feed were investigated: loop-only, dipole-only and loop-dipole. Additionally, multi-channel array configurations up to 24-channels were simulated. RESULTS: The loop-only coupling scheme provided the highest B1+ and SAR efficiency, while the loop-dipole showed the highest SNR in the center of a spherical phantom for both single- and multi-channel configurations. For Duke, 16-channel arrays outperformed an 8-channel bow-tie array with greater B1+ efficiency (1.48- to 1.54-fold), SAR efficiency (1.03- to 1.23-fold) and SNR (1.63- to 1.78). The multi-feed, loop-dipole combined approach enabled the number of channels increase to 24 with 3 channels per block. DISCUSSION: This work provides novel insights into the rectangular DRA design for high field MRI and shows that the loop-only feed should be used instead of the dipole-only in transmit mode to achieve the highest B1+ and SAR efficiency, while the loop-dipole should be the best suited in receive mode to obtain the highest SNR in spherical samples of similar size and electrical properties as the human head.


Asunto(s)
Encéfalo , Imagen por Resonancia Magnética , Humanos , Diseño de Equipo , Encéfalo/diagnóstico por imagen , Cabeza/diagnóstico por imagen , Fantasmas de Imagen
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda