Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 134
Filtrar
1.
Blood ; 141(5): 519-528, 2023 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-36084320

RESUMEN

The sensitivity of conventional techniques for reliable quantification of minimal/measurable residual disease (MRD) in chronic lymphocytic leukemia (CLL) is limited to MRD 10-4. Measuring MRD <10-4 could help to further distinguish between patients with CLL with durable remission and those at risk of early relapse. We herein present an academically developed immunoglobulin heavy-chain variable (IGHV) leader-based next-generation sequencing (NGS) assay for the quantification of MRD in CLL. We demonstrate, based on measurements in contrived MRD samples, that the linear range of detection and quantification of our assay reaches beyond MRD 10-5. If provided with sufficient DNA input, MRD can be detected down to MRD 10-6. There was high interassay concordance between measurements of the IGHV leader-based NGS assay and allele-specific oligonucleotide quantitative polymerase chain reaction (PCR) (r = 0.92 [95% confidence interval {CI}, 0.86-0.96]) and droplet digital PCR (r = 0.93 [95% CI, 0.88-0.96]) on contrived MRD samples. In a cohort of 67 patients from the CLL11 trial, using MRD 10-5 as a cutoff, undetectable MRD was associated with superior progression-free survival (PFS) and time to next treatment. More important, deeper MRD measurement allowed for additional stratification of patients with MRD <10-4 but ≥10-5. PFS of patients in this MRD range was significantly shorter, compared with patients with MRD <10-5 (hazard ratio [HR], 4.0 [95% CI, 1.6-10.3]; P = .004), but significantly longer, compared with patients with MRD ≥10-4 (HR, 0.44 [95% CI, 0.23-0.87]; P = .018). These results support the clinical utility of the IGHV leader-based NGS assay.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Humanos , Leucemia Linfocítica Crónica de Células B/diagnóstico , Leucemia Linfocítica Crónica de Células B/genética , Leucemia Linfocítica Crónica de Células B/terapia , Pronóstico , Cadenas Pesadas de Inmunoglobulina/genética , Reacción en Cadena de la Polimerasa , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Neoplasia Residual/diagnóstico , Neoplasia Residual/genética
2.
Haematologica ; 2024 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-38841782

RESUMEN

Non-Hodgkin lymphomas (NHL) commonly occur in immune-deficient (ID) patients, both HIV-infected and transplanted, and are often EBV-driven with cerebral localization, raising the question of tumor immunogenicity, a critical issue for treatment responses. We investigated the immunogenomics of 68 lymphoproliferative disorders from 51 ID (34 posttransplant, 17 HIV+) and 17 immunocompetent patients. Overall, 72% were Large B Cells Lymphoma (LBCL) and 25% were primary central-nervous-system lymphoma (PCNSL) while 40% were EBV-positive. Tumor whole-exome and RNA sequencing, along with a bioinformatics pipeline allowed analysis of tumor mutational burden (TMB), tumor landscape and microenvironment (TME) and prediction of tumor neoepitopes. Both TMB (2.2 vs 3.4/Mb, p=0.001) and neoepitopes numbers (40 vs 200, p=0.00019) were lower in EBVpositive than in EBV-negative NHL, regardless of the immune status. In contrast both EBV and the immune status influenced the tumor mutational profile, with HNRNPF and STAT3 mutations exclusively observed in EBV-positive and ID NHL, respectively. Peripheral blood T-cell responses against tumor neoepitopes were detected in all EBV-negative cases but in only half EBV-positive ones, including responses against IgH-derived MHC-class-II restricted neoepitopes. The TME analysis showed higher CD8 T cell infiltrates in EBVpositive vs EBV-negative NHL, together with a more tolerogenic profile composed of Tregs, type-M2 macrophages and an increased expression of negative immune-regulators. Our results highlight that the immunogenomics of NHL in patients with immunodeficiency primarily relies on the tumor EBV status, while T cell recognition of tumor- and IgH-specific neoepitopes is conserved in EBV-negative patients, offering potential opportunities for future T cell-based immune therapies.

3.
Am J Hematol ; 99(7): 1240-1249, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38586986

RESUMEN

The prognosis of relapsed primary central nervous system lymphoma (PCNSL) remains dismal. CAR T-cells are a major contributor to systemic lymphomas, but their use in PCNSL is limited. From the LOC network database, we retrospectively selected PCNSL who had leukapheresis for CAR-T cells from the third line of treatment, and, as controls, PCNSL treated with any treatment, at least in the third line and considered not eligible for ASCT. Twenty-seven patients (median age: 68, median of three previous lines, including ASCT in 14/27) had leukapheresis, of whom 25 received CAR T-cells (tisa-cel: N = 16, axi-cel: N = 9) between 2020 and 2023. All but one received a bridging therapy. The median follow-up after leukapheresis was 20.8 months. The best response after CAR-T cells was complete response in 16 patients (64%). One-year progression-free survival from leukapheresis was 43% with a plateau afterward. One-year relapse-free survival was 79% for patients in complete or partial response at CAR T-cell infusion. The median overall survival was 21.2 months. Twenty-three patients experienced a cytokine release syndrome and 17/25 patients (68%) a neurotoxicity (five grade ≥3). The efficacy endpoints were significantly better in the CAR T-cell group than in the control group (N = 247) (median PFS: 3 months; median OS: 4.7 months; p < 0.001). This series represents the largest cohort of PCNSL treated with CAR T-cells reported worldwide. CAR T-cells are effective in relapsed PCNSL, with a high rate of long-term remission and a reassuring tolerance profile. The results seem clearly superior to those usually observed in this setting.


Asunto(s)
Neoplasias del Sistema Nervioso Central , Inmunoterapia Adoptiva , Humanos , Inmunoterapia Adoptiva/efectos adversos , Inmunoterapia Adoptiva/métodos , Masculino , Femenino , Neoplasias del Sistema Nervioso Central/terapia , Neoplasias del Sistema Nervioso Central/mortalidad , Persona de Mediana Edad , Anciano , Estudios Retrospectivos , Leucaféresis , Inducción de Remisión , Adulto , Anciano de 80 o más Años , Receptores Quiméricos de Antígenos
4.
Semin Cancer Biol ; 84: 80-88, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-34757183

RESUMEN

Cancer is characterized by an extremely complex biological background, which hinders personalized therapeutic interventions. Precision medicine promises to overcome this obstacle through integrating information from different 'subsystems', including the host, the external environment, the tumor itself and the tumor micro-environment. Immunogenetics is an essential tool that allows dissecting both lymphoid cancer ontogeny at both a cell-intrinsic and a cell-extrinsic level, i.e. through characterizing micro-environmental interactions, with a view to precision medicine. This is particularly thanks to the introduction of powerful, high-throughput approaches i.e. next generation sequencing, which allow the comprehensive characterization of immune repertoires. Indeed, NGS immunogenetic analysis (Immune-seq) has emerged as key to both understanding cancer pathogenesis and improving the accuracy of clinical decision making in oncology. Immune-seq has applications in lymphoid malignancies, assisting in the diagnosis e.g. through differentiating from reactive conditions, as well as in disease monitoring through accurate assessment of minimal residual disease. Moreover, Immune-seq facilitates the study of T cell receptor clonal dynamics in critical clinical contexts, including transplantation as well as innovative immunotherapy for solid cancers. The clinical utility of Immune-seq represents the focus of the present contribution, where we highlight what can be achieved but also what must be addressed in order to maximally realize the promise of Immune-seq in precision medicine in cancer.


Asunto(s)
Neoplasias , Medicina de Precisión , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Inmunogenética , Inmunoterapia , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/terapia , Microambiente Tumoral/genética
5.
BMC Bioinformatics ; 24(1): 70, 2023 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-36849917

RESUMEN

B cell receptor (BCR) genes exposed to an antigen undergo somatic hypermutations and Darwinian antigen selection, generating a large BCR-antibody diversity. This process, known as B cell affinity maturation, increases antibody affinity, forming a specific B cell lineage that includes the unmutated ancestor and mutated variants. In a B cell lineage, cells with a higher antigen affinity will undergo clonal expansion, while those with a lower affinity will not proliferate and probably be eliminated. Therefore, cellular (genotype) abundance provides a valuable perspective on the ongoing evolutionary process. Phylogenetic tree inference is often used to reconstruct B cell lineage trees and represents the evolutionary dynamic of BCR affinity maturation. However, such methods should process B-cell population data derived from experimental sampling that might contain different cellular abundances. There are a few phylogenetic methods for tracing the evolutionary events occurring in B cell lineages; best-performing solutions are time-demanding and restricted to analysing a reduced number of sequences, while time-efficient methods do not consider cellular abundances. We propose ClonalTree, a low-complexity and accurate approach to construct B-cell lineage trees that incorporates genotype abundances into minimum spanning tree (MST) algorithms. Using both simulated and experimental data, we demonstrate that ClonalTree outperforms MST-based algorithms and achieves a comparable performance to a method that explores tree-generating space exhaustively. Furthermore, ClonalTree has a lower running time, being more convenient for building B-cell lineage trees from high-throughput BCR sequencing data, mainly in biomedical applications, where a lower computational time is appreciable. It is hundreds to thousands of times faster than exhaustive approaches, enabling the analysis of a large set of sequences within minutes or seconds and without loss of accuracy. The source code is freely available at github.com/julibinho/ClonalTree.


Asunto(s)
Linfocitos B , Receptores de Antígenos de Linfocitos B , Linaje de la Célula/genética , Filogenia , Genotipo , Receptores de Antígenos de Linfocitos B/genética
6.
Br J Haematol ; 201(6): 1088-1096, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36941788

RESUMEN

Diagnosis of primary central nervous system lymphoma (PCNSL) is challenging, and although brain biopsy remains the gold standard, cerebrospinal fluid (CSF) constitutes a less invasive source of lymphomatous biomarkers. In a retrospective cohort of 54 PCNSL cases tested at diagnosis or relapse, we evaluated the contribution of immunoglobulin heavy chain (IGH) gene clonality and MYD88 L265P detection on both CSF cell pellets and supernatants, in comparison with cytology, flow cytometry, interleukin (IL)-10 and IL-6 quantification. Clonality assessment included a new assay to detect partial IGH-DJ rearrangements. Clonal IGH rearrangements and/or MYD88 L265P mutation were detected in 27 (50%) cell pellets and 24 (44%) supernatant cell-free (cf) DNA. Combining analyses on both compartments, 36 (66%) cases had at least one detectable molecular marker, present only in cfDNA for 9 (16%) of them. While cytology and flow cytometry were positive in only 7 (13.0%) and 9 (17.3%) cases respectively, high IL-10 levels were observed in 36 (66.7%) cases. Overall, taking into account molecular and cytokine results, 46/54 (85%) cases had at least one lymphomatous biomarker detectable in the CSF. These results show that this combination of biomarkers evaluated on both cell pellet and supernatant CSF fractions improves significantly the biological diagnosis of PCNSL.


Asunto(s)
Ácidos Nucleicos Libres de Células , Factor 88 de Diferenciación Mieloide , Humanos , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , Estudios Retrospectivos , Reordenamiento Génico , Mutación
7.
Blood ; 137(14): 1895-1904, 2021 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-33036024

RESUMEN

Chronic lymphocytic leukemia (CLL) major stereotyped subset 2 (IGHV3-21/IGLV3-21, ∼2.5% of all cases of CLL) is an aggressive disease variant, irrespective of the somatic hypermutation (SHM) status of the clonotypic IGHV gene. Minor stereotyped subset 169 (IGHV3-48/IGLV3-21, ∼0.2% of all cases of CLL) is related to subset 2, as it displays a highly similar variable antigen-binding site. We further explored this relationship through next-generation sequencing and crystallographic analysis of the clonotypic B-cell receptor immunoglobulin. Branching evolution of the predominant clonotype through intraclonal diversification in the context of ongoing SHM was evident in both heavy and light chain genes of both subsets. Molecular similarities between the 2 subsets were highlighted by the finding of shared SHMs within both the heavy and light chain genes in all analyzed cases at either the clonal or subclonal level. Particularly noteworthy in this respect was a ubiquitous SHM at the linker region between the variable and the constant domain of the IGLV3-21 light chains, previously reported as critical for immunoglobulin homotypic interactions underlying cell-autonomous signaling capacity. Notably, crystallographic analysis revealed that the IGLV3-21-bearing CLL subset 169 immunoglobulin retains the same geometry and contact residues for the homotypic intermolecular interaction observed in subset 2, including the SHM at the linker region, and, from a molecular standpoint, belong to a common structural mode of autologous recognition. Collectively, our findings document that stereotyped subsets 2 and 169 are very closely related, displaying shared immunoglobulin features that can be explained only in the context of shared functional selection.


Asunto(s)
Genes de las Cadenas Pesadas de las Inmunoglobulinas/genética , Leucemia Linfocítica Crónica de Células B/genética , Receptores de Antígenos de Linfocitos B/genética , Cristalografía por Rayos X , Regulación Leucémica de la Expresión Génica , Reordenamiento Génico , Células HEK293 , Humanos , Modelos Moleculares , Dominios Proteicos , Receptores de Antígenos de Linfocitos B/química , Hipermutación Somática de Inmunoglobulina
8.
PLoS Comput Biol ; 18(8): e1010411, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-36037250

RESUMEN

The adaptive B cell response is driven by the expansion, somatic hypermutation, and selection of B cell clonal lineages. A high number of clonal lineages in a B cell population indicates a highly diverse repertoire, while clonal size distribution and sequence diversity reflect antigen selective pressure. Identifying clonal lineages is fundamental to many repertoire studies, including repertoire comparisons, clonal tracking, and statistical analysis. Several methods have been developed to group sequences from high-throughput B cell repertoire data. Current methods use clustering algorithms to group clonally-related sequences based on their similarities or distances. Such approaches create groups by optimizing a single objective that typically minimizes intra-clonal distances. However, optimizing several objective functions can be advantageous and boost the algorithm convergence rate. Here we propose MobiLLe, a new method based on multi-objective clustering. Our approach requires V(D)J annotations to obtain the initial groups and iteratively applies two objective functions that optimize cohesion and separation within clonal lineages simultaneously. We show that our method greatly improves clonal lineage grouping on simulated benchmarks with varied mutation rates compared to other tools. When applied to experimental repertoires generated from high-throughput sequencing, its clustering results are comparable to the most performing tools and can reproduce the results of previous publications. The method based on multi-objective clustering can accurately identify clonally-related antibody sequences and presents the lowest running time among state-of-art tools. All these features constitute an attractive option for repertoire analysis, particularly in the clinical context. MobiLLe can potentially help unravel the mechanisms involved in developing and evolving B cell malignancies.


Asunto(s)
Linfocitos B , Secuenciación de Nucleótidos de Alto Rendimiento , Algoritmos , Anticuerpos , Análisis por Conglomerados , Secuenciación de Nucleótidos de Alto Rendimiento/métodos
9.
Br J Haematol ; 197(6): 728-735, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35393650

RESUMEN

Waldenström's macroglobulinaemia (WM) is a B-cell neoplasm resulting from bone marrow lymphoplasmacytic infiltration and monoclonal IgM secretion. Some patients present concomitant inflammatory syndrome attributed to the disease activity; we named this syndrome inflammatory WM (IWM). We retrospectively analysed all WM patients seen in a single tertiary referral centre from January 2007 to May 2021, and after excluding aetiologies for the inflammatory syndrome using a pertinent blood workup, including C-reactive protein (CRP), and imaging, we identified 67 (28%) IWM, 166 (68%) non-IWM, and nine (4%) WM with inflammatory syndrome of unknown origin. At treatment initiation, IWM patients had more severe anaemia (median Hb 90 vs 99 g/l; p < 0.01), higher platelet count (median 245 vs 196 × 109/l; p < 0.01) and comparable serum IgM level (median 24.9 vs 23.0 g/l; p = 0.28). A positive correlation was found between inflammatory and haematological responses (minimal response or better) (odds ratio 32.08; 95% confidence interval 8.80-98.03; p < 0.001). Overall survivals (OS) were similar (median OS: 17 vs 20 years; p = 0.11) but time to next treatment (TNT) was significantly shorter for IWM (TNT1: 1.6 vs 4.8 years, p < 0.0001). IWM mostly shared the same presentation and outcome as WM without inflammatory syndrome.


Asunto(s)
Macroglobulinemia de Waldenström , Humanos , Inmunoglobulina M , Estudios Retrospectivos
10.
Curr Opin Oncol ; 33(5): 420-431, 2021 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-34292201

RESUMEN

PURPOSE OF REVIEW: The aim of this study was to highlight the diagnostic and management challenges of primary vitreoretinal lymphoma (PVRL) through a review of the literature and a European survey on real-life practices for PVRL. RECENT FINDINGS: The care of PVRL patients is heterogeneous between specialists and countries. Upfront systemic treatment based on high-dose methotrexate chemotherapy, with or without local treatment, might reduce or delay the risk of brain relapse.Ibrutinib, lenalidomide with or without rituximab, and temozolomide are effective for patients with relapsed/refractory PVRL and should be tested as first-line treatments. SUMMARY: The prognosis of PVRL remains dismal. No firm conclusion regarding optimal treatment can yet be drawn. The risk of brain relapse remains high. Diagnostic procedures and assessment of therapeutic responses need to be homogenized. Collaboration between specialists involved in PVRL and multicentric prospective therapeutic studies are strongly needed. The recommendations of the French group for primary oculocerebral lymphoma (LOC network) are provided, as a basis for further European collaborative work.


Asunto(s)
Linfoma , Neoplasias de la Retina , Estudios de Seguimiento , Humanos , Linfoma/diagnóstico , Linfoma/tratamiento farmacológico , Recurrencia Local de Neoplasia , Neoplasias de la Retina/diagnóstico , Neoplasias de la Retina/tratamiento farmacológico , Cuerpo Vítreo
11.
Blood ; 134(21): 1821-1831, 2019 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-31527074

RESUMEN

B-cell prolymphocytic leukemia (B-PLL) is a rare hematological disorder whose underlying oncogenic mechanisms are poorly understood. Our cytogenetic and molecular assessments of 34 patients with B-PLL revealed several disease-specific features and potential therapeutic targets. The karyotype was complex (≥3 abnormalities) in 73% of the patients and highly complex (≥5 abnormalities) in 45%. The most frequent chromosomal aberrations were translocations involving MYC [t(MYC)] (62%), deletion (del)17p (38%), trisomy (tri)18 (30%), del13q (29%), tri3 (24%), tri12 (24%), and del8p (23%). Twenty-six (76%) of the 34 patients exhibited an MYC aberration, resulting from mutually exclusive translocations or gains. Whole-exome sequencing revealed frequent mutations in TP53, MYD88, BCOR, MYC, SF3B1, SETD2, CHD2, CXCR4, and BCLAF1. The majority of B-PLL used the IGHV3 or IGHV4 subgroups (89%) and displayed significantly mutated IGHV genes (79%). We identified 3 distinct cytogenetic risk groups: low risk (no MYC aberration), intermediate risk (MYC aberration but no del17p), and high risk (MYC aberration and del17p) (P = .0006). In vitro drug response profiling revealed that the combination of a B-cell receptor or BCL2 inhibitor with OTX015 (a bromodomain and extra-terminal motif inhibitor targeting MYC) was associated with significantly lower viability of B-PLL cells harboring a t(MYC). We concluded that cytogenetic analysis is a useful diagnostic and prognostic tool in B-PLL. Targeting MYC may be a useful treatment option in this disease.


Asunto(s)
Leucemia Prolinfocítica Tipo Células B/genética , Proteínas Proto-Oncogénicas c-myc/genética , Proteína p53 Supresora de Tumor/genética , Anciano , Anciano de 80 o más Años , Aberraciones Cromosómicas , Análisis Citogenético , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pronóstico
12.
Haematologica ; 106(3): 682-691, 2021 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-32273480

RESUMEN

Next-generation sequencing (NGS) has transitioned from research to clinical routine, yet the comparability of different technologies for mutation profiling remains an open question. We performed a European multicenter (n=6) evaluation of three amplicon-based NGS assays targeting 11 genes recurrently mutated in chronic lymphocytic leukemia. Each assay was assessed by two centers using 48 pre-characterized chronic lymphocytic leukemia samples; libraries were sequenced on the Illumina MiSeq instrument and bioinformatics analyses were centralized. Across all centers the median percentage of target reads ≥100x ranged from 94.2- 99.8%. In order to rule out assay-specific technical variability, we first assessed variant calling at the individual assay level i.e., pairwise analysis of variants detected amongst partner centers. After filtering for variants present in the paired normal sample and removal of PCR/sequencing artefacts, the panels achieved 96.2% (Multiplicom), 97.7% (TruSeq) and 90% (HaloPlex) concordance at a variant allele frequency (VAF) >0.5%. Reproducibility was assessed by looking at the inter-laboratory variation in detecting mutations and 107 of 115 (93% concordance) mutations were detected by all six centers, while the remaining eight variants (7%) were undetected by a single center. Notably, 6 of 8 of these variants concerned minor subclonal mutations (VAF <5%). We sought to investigate low-frequency mutations further by using a high-sensitivity assay containing unique molecular identifiers, which confirmed the presence of several minor subclonal mutations. Thus, while amplicon-based approaches can be adopted for somatic mutation detection with VAF >5%, after rigorous validation, the use of unique molecular identifiers may be necessary to reach a higher sensitivity and ensure consistent and accurate detection of low-frequency variants.


Asunto(s)
Leucemia Linfocítica Crónica de Células B , Secuenciación de Nucleótidos de Alto Rendimiento , Humanos , Leucemia Linfocítica Crónica de Células B/diagnóstico , Leucemia Linfocítica Crónica de Células B/genética , Mutación , Reproducibilidad de los Resultados
13.
Am J Hematol ; 96(12): 1569-1579, 2021 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-34462944

RESUMEN

While Waldenström macroglobulinemia (WM) is characterized by an almost unifying mutation in MYD88, clinical presentation at diagnosis and response to therapy can be widely different among WM patients. Current prognostic tools only partially address this clinical heterogeneity. Limited data compiling both molecular and cytogenetic information have been used in risk prognostication in WM. To investigate the clinical impact of genetic alterations in WM, we evaluated cytogenetic and molecular abnormalities by chromosome banding analyses, FISH and targeted NGS in a retrospective cohort of 239 WM patients, including 187 patients treated by first-line chemotherapy or immunochemotherapy. Most frequent mutations were identified in MYD88 (93%), CXCR4 (29%), MLL2 (11%), ARID1A (8%), TP53 (8%), CD79A/B (6%), TBL1XR1 (4%) and SPI1 (4%). The median number of cytogenetic abnormalities was two (range, 0-22). Main cytogenetic abnormalities were 6q deletion (del6q) (27%), trisomy 4 (tri4) (12%), tri18 (11%), del13q (11%), tri12 (7.5%) and del17p (7%). Complex karyotype (CK) was observed in 15% (n = 31) of cases, including 5% (n = 12) of highly CK (high-CK). TP53 abnormalities (TP53abn) were present in 15% of evaluable patients. TP53abn and del6q were associated with CK/high-CK (p < .05). Fifty-three percent of patients with hyperviscosity harbored CXCR4 mutations. Cytogenetic and molecular abnormalities did not significantly impact time to first treatment and response to therapy. Prognostic factors associated with shorter PFS were del6q (p = .01), TP53abn (p = .002) and high-CK (p = .01). These same factors as well as IPSSWM, tri4, CXCR4 frameshift and SPI1 mutations were significantly associated with lower OS (p < .05). These results argue for integration of both cytogenetic and molecular screening in evaluation of first-line WM patients.


Asunto(s)
Aberraciones Cromosómicas , Mutación , Macroglobulinemia de Waldenström/genética , Adulto , Anciano , Anciano de 80 o más Años , Citogenética , Femenino , Humanos , Masculino , Persona de Mediana Edad , Pronóstico , Estudios Retrospectivos , Macroglobulinemia de Waldenström/diagnóstico
14.
J Pathol ; 247(4): 416-421, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30484876

RESUMEN

The B cell receptor immunoglobulin (Ig) gene repertoires of marginal zone (MZ) lymphoproliferations were analyzed in order to obtain insight into their ontogenetic relationships. Our cohort included cases with MZ lymphomas (n = 488), i.e. splenic (SMZL), nodal (NMZL) and extranodal (ENMZL), as well as provisional entities (n = 76), according to the WHO classification. The most striking Ig gene repertoire skewing was observed in SMZL. However, restrictions were also identified in all other MZ lymphomas studied, particularly ENMZL, with significantly different Ig gene distributions depending on the primary site of involvement. Cross-entity comparisons of the MZ Ig sequence dataset with a large dataset of Ig sequences (MZ-related or not; n = 65 837) revealed four major clusters of cases sharing homologous ('public') heavy variable complementarity-determining region 3. These clusters included rearrangements from SMZL, ENMZL (gastric, salivary gland, ocular adnexa), chronic lymphocytic leukemia, but also rheumatoid factors and non-malignant splenic MZ cells. In conclusion, different MZ lymphomas display biased immunogenetic signatures indicating distinct antigen exposure histories. The existence of rare public stereotypes raises the intriguing possibility that common, pathogen-triggered, immune-mediated mechanisms may result in diverse B lymphoproliferations due to targeting versatile progenitor B cells and/or operating in particular microenvironments. Copyright © 2018 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Asunto(s)
Genes de Inmunoglobulinas/genética , Linfoma de Células B de la Zona Marginal/genética , Regiones Determinantes de Complementariedad/genética , Reordenamiento Génico de Linfocito B/genética , Genes de las Cadenas Pesadas de las Inmunoglobulinas/genética , Humanos , Región Variable de Inmunoglobulina/genética , Mutación/genética , Receptores de Antígenos de Linfocitos B/genética , Microambiente Tumoral
15.
Int J Cancer ; 144(11): 2695-2706, 2019 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-30447004

RESUMEN

Chronic lymphocytic leukemia (CLL) stereotyped subsets #6 and #8 include cases expressing unmutated B cell receptor immunoglobulin (BcR IG) (U-CLL). Subset #6 (IGHV1-69/IGKV3-20) is less aggressive compared to subset #8 (IGHV4-39/IGKV1(D)-39) which has the highest risk for Richter's transformation among all CLL. The underlying reasons for this divergent clinical behavior are not fully elucidated. To gain insight into this issue, here we focused on epigenomic signatures and their links with gene expression, particularly investigating genome-wide DNA methylation profiles in subsets #6 and #8 as well as other U-CLL cases not expressing stereotyped BcR IG. We found that subset #8 showed a distinctive DNA methylation profile compared to all other U-CLL cases, including subset #6. Integrated analysis of DNA methylation and gene expression revealed significant correlation for several genes, particularly highlighting a relevant role for the TP63 gene which was hypomethylated and overexpressed in subset #8. This observation was validated by quantitative PCR, which also revealed TP63 mRNA overexpression in additional nonsubset U-CLL cases. BcR stimulation had distinct effects on p63 protein expression, particularly leading to induction in subset #8, accompanied by increased CLL cell survival. This pro-survival effect was also supported by siRNA-mediated downregulation of p63 expression resulting in increased apoptosis. In conclusion, we report that DNA methylation profiles may vary even among CLL patients with similar somatic hypermutation status, supporting a compartmentalized approach to dissecting CLL biology. Furthermore, we highlight p63 as a novel prosurvival factor in CLL, thus identifying another piece of the complex puzzle of clinical aggressiveness.


Asunto(s)
Metilación de ADN/genética , Regulación Neoplásica de la Expresión Génica , Leucemia Linfocítica Crónica de Células B/genética , Receptores de Antígenos de Linfocitos B/metabolismo , Factores de Transcripción/genética , Proteínas Supresoras de Tumor/genética , Apoptosis/genética , Epigenómica/métodos , Femenino , Perfilación de la Expresión Génica/métodos , Humanos , Leucemia Linfocítica Crónica de Células B/sangre , Leucemia Linfocítica Crónica de Células B/patología , Masculino , Cultivo Primario de Células , Regiones Promotoras Genéticas/genética , ARN Interferente Pequeño/metabolismo , Análisis de Secuencia de ARN , Factores de Transcripción/metabolismo , Células Tumorales Cultivadas , Proteínas Supresoras de Tumor/metabolismo , Regulación hacia Arriba
16.
Blood Cells Mol Dis ; 75: 1-10, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30502564

RESUMEN

Primary CNS lymphomas (PCNSL) are rare and poor prognosis diffuse large B-cell lymphomas. Because of the brain tumor environment and the restricted distribution of drugs in the CNS, specific PCNSL patient-derived orthotopic xenograft (PDOX) models are needed for preclinical research to improve the prognosis of PCNSL patients. PCNSL patient specimens (n = 6) were grafted in the caudate nucleus of immunodeficient nude mice with a 83% rate of success, while subcutaneous implantation in nude mice of human PCNSL sample did not generate lymphoma, supporting the role of the brain microenvironment in the PCNSL physiopathology. PDOXs showed diffuse infiltration of B-cell lymphoma cells in the brain parenchyma. Each model had a unique mutational signature for genes in the BCR and NF-κB pathways and retained the mutational profile of the primary tumor. The models can be stored as cryopreserved biobank. Human IL-10 levels measured in the plasma of PCNSL-PDOX mice showed to be a reliable tool to monitor the tumor burden. Treatment response could be measured after a short treatment with the targeted therapy ibrutinib. In summary, we established a panel of human PCNSL-PDOX models that capture the histological and molecular characteristics of the disease and that proved suitable for preclinical experiments. Our methods of generation and characterization will enable the generation of additional PDOX-PCNSL models, essential tools for cognitive and preclinical drug discovery.


Asunto(s)
Neoplasias del Sistema Nervioso Central/patología , Modelos Animales de Enfermedad , Xenoinjertos/patología , Linfoma de Células B Grandes Difuso/patología , Adenina/análogos & derivados , Animales , Núcleo Caudado , Xenoinjertos/efectos de los fármacos , Humanos , Interleucina-10/análisis , Ratones , Ratones Desnudos , Piperidinas , Pronóstico , Pirazoles/uso terapéutico , Pirimidinas/uso terapéutico , Carga Tumoral
19.
Am J Hematol ; 94(10): 1123-1131, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31328307

RESUMEN

Diagnosis of lymphoma leptomeningeal dissemination is challenging and relies on a wide array of methods. So far, no consensus biological guidelines are available. This increases the chance of intra- and interpractice variations, despite the shared concern to perform the minimum amount of tests while preserving clinically relevant results.We evaluated a training cohort of 371 cerebrospinal fluid (CSF) samples from patients with putative lymphomatous central nervous system (CNS) localization using conventional cytology (CC), flow cytometry (FCM), molecular clonality assesment by PCR and cytokine quantification (CQ). This led us to propose a biological algorithm, which was then verified on a validation cohort of 197 samples. The samples were classified according to the clinical context and the results of each technique were compared. Using all four techniques was not useful for exclusion diagnosis of CNS lymphoma (CNSL), but they proved complementary for cases with suspected CNSL. This was particularly true for CQ in primary CNSL. Overall, diagnosis can be obtained with a two-step approach. The first step comprises CC and FCM, as results are available quickly and FCM is a sensitive method. Both PCR and CQ can be postponed and performed in a second step, depending on the results from the first step and the clinical context.The proposed algorithm missed none of the CNSL samples of the validation cohort. Moreover, applying this algorithm would have spared 30% of PCR tests and 20% of CQ over a one-year period, without compromising clinical management.


Asunto(s)
Neoplasias del Sistema Nervioso Central/líquido cefalorraquídeo , Linfoma no Hodgkin/líquido cefalorraquídeo , Algoritmos , Enfermedades del Sistema Nervioso Central/líquido cefalorraquídeo , Neoplasias del Sistema Nervioso Central/diagnóstico , Neoplasias del Sistema Nervioso Central/patología , Líquido Cefalorraquídeo/citología , Células Clonales , Citocinas/líquido cefalorraquídeo , Detección Precoz del Cáncer , Reacciones Falso Negativas , Reacciones Falso Positivas , Citometría de Flujo , Reordenamiento Génico de Linfocito B , Genes de Inmunoglobulinas , Humanos , Linfoma no Hodgkin/diagnóstico , Linfoma no Hodgkin/patología , Meninges/patología , Reacción en Cadena de la Polimerasa Multiplex , Invasividad Neoplásica , Hipermutación Somática de Inmunoglobulina , Coloración y Etiquetado/métodos
20.
J Immunol ; 198(10): 3765-3774, 2017 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-28416603

RESUMEN

Analysis and interpretation of Ig and TCR gene rearrangements in the conventional, low-throughput way have their limitations in terms of resolution, coverage, and biases. With the advent of high-throughput, next-generation sequencing (NGS) technologies, a deeper analysis of Ig and/or TCR (IG/TR) gene rearrangements is now within reach, which impacts on all main applications of IG/TR immunogenetic analysis. To bridge the generation gap from low- to high-throughput analysis, the EuroClonality-NGS Consortium has been formed, with the main objectives to develop, standardize, and validate the entire workflow of IG/TR NGS assays for 1) clonality assessment, 2) minimal residual disease detection, and 3) repertoire analysis. This concerns the preanalytical (sample preparation, target choice), analytical (amplification, NGS), and postanalytical (immunoinformatics) phases. Here we critically discuss pitfalls and challenges of IG/TR NGS methodology and its applications in hemato-oncology and immunology.


Asunto(s)
Hematología/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Inmunogenética/métodos , Técnicas Inmunológicas , Alelos , Biología Computacional/métodos , Reordenamiento Génico , Genes de Inmunoglobulinas , Genes Codificadores de los Receptores de Linfocitos T/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Inmunogenética/normas
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda