Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Cell ; 158(1): 121-31, 2014 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-24995983

RESUMEN

The extent to which bacterial ribosomes and the significantly larger eukaryotic ribosomes share the same mechanisms of ribosomal elongation is unknown. Here, we present subnanometer resolution cryoelectron microscopy maps of the mammalian 80S ribosome in the posttranslocational state and in complex with the eukaryotic eEF1A⋅Val-tRNA⋅GMPPNP ternary complex, revealing significant differences in the elongation mechanism between bacteria and mammals. Surprisingly, and in contrast to bacterial ribosomes, a rotation of the small subunit around its long axis and orthogonal to the well-known intersubunit rotation distinguishes the posttranslocational state from the classical pretranslocational state ribosome. We term this motion "subunit rolling." Correspondingly, a mammalian decoding complex visualized in substates before and after codon recognition reveals structural distinctions from the bacterial system. These findings suggest how codon recognition leads to GTPase activation in the mammalian system and demonstrate that in mammalia subunit rolling occurs during tRNA selection.


Asunto(s)
Mamíferos/metabolismo , Ribosomas/química , Secuencia de Aminoácidos , Animales , Anticodón/metabolismo , Codón/metabolismo , Microscopía por Crioelectrón , Cristalografía por Rayos X , Humanos , Datos de Secuencia Molecular , Extensión de la Cadena Peptídica de Translación , ARN de Transferencia/metabolismo , Conejos , Saccharomyces cerevisiae/metabolismo , Tetrahymena thermophila/metabolismo
2.
Mol Cell ; 79(4): 629-644.e4, 2020 08 20.
Artículo en Inglés | MEDLINE | ID: mdl-32679035

RESUMEN

In contrast to the bacterial translation machinery, mitoribosomes and mitochondrial translation factors are highly divergent in terms of composition and architecture. There is increasing evidence that the biogenesis of mitoribosomes is an intricate pathway, involving many assembly factors. To better understand this process, we investigated native assembly intermediates of the mitoribosomal large subunit from the human parasite Trypanosoma brucei using cryo-electron microscopy. We identify 28 assembly factors, 6 of which are homologous to bacterial and eukaryotic ribosome assembly factors. They interact with the partially folded rRNA by specifically recognizing functionally important regions such as the peptidyltransferase center. The architectural and compositional comparison of the assembly intermediates indicates a stepwise modular assembly process, during which the rRNA folds toward its mature state. During the process, several conserved GTPases and a helicase form highly intertwined interaction networks that stabilize distinct assembly intermediates. The presented structures provide general insights into mitoribosomal maturation.


Asunto(s)
Ribosomas Mitocondriales/química , ARN Ribosómico/metabolismo , Subunidades Ribosómicas Grandes/química , Trypanosoma brucei brucei/metabolismo , Microscopía por Crioelectrón , ARN Helicasas DEAD-box/química , ARN Helicasas DEAD-box/metabolismo , GTP Fosfohidrolasas/química , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Ribosomas Mitocondriales/metabolismo , Modelos Moleculares , Conformación de Ácido Nucleico , ARN Ribosómico/química , Proteínas Ribosómicas/química , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Grandes/metabolismo , Trypanosoma brucei brucei/genética
3.
Proc Natl Acad Sci U S A ; 119(3)2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-35042777

RESUMEN

Mitochondrial ribosomes (mitoribosomes) play a central role in synthesizing mitochondrial inner membrane proteins responsible for oxidative phosphorylation. Although mitoribosomes from different organisms exhibit considerable structural variations, recent insights into mitoribosome assembly suggest that mitoribosome maturation follows common principles and involves a number of conserved assembly factors. To investigate the steps involved in the assembly of the mitoribosomal small subunit (mt-SSU) we determined the cryoelectron microscopy structures of middle and late assembly intermediates of the Trypanosoma brucei mitochondrial small subunit (mt-SSU) at 3.6- and 3.7-Å resolution, respectively. We identified five additional assembly factors that together with the mitochondrial initiation factor 2 (mt-IF-2) specifically interact with functionally important regions of the rRNA, including the decoding center, thereby preventing premature mRNA or large subunit binding. Structural comparison of assembly intermediates with mature mt-SSU combined with RNAi experiments suggests a noncanonical role of mt-IF-2 and a stepwise assembly process, where modular exchange of ribosomal proteins and assembly factors together with mt-IF-2 ensure proper 9S rRNA folding and protein maturation during the final steps of assembly.


Asunto(s)
Proteínas Mitocondriales/química , Ribosomas Mitocondriales/química , Fosforilación Oxidativa , ARN Ribosómico/química , Proteínas Ribosómicas/química , Subunidades Ribosómicas/química , Línea Celular , Microscopía por Crioelectrón , Mitocondrias/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Ribosomas Mitocondriales/metabolismo , Modelos Moleculares , ARN Ribosómico/genética , ARN Ribosómico/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas/genética , Subunidades Ribosómicas/metabolismo , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo
4.
Am J Respir Crit Care Med ; 208(9): 975-982, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37672028

RESUMEN

Rationale: Identifying patients with pulmonary fibrosis (PF) at risk of progression can guide management. Objectives: To explore the utility of combining baseline BAL and computed tomography (CT) in differentiating progressive and nonprogressive PF. Methods: The derivation cohort consisted of incident cases of PF for which BAL was performed as part of a diagnostic workup. A validation cohort was prospectively recruited with identical inclusion criteria. Baseline thoracic CT scans were scored for the extent of fibrosis and usual interstitial pneumonia (UIP) pattern. The BAL lymphocyte proportion was recorded. Annualized FVC decrease of >10% or death within 1 year was used to define disease progression. Multivariable logistic regression identified the determinants of the outcome. The optimum binary thresholds (maximal Wilcoxon rank statistic) at which the extent of fibrosis on CT and the BAL lymphocyte proportion could distinguish disease progression were identified. Measurements and Main Results: BAL lymphocyte proportion, UIP pattern, and fibrosis extent were significantly and independently associated with disease progression in the derivation cohort (n = 240). Binary thresholds for increased BAL lymphocyte proportion and extensive fibrosis were identified as 25% and 20%, respectively. An increased BAL lymphocyte proportion was rare in patients with a UIP pattern (8 of 135; 5.9%) or with extensive fibrosis (7 of 144; 4.9%). In the validation cohort (n = 290), an increased BAL lymphocyte proportion was associated with a significantly lower probability of disease progression in patients with nonextensive fibrosis or a non-UIP pattern. Conclusions: BAL lymphocytosis is rare in patients with extensive fibrosis or a UIP pattern on CT. In patients without a UIP pattern or with limited fibrosis, a BAL lymphocyte proportion of ⩾25% was associated with a lower likelihood of progression.


Asunto(s)
Fibrosis Pulmonar Idiopática , Enfermedades Pulmonares Intersticiales , Humanos , Enfermedades Pulmonares Intersticiales/diagnóstico por imagen , Progresión de la Enfermedad , Tomografía Computarizada por Rayos X/métodos , Tomografía , Pulmón/diagnóstico por imagen , Estudios Retrospectivos
5.
Vascular ; : 17085381241236571, 2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38404043

RESUMEN

AIM: The aim of this study was to investigate the potential of novel automated machine learning (AutoML) in vascular medicine by developing a discriminative artificial intelligence (AI) model for the classification of anatomical patterns of peripheral artery disease (PAD). MATERIAL AND METHODS: Random open-source angiograms of lower limbs were collected using a web-indexed search. An experienced researcher in vascular medicine labelled the angiograms according to the most applicable grade of femoropopliteal disease in the Global Limb Anatomic Staging System (GLASS). An AutoML model was trained using the Vertex AI (Google Cloud) platform to classify the angiograms according to the GLASS grade with a multi-label algorithm. Following deployment, we conducted a test using 25 random angiograms (five from each GLASS grade). Model tuning through incremental training by introducing new angiograms was executed to the limit of the allocated quota following the initial evaluation to determine its effect on the software's performance. RESULTS: We collected 323 angiograms to create the AutoML model. Among these, 80 angiograms were labelled as grade 0 of femoropopliteal disease in GLASS, 114 as grade 1, 34 as grade 2, 25 as grade 3 and 70 as grade 4. After 4.5 h of training, the AI model was deployed. The AI self-assessed average precision was 0.77 (0 is minimal and 1 is maximal). During the testing phase, the AI model successfully determined the GLASS grade in 100% of the cases. The agreement with the researcher was almost perfect with the number of observed agreements being 22 (88%), Kappa = 0.85 (95% CI 0.69-1.0). The best results were achieved in predicting GLASS grade 0 and grade 4 (initial precision: 0.76 and 0.84). However, the AI model exhibited poorer results in classifying GLASS grade 3 (initial precision: 0.2) compared to other grades. Disagreements between the AI and the researcher were associated with the low resolution of the test images. Incremental training expanded the initial dataset by 23% to a total of 417 images, which improved the model's average precision by 11% to 0.86. CONCLUSION: After a brief training period with a limited dataset, AutoML has demonstrated its potential in identifying and classifying the anatomical patterns of PAD, operating unhindered by the factors that can affect human analysts, such as fatigue or lack of experience. This technology bears the potential to revolutionize outcome prediction and standardize evidence-based revascularization strategies for patients with PAD, leveraging its adaptability and ability to continuously improve with additional data. The pursuit of further research in AutoML within the field of vascular medicine is both promising and warranted. However, it necessitates additional financial support to realize its full potential.

6.
Biochemistry ; 62(2): 410-418, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-34762799

RESUMEN

The DNA polymerase I from Geobacillus stearothermophilus (also known as Bst DNAP) is widely used in isothermal amplification reactions, where its strand displacement ability is prized. More robust versions of this enzyme should be enabled for diagnostic applications, especially for carrying out higher temperature reactions that might proceed more quickly. To this end, we appended a short fusion domain from the actin-binding protein villin that improved both stability and purification of the enzyme. In parallel, we have developed a machine learning algorithm that assesses the relative fit of individual amino acids to their chemical microenvironments at any position in a protein and applied this algorithm to predict sequence substitutions in Bst DNAP. The top predicted variants had greatly improved thermotolerance (heating prior to assay), and upon combination, the mutations showed additive thermostability, with denaturation temperatures up to 2.5 °C higher than the parental enzyme. The increased thermostability of the enzyme allowed faster loop-mediated isothermal amplification assays to be carried out at 73 °C, where both Bst DNAP and its improved commercial counterpart Bst 2.0 are inactivated. Overall, this is one of the first examples of the application of machine learning approaches to the thermostabilization of an enzyme.


Asunto(s)
ADN Polimerasa Dirigida por ADN , Técnicas de Amplificación de Ácido Nucleico , ADN Polimerasa Dirigida por ADN/genética , ADN Polimerasa Dirigida por ADN/metabolismo , ADN Polimerasa I/química , Geobacillus stearothermophilus
7.
Respir Res ; 24(1): 51, 2023 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-36788603

RESUMEN

BACKGROUND: Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease that affects 3 million people worldwide. Senescence and small extracellular vesicles (sEVs) have been implicated in the pathogenesis of IPF, although how sEVs promote disease remains unclear. Here, we profile sEVs from bronchial epithelial cells and determine small RNA (smRNA) content. METHODS: Conditioned media was collected and sEVs were isolated from normal human bronchial epithelial cells (NHBEs) and IPF-diseased human bronchial epithelial cells (DHBEs). RESULTS: Increased sEV release from DHBEs compared to NHBEs (n = 4; p < 0.05) was detected by nanoparticle tracking analysis. NHBEs co-cultured with DHBE-derived sEVs for 72 h expressed higher levels of SA-ß-Gal and γH2AX protein, p16 and p21 RNA and increased secretion of IL6 and IL8 proteins (all n = 6-8; p < 0.05). sEVs were also co-cultured with healthy air-liquid interface (ALI) cultures and similar results were observed, with increases in p21 and p16 gene expression and IL6 and IL8 (basal and apical) secretion (n = 6; p < 0.05). Transepithelial electrical resistance (TEER) measurements, a reflection of epithelial barrier integrity, were decreased upon the addition of DHBE-derived sEVs (n = 6; p < 0.05). smRNA-sequencing identified nineteen significantly differentially expressed miRNA in DHBE-derived sEVs compared to NHBE-derived sEVs, with candidate miRNAs validated by qPCR (all n = 5; p < 0.05). Four of these miRNAs were upregulated in NHBEs co-cultured with DHBE-derived sEVs and three in healthy ALI cultures co-cultured with DHBE-derived sEVs (n = 3-4; p < 0.05). CONCLUSIONS: This data demonstrates that DHBE-derived sEVs transfer senescence to neighbouring healthy cells, promoting the disease state in IPF.


Asunto(s)
Vesículas Extracelulares , Fibrosis Pulmonar Idiopática , MicroARNs , Humanos , Interleucina-6/metabolismo , Interleucina-8/metabolismo , MicroARNs/genética , MicroARNs/metabolismo , Fibrosis Pulmonar Idiopática/metabolismo , Vesículas Extracelulares/metabolismo
8.
Respirology ; 28(7): 627-635, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37121779

RESUMEN

Novel genetic associations for idiopathic pulmonary fibrosis (IPF) risk have been identified. Common genetic variants associated with IPF are also associated with chronic hypersensitivity pneumonitis. The characterization of underlying mechanisms, such as pathways involved in myofibroblast differentiation, may reveal targets for future treatments. Newly identified circulating biomarkers are associated with disease progression and mortality. Deep learning and machine learning may increase accuracy in the interpretation of CT scans. Novel treatments have shown benefit in phase 2 clinical trials. Hospitalization with COVID-19 is associated with residual lung abnormalities in a substantial number of patients. Inequalities exist in delivering and accessing interstitial lung disease specialist care.


Asunto(s)
Alveolitis Alérgica Extrínseca , COVID-19 , Fibrosis Pulmonar Idiopática , Enfermedades Pulmonares Intersticiales , Humanos , Enfermedades Pulmonares Intersticiales/diagnóstico , Fibrosis Pulmonar Idiopática/diagnóstico , Fibrosis Pulmonar Idiopática/genética , Fibrosis Pulmonar Idiopática/terapia , Progresión de la Enfermedad , Pulmón/diagnóstico por imagen
9.
Int J Mol Sci ; 24(23)2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-38069170

RESUMEN

In previous genome-wide association studies (GWAS), genetic loci associated with obesity and impaired fat distribution (FD) have been identified. In the present study, we elucidated the role of the PEMT gene, including the waist-hip-ratio-associated single nucleotide polymorphism rs4646404, and its influence on obesity-related metabolic traits. DNA from 2926 metabolically well-characterized subjects was used for genotyping. PEMT expression was analyzed in paired visceral (vis) and subcutaneous (sc) adipose tissue (AT) from a subset of 574 individuals. Additionally, PEMT expression was examined in vis, sc AT and liver tissue in a separate cohort of 64 patients with morbid obesity and liver disease. An in vitro Pemt knockdown was conducted in murine epididymal and inguinal adipocytes. Our findings highlight tissue-specific variations in PEMT mRNA expression across the three studied tissues. Specifically, vis PEMT mRNA levels correlated significantly with T2D and were implicated in the progression of non-alcoholic steatohepatitis (NASH), in contrast to liver tissue, where no significant associations were found. Moreover, sc PEMT expression showed significant correlations with several anthropometric- and metabolic-related parameters. The rs4646404 was associated with vis AT PEMT expression and also with diabetes-related traits. Our in vitro experiments supported the influence of PEMT on adipogenesis, emphasizing its role in AT biology. In summary, our data suggest that PEMT plays a role in regulating FD and has implications in metabolic diseases.


Asunto(s)
Estudio de Asociación del Genoma Completo , Enfermedad del Hígado Graso no Alcohólico , Humanos , Animales , Ratones , Fosfatidiletanolamina N-Metiltransferasa/genética , Hígado/metabolismo , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/metabolismo , ARN Mensajero/metabolismo , Obesidad/genética , Obesidad/metabolismo
10.
Appl Environ Microbiol ; 88(1): e0162221, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-34669448

RESUMEN

The multi-heme c-type cytochrome OmcS is one of the central components used for extracellular electron transport in the Geobacter sulfurreducens strain DL-1, but its role in other microbes, including other strains of G. sulfurreducens, is currently a matter of debate. Therefore, we investigated the function of OmcS in the G. sulfurreducens strain KN400, which is even more effective in extracellular electron transfer than the DL-1 strain. We found that deleting omcS from strain KN400 did not negatively impact the rate of Fe(III) oxide reduction and that the cells expressed conductive filaments. Replacing the wild-type pilin gene with the aro-5 pilin gene eliminated the OmcS-deficient strain's ability to transport electrons to insoluble electron acceptors and diminished filament conductivity. These results are consistent with the concept that electrically conductive pili are the primary conduit for long-range electron transfer in G. sulfurreducens and closely related species. These findings, coupled with the lack of OmcS homologs in other microbes capable of extracellular electron transfer, suggest that OmcS is not a common critical component for extracellular electron transfer. IMPORTANCE OmcS has been widely studied and noted to be one of the key components for extracellular electron exchange by the Geobacter sulfurreducens strain DL-1. However, the true importance of OmcS warrants further investigation because it is well known that few bacteria, even within the Geobacteraceae family, contain OmcS homologs, and many bacteria that are capable of extracellular electron transfer lack an abundance of any type of outer surface c-type cytochrome. In addition, there is debate about the importance of OmcS filaments in the mechanism of extracellular electron transport to insoluble electron acceptors by G. sulfurreducens. It has been suggested that filaments comprised of OmcS rather than e-pili are the predominant conductive filaments expressed by G. sulfurreducens. However, the results presented here, along with multiple other sources of evidence, indicate that OmcS filaments cannot be the primary, conductive, protein nanowires expressed by G. sulfurreducens.


Asunto(s)
Electrones , Geobacter , Citocromos/metabolismo , Transporte de Electrón , Compuestos Férricos/metabolismo , Fimbrias Bacterianas/genética , Fimbrias Bacterianas/metabolismo , Geobacter/genética , Geobacter/metabolismo , Oxidación-Reducción
11.
J Clin Psychopharmacol ; 41(5): 534-539, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34519455

RESUMEN

BACKGROUND: Sedation is a common and incapacitating clozapine adverse effect, but the factors associated with sedation and its pharmacological management remain poorly studied. METHODS: We conducted a retrospective cohort study based on deidentified electronic clinical records of clozapine-treated patients from the secondary mental health care provider for Cambridgeshire and Peterborough, United Kingdom. We first evaluated cross-sectionally the influence of clozapine dose, clozapine, and norclozapine plasma levels on self-reported hours slept, as a proxy for sedation, using bivariate correlation and then the longitudinal effect of changes in clozapine dose and other 23 medications using linear mixed effect models. We followed 241 clozapine-treated patients for 56 months on average, with 2237 face-to-face assessments in total. RESULTS: Patients slept for a mean of 9.35 h/d, with 46% reporting 10 h/d or more. Cross-sectionally, sleep duration did not correlate with clozapine dose (r = 0.14, P = 0.106), but with clozapine plasma levels (r = 0.38, P < 0.0001) and norclozapine plasma levels (r = 0.25, P = 0.005). Longitudinally, the final mixed-effects model revealed 4 pharmacological variables that had a significant impact on hours slept: clozapine, risperidone augmentation, and atenolol were associated with increased sleep, whereas aripiprazole augmentation was associated with decreased sleep. We found that 20 other psychotropic medications measured were not associated with changes in sleep when added to clozapine. Excess sleep is a clozapine level-dependent adverse effect. CONCLUSIONS: The impact of different augmentation strategies might help clinicians decide on the most adequate strategy, albeit further studies should confirm our results.


Asunto(s)
Clozapina/efectos adversos , Clozapina/farmacología , Sueño/efectos de los fármacos , Adulto , Antipsicóticos/efectos adversos , Antipsicóticos/farmacología , Interacciones Farmacológicas , Femenino , Humanos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Autoinforme , Factores de Tiempo , Reino Unido
12.
New Phytol ; 225(1): 340-355, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31469444

RESUMEN

Awns, bristle-like structures extending from grass lemmas, provide protection against predators, contribute to photosynthesis and aid in grain dispersal. In wheat, selection of awns with minimal extension, termed awnletted, has occurred during domestication by way of loci that dominantly inhibit awn development, such as Tipped1 (B1), Tipped2 (B2), and Hooded (Hd). Here we identify and characterize the B1 gene. B1 was identified using bulked segregant RNA-sequencing of an F2 durum wheat population and through deletion mapping of awned bread wheat mutants. Functional characterization was accomplished by gene overexpression while haplotype analyses assessed B1 polymorphisms and genetic variation. Located on chromosome 5A, B1 is a C2H2 zinc finger encoding gene with ethylene-responsive element binding factor-associated amphiphilic repression (EAR) motifs. Constitutive overexpression of B1 in awned wheat produced an awnletted phenotype with pleiotropic effects on plant height and fertility. Transcriptome analysis of B1 overexpression plants suggests a role as transcriptional repressor, putatively targeting pathways involved in cell proliferation. Haplotype analysis revealed a conserved B1 coding region with proximal polymorphisms and supported the contention that B1 is mainly responsible for awnletted wheats globally. B1, predominantly responsible for awn inhibition in wheat, encodes a C2H2 zinc finger protein with EAR motifs which putatively functions as a transcriptional repressor.


Asunto(s)
Genes Dominantes , Sitios Genéticos , Proteínas de Plantas/metabolismo , Proteínas Represoras/metabolismo , Triticum/anatomía & histología , Triticum/genética , Dedos de Zinc , Secuencias de Aminoácidos , Pan , Proliferación Celular/genética , Mapeo Cromosómico , Segregación Cromosómica/genética , Regulación de la Expresión Génica de las Plantas , Pleiotropía Genética , Haplotipos/genética , Ácidos Indolacéticos/metabolismo , Familia de Multigenes , Mutación/genética , Sistemas de Lectura Abierta/genética , Desarrollo de la Planta/genética , Polimorfismo Genético
13.
Curr Opin Pulm Med ; 26(5): 464-469, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32657832

RESUMEN

PURPOSE OF REVIEW: Supplemental oxygen therapy is prescribed for management of hypoxaemia in patients with interstitial lung disease (ILD). This review summarizes current evidence and implications of the use of supplemental oxygen therapy at home and during exercise training in ILD. RECENT FINDINGS: Despite the significance of hypoxaemia in patients with ILD, there is a lack of high-quality evidence to guide the use of oxygen therapy in this population. Recent studies suggest that ambulatory oxygen may improve symptoms and health-related quality of life in patients with ILD. Long-term oxygen therapy for resting hypoxaemia in ILD is recommended by international guidelines. Supplemental oxygen during exercise may augment training effects, whereas therapeutic effects of nocturnal oxygen therapy are yet to be evaluated in patients with ILD. Nevertheless, it is important to consider the potential burden imposed by oxygen therapy on patients' daily activities of living. SUMMARY: Ambulatory oxygen may be considered in ILD patients with exertional hypoxaemia, with long-term oxygen therapy being a standard care for resting hypoxaemia. Trials are currently underway to clarify therapeutic potentials of supplemental oxygen for exertional hypoxaemia and during exercise training in ILD patients, with additional research needed for the evaluation of nocturnal oxygen therapy.


Asunto(s)
Hipoxia/terapia , Enfermedades Pulmonares Intersticiales/terapia , Terapia por Inhalación de Oxígeno/métodos , Calidad de Vida , Actividades Cotidianas , Atención Ambulatoria , Ejercicio Físico , Humanos , Hipoxia/fisiopatología , Enfermedades Pulmonares Intersticiales/fisiopatología , Resultado del Tratamiento
15.
Nature ; 485(7399): 526-9, 2012 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-22622583

RESUMEN

Bacterial ribosomes stalled at the 3' end of malfunctioning messenger RNAs can be rescued by transfer-messenger RNA (tmRNA)-mediated trans-translation. The SmpB protein forms a complex with the tmRNA, and the transfer-RNA-like domain (TLD) of the tmRNA then enters the A site of the ribosome. Subsequently, the TLD-SmpB module is translocated to the P site, a process that is facilitated by the elongation factor EF-G, and translation is switched to the mRNA-like domain (MLD) of the tmRNA. Accurate loading of the MLD into the mRNA path is an unusual initiation mechanism. Despite various snapshots of different ribosome-tmRNA complexes at low to intermediate resolution, it is unclear how the large, highly structured tmRNA is translocated and how the MLD is loaded. Here we present a cryo-electron microscopy reconstruction of a fusidic-acid-stalled ribosomal 70S-tmRNA-SmpB-EF-G complex (carrying both of the large ligands, that is, EF-G and tmRNA) at 8.3 Å resolution. This post-translocational intermediate (TI(POST)) presents the TLD-SmpB module in an intrasubunit ap/P hybrid site and a tRNA(fMet) in an intrasubunit pe/E hybrid site. Conformational changes in the ribosome and tmRNA occur in the intersubunit space and on the solvent side. The key underlying event is a unique extra-large swivel movement of the 30S head, which is crucial for both tmRNA-SmpB translocation and MLD loading, thereby coupling translocation to MLD loading. This mechanism exemplifies the versatile, dynamic nature of the ribosome, and it shows that the conformational modes of the ribosome that normally drive canonical translation can also be used in a modified form to facilitate more complex tasks in specialized non-canonical pathways.


Asunto(s)
Escherichia coli/química , Factor G de Elongación Peptídica/metabolismo , Biosíntesis de Proteínas , ARN Bacteriano/química , ARN Bacteriano/metabolismo , Proteínas de Unión al ARN/metabolismo , Ribosomas/metabolismo , Secuencia de Bases , Microscopía por Crioelectrón , Ácido Fusídico/metabolismo , Ligandos , Modelos Moleculares , Conformación de Ácido Nucleico , Factor G de Elongación Peptídica/química , Factor G de Elongación Peptídica/ultraestructura , Unión Proteica , Conformación Proteica , ARN Bacteriano/genética , ARN Bacteriano/ultraestructura , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/ultraestructura , Subunidades Ribosómicas/química , Subunidades Ribosómicas/genética , Subunidades Ribosómicas/metabolismo , Subunidades Ribosómicas/ultraestructura , Ribosomas/química , Ribosomas/genética , Ribosomas/ultraestructura
16.
Appl Environ Microbiol ; 83(4)2017 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-27940542

RESUMEN

Insight into the mechanisms for arsenic detoxification by Geobacter species is expected to improve the understanding of global cycling of arsenic in iron-rich subsurface sedimentary environments. Analysis of 14 different Geobacter genomes showed that all of these species have genes coding for an arsenic detoxification system (ars operon), and several have genes required for arsenic respiration (arr operon) and methylation (arsM). Genes encoding four arsenic repressor-like proteins were detected in the genome of G. sulfurreducens; however, only one (ArsR1) regulated transcription of the ars operon. Elimination of arsR1 from the G. sulfurreducens chromosome resulted in enhanced transcription of genes coding for the arsenic efflux pump (Acr3) and arsenate reductase (ArsC). When the gene coding for Acr3 was deleted, cells were not able to grow in the presence of either the oxidized or reduced form of arsenic, while arsC deletion mutants could grow in the presence of arsenite but not arsenate. These studies shed light on how Geobacter influences arsenic mobility in anoxic sediments and may help us develop methods to remediate arsenic contamination in the subsurface. IMPORTANCE: This study examines arsenic transformation mechanisms utilized by Geobacter, a genus of iron-reducing bacteria that are predominant in many anoxic iron-rich subsurface environments. Geobacter species play a major role in microbially mediated arsenic release from metal hydroxides in the subsurface. This release raises arsenic concentrations in drinking water to levels that are high enough to cause major health problems. Therefore, information obtained from studies of Geobacter should shed light on arsenic cycling in iron-rich subsurface sedimentary environments, which may help reduce arsenic-associated illnesses. These studies should also help in the development of biosensors that can be used to detect arsenic contaminants in anoxic subsurface environments. We examined 14 different Geobacter genomes and found that all of these species possess genes coding for an arsenic detoxification system (ars operon), and some also have genes required for arsenic respiration (arr operon) and arsenic methylation (arsM).


Asunto(s)
Arsénico/metabolismo , Biodegradación Ambiental , Geobacter/genética , Geobacter/metabolismo , Inactivación Metabólica/genética , Arseniato Reductasas/genética , Proteínas Portadoras/genética , Regulación Bacteriana de la Expresión Génica , Genoma Bacteriano/genética , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiología , Inactivación Metabólica/fisiología , Hierro/metabolismo
17.
Appl Environ Microbiol ; 83(9)2017 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-28258137

RESUMEN

The possibility that Methanothrix (formerly Methanosaeta) and Geobacter species cooperate via direct interspecies electron transfer (DIET) in terrestrial methanogenic environments was investigated in rice paddy soils. Genes with high sequence similarity to the gene for the PilA pilin monomer of the electrically conductive pili (e-pili) of Geobacter sulfurreducens accounted for over half of the PilA gene sequences in metagenomic libraries and 42% of the mRNA transcripts in RNA sequencing (RNA-seq) libraries. This abundance of e-pilin genes and transcripts is significant because e-pili can serve as conduits for DIET. Most of the e-pilin genes and transcripts were affiliated with Geobacter species, but sequences most closely related to putative e-pilin genes from genera such as Desulfobacterium, Deferribacter, Geoalkalibacter, and Desulfobacula, were also detected. Approximately 17% of all metagenomic and metatranscriptomic bacterial sequences clustered with Geobacter species, and the finding that Geobacter spp. were actively transcribing growth-related genes indicated that they were metabolically active in the soils. Genes coding for e-pilin were among the most highly transcribed Geobacter genes. In addition, homologs of genes encoding OmcS, a c-type cytochrome associated with the e-pili of G. sulfurreducens and required for DIET, were also highly expressed in the soils. Methanothrix species in the soils highly expressed genes for enzymes involved in the reduction of carbon dioxide to methane. DIET is the only electron donor known to support CO2 reduction in Methanothrix Thus, these results are consistent with a model in which Geobacter species were providing electrons to Methanothrix species for methane production through electrical connections of e-pili.IMPORTANCEMethanothrix species are some of the most important microbial contributors to global methane production, but surprisingly little is known about their physiology and ecology. The possibility that DIET is a source of electrons for Methanothrix in methanogenic rice paddy soils is important because it demonstrates that the contribution that Methanothrix makes to methane production in terrestrial environments may extend beyond the conversion of acetate to methane. Furthermore, defined coculture studies have suggested that when Methanothrix species receive some of their energy from DIET, they grow faster than when acetate is their sole energy source. Thus, Methanothrix growth and metabolism in methanogenic soils may be faster and more robust than generally considered. The results also suggest that the reason that Geobacter species are repeatedly found to be among the most metabolically active microorganisms in methanogenic soils is that they grow syntrophically in cooperation with Methanothrix spp., and possibly other methanogens, via DIET.


Asunto(s)
Transporte de Electrón , Geobacter/metabolismo , Methanosarcinaceae/metabolismo , Microbiología del Suelo , Dióxido de Carbono/metabolismo , Proteínas Fimbrias/análisis , Proteínas Fimbrias/genética , Perfilación de la Expresión Génica , Geobacter/crecimiento & desarrollo , Metagenoma , Metano/metabolismo , Methanosarcinaceae/crecimiento & desarrollo , Oryza/crecimiento & desarrollo
19.
Proc Natl Acad Sci U S A ; 110(52): 20964-9, 2013 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-24324168

RESUMEN

During protein synthesis, coupled translocation of messenger RNAs (mRNA) and transfer RNAs (tRNA) through the ribosome takes place following formation of each peptide bond. The reaction is facilitated by large-scale conformational changes within the ribosomal complex and catalyzed by elongtion factor G (EF-G). Previous structural analysis of the interaction of EF-G with the ribosome used either model complexes containing no tRNA or only a single tRNA, or complexes where EF-G was directly bound to ribosomes in the posttranslocational state. Here, we present a multiparticle cryo-EM reconstruction of a translocation intermediate containing two tRNAs trapped in transit, bound in chimeric intrasubunit ap/P and pe/E hybrid states. The downstream ap/P-tRNA is contacted by domain IV of EF-G and P-site elements within the 30S subunit body, whereas the upstream pe/E-tRNA maintains tight interactions with P-site elements of the swiveled 30S head. Remarkably, a tight compaction of the tRNA pair can be seen in this state. The translocational intermediate presented here represents a previously missing link in understanding the mechanism of translocation, revealing that the ribosome uses two distinct molecular ratchets, involving both intra- and intersubunit rotational movements, to drive the synchronous movement of tRNAs and mRNA.


Asunto(s)
Modelos Moleculares , Conformación de Ácido Nucleico , Extensión de la Cadena Peptídica de Translación/fisiología , Factor G de Elongación Peptídica/metabolismo , ARN Mensajero/metabolismo , Ribosomas/metabolismo , Microscopía por Crioelectrón , Cristalografía por Rayos X , Escherichia coli , Procesamiento de Imagen Asistido por Computador , ARN de Transferencia/metabolismo
20.
Anaerobe ; 42: 40-43, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-27487328

RESUMEN

Essential genes of pathogens are potential therapeutic targets, but are difficult to verify. Here, gene essentiality was determined by targeted knockout following engineered gene duplication. Null mutants of candidate essential genes of Clostridium difficile were viable only in the presence of a stable second copy of the gene.


Asunto(s)
Bioensayo , Clostridioides difficile/genética , Genes Esenciales , Ingeniería Genética/métodos , Metionina Adenosiltransferasa/genética , Triptófano-ARNt Ligasa/genética , Secuencia de Aminoácidos , Secuencia de Bases , Clonación Molecular , Duplicación de Gen , Expresión Génica
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda