Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Circ Res ; 127(8): 1094-1108, 2020 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-32660330

RESUMEN

RATIONALE: Circumstantial evidence links the development of heart failure to posttranslational modifications of mitochondrial proteins, including lysine acetylation (Kac). Nonetheless, direct evidence that Kac compromises mitochondrial performance remains sparse. OBJECTIVE: This study sought to explore the premise that mitochondrial Kac contributes to heart failure by disrupting oxidative metabolism. METHODS AND RESULTS: A DKO (dual knockout) mouse line with deficiencies in CrAT (carnitine acetyltransferase) and Sirt3 (sirtuin 3)-enzymes that oppose Kac by buffering the acetyl group pool and catalyzing lysine deacetylation, respectively-was developed to model extreme mitochondrial Kac in cardiac muscle, as confirmed by quantitative acetyl-proteomics. The resulting impact on mitochondrial bioenergetics was evaluated using a respiratory diagnostics platform that permits comprehensive assessment of mitochondrial function and energy transduction. Susceptibility of DKO mice to heart failure was investigated using transaortic constriction as a model of cardiac pressure overload. The mitochondrial acetyl-lysine landscape of DKO hearts was elevated well beyond that observed in response to pressure overload or Sirt3 deficiency alone. Relative changes in the abundance of specific acetylated lysine peptides measured in DKO versus Sirt3 KO hearts were strongly correlated. A proteomics comparison across multiple settings of hyperacetylation revealed ≈86% overlap between the populations of Kac peptides affected by the DKO manipulation as compared with experimental heart failure. Despite the severity of cardiac Kac in DKO mice relative to other conditions, deep phenotyping of mitochondrial function revealed a surprisingly normal bioenergetics profile. Thus, of the >120 mitochondrial energy fluxes evaluated, including substrate-specific dehydrogenase activities, respiratory responses, redox charge, mitochondrial membrane potential, and electron leak, we found minimal evidence of oxidative insufficiencies. Similarly, DKO hearts were not more vulnerable to dysfunction caused by transaortic constriction-induced pressure overload. CONCLUSIONS: The findings challenge the premise that hyperacetylation per se threatens metabolic resilience in the myocardium by causing broad-ranging disruption to mitochondrial oxidative machinery.


Asunto(s)
Insuficiencia Cardíaca/metabolismo , Mitocondrias Cardíacas/metabolismo , Proteínas Mitocondriales/metabolismo , Miocitos Cardíacos/metabolismo , Proteoma , Acetilación , Animales , Carnitina O-Acetiltransferasa/deficiencia , Carnitina O-Acetiltransferasa/genética , Modelos Animales de Enfermedad , Metabolismo Energético , Insuficiencia Cardíaca/genética , Insuficiencia Cardíaca/fisiopatología , Lisina , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Estrés Oxidativo , Procesamiento Proteico-Postraduccional , Proteómica , Sirtuina 3/deficiencia , Sirtuina 3/genética
2.
Cell Metab ; 35(6): 1038-1056.e8, 2023 06 06.
Artículo en Inglés | MEDLINE | ID: mdl-37060901

RESUMEN

Even-chain acylcarnitine (AC) metabolites, most of which are generated as byproducts of incomplete fatty acid oxidation (FAO), are viewed as biomarkers of mitochondrial lipid stress attributable to one or more metabolic bottlenecks in the ß-oxidation pathway. The origins and functional implications of FAO bottlenecks remain poorly understood. Here, we combined a sophisticated mitochondrial phenotyping platform with state-of-the-art molecular profiling tools and multiple two-state mouse models of respiratory function to uncover a mechanism that connects AC accumulation to lipid intolerance, metabolic inflexibility, and respiratory inefficiency in skeletal muscle mitochondria. These studies also identified a short-chain carbon circuit at the C4 node of FAO wherein reverse flux of glucose-derived acetyl CoA through medium-chain ketothiolase enhances lipid tolerance and redox stability in heart mitochondria by regenerating free CoA and NAD+. The findings help to explain why diminished FAO capacity, AC accumulation, and metabolic inflexibility are tightly linked to poor health outcomes.


Asunto(s)
Mitocondrias , Ácido Pirúvico , Ratones , Animales , Ácido Pirúvico/metabolismo , Mitocondrias/metabolismo , Músculo Esquelético/metabolismo , Mitocondrias Musculares/metabolismo , Oxidación-Reducción , Lípidos , Ácidos Grasos/metabolismo
3.
Cell Metab ; 31(1): 131-147.e11, 2020 01 07.
Artículo en Inglés | MEDLINE | ID: mdl-31813822

RESUMEN

This study sought to examine the functional significance of mitochondrial protein acetylation using a double knockout (DKO) mouse model harboring muscle-specific deficits in acetyl-CoA buffering and lysine deacetylation, due to genetic ablation of carnitine acetyltransferase and Sirtuin 3, respectively. DKO mice are highly susceptible to extreme hyperacetylation of the mitochondrial proteome and develop a more severe form of diet-induced insulin resistance than either single KO mouse line. However, the functional phenotype of hyperacetylated DKO mitochondria is largely normal. Of the >120 measures of respiratory function assayed, the most consistently observed traits of a markedly heightened acetyl-lysine landscape are enhanced oxygen flux in the context of fatty acid fuel and elevated rates of electron leak. In sum, the findings challenge the notion that lysine acetylation causes broad-ranging damage to mitochondrial quality and performance and raise the possibility that acetyl-lysine turnover, rather than acetyl-lysine stoichiometry, modulates redox balance and carbon flux.


Asunto(s)
Carnitina O-Acetiltransferasa/genética , Resistencia a la Insulina/genética , Lisina/metabolismo , Mitocondrias Musculares/metabolismo , Proteínas Mitocondriales/metabolismo , Estrés Oxidativo/genética , Sirtuina 3/genética , Acetilcoenzima A/metabolismo , Acetilación , Animales , Carnitina O-Acetiltransferasa/metabolismo , Creatina Quinasa/metabolismo , Dieta Alta en Grasa , Metabolismo Energético/genética , Homeostasis , Peróxido de Hidrógeno/metabolismo , Insulina/sangre , Lisina/análogos & derivados , Masculino , Potencial de la Membrana Mitocondrial/genética , Potencial de la Membrana Mitocondrial/fisiología , Ratones , Ratones Noqueados , Mitocondrias Musculares/genética , Proteínas Mitocondriales/genética , Oxidación-Reducción , Proteoma/genética , Proteoma/metabolismo , Sirtuina 3/metabolismo , Termodinámica
4.
JCI Insight ; 4(4)2019 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-30668551

RESUMEN

Evidence has emerged that the failing heart increases utilization of ketone bodies. We sought to determine whether this fuel shift is adaptive. Mice rendered incapable of oxidizing the ketone body 3-hydroxybutyrate (3OHB) in the heart exhibited worsened heart failure in response to fasting or a pressure overload/ischemic insult compared with WT controls. Increased delivery of 3OHB ameliorated pathologic cardiac remodeling and dysfunction in mice and in a canine pacing model of progressive heart failure. 3OHB was shown to enhance bioenergetic thermodynamics of isolated mitochondria in the context of limiting levels of fatty acids. These results indicate that the heart utilizes 3OHB as a metabolic stress defense and suggest that strategies aimed at increasing ketone delivery to the heart could prove useful in the treatment of heart failure.


Asunto(s)
Ácido 3-Hidroxibutírico/metabolismo , Metabolismo Energético , Insuficiencia Cardíaca/metabolismo , Ventrículos Cardíacos/metabolismo , Miocardio/metabolismo , Animales , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Perros , Femenino , Insuficiencia Cardíaca/etiología , Insuficiencia Cardíaca/patología , Ventrículos Cardíacos/citología , Ventrículos Cardíacos/patología , Humanos , Hidroxibutirato Deshidrogenasa/genética , Hidroxibutirato Deshidrogenasa/metabolismo , Preparación de Corazón Aislado , Masculino , Ratones , Ratones Noqueados , Mitocondrias/metabolismo , Mitocondrias/patología , Miocardio/citología , Miocardio/patología , Oxidación-Reducción , Estrés Fisiológico , Termodinámica , Remodelación Ventricular
5.
Cell Rep ; 26(6): 1557-1572.e8, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30726738

RESUMEN

Acyl CoA metabolites derived from the catabolism of carbon fuels can react with lysine residues of mitochondrial proteins, giving rise to a large family of post-translational modifications (PTMs). Mass spectrometry-based detection of thousands of acyl-PTMs scattered throughout the proteome has established a strong link between mitochondrial hyperacylation and cardiometabolic diseases; however, the functional consequences of these modifications remain uncertain. Here, we use a comprehensive respiratory diagnostics platform to evaluate three disparate models of mitochondrial hyperacylation in the mouse heart caused by genetic deletion of malonyl CoA decarboxylase (MCD), SIRT5 demalonylase and desuccinylase, or SIRT3 deacetylase. In each case, elevated acylation is accompanied by marginal respiratory phenotypes. Of the >60 mitochondrial energy fluxes evaluated, the only outcome consistently observed across models is a ∼15% decrease in ATP synthase activity. In sum, the findings suggest that the vast majority of mitochondrial acyl PTMs occur as stochastic events that minimally affect mitochondrial bioenergetics.


Asunto(s)
Metabolismo Energético , Mitocondrias Cardíacas/metabolismo , Procesamiento Proteico-Postraduccional , Acetilación , Animales , Carboxiliasas/metabolismo , Respiración de la Célula , Masculino , Ratones , Ratones Endogámicos C57BL , Sirtuina 3/metabolismo , Sirtuinas/metabolismo
6.
Cell Rep ; 24(13): 3593-3606.e10, 2018 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-30257218

RESUMEN

Chronic metabolic diseases have been linked to molecular signatures of mitochondrial dysfunction. Nonetheless, molecular remodeling of the transcriptome, proteome, and/or metabolome does not necessarily translate to functional consequences that confer physiologic phenotypes. The work here aims to bridge the gap between molecular and functional phenomics by developing and validating a multiplexed assay platform for comprehensive assessment of mitochondrial energy transduction. The diagnostic power of the platform stems from a modified version of the creatine kinase energetic clamp technique, performed in parallel with multiplexed analyses of dehydrogenase activities and ATP synthesis rates. Together, these assays provide diagnostic coverage of the mitochondrial network at a level approaching that gained by molecular "-omics" technologies. Application of the platform to a comparison of skeletal muscle versus heart mitochondria reveals mechanistic insights into tissue-specific distinctions in energy transfer efficiency. This platform opens exciting opportunities to unravel the connection between mitochondrial bioenergetics and human disease.


Asunto(s)
Transporte de Electrón , Ensayos Analíticos de Alto Rendimiento/métodos , Mitocondrias Cardíacas/metabolismo , Fosforilación Oxidativa , Adenosina Trifosfato/biosíntesis , Animales , Creatina Quinasa/metabolismo , Masculino , Potencial de la Membrana Mitocondrial , Ratones , Ratones Endogámicos C57BL , Espectrofotometría/métodos
7.
J Biomed Mater Res A ; 100(3): 665-72, 2012 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-22213479

RESUMEN

The objective of this study was to investigate the effect of chemical structure, ion concentration, and ion type on the release rate of biologically available ions useful for remineralization from microcapsules with ion permeable membranes. A heterogeneous polymerization technique was utilized to prepare microcapsules containing either an aqueous solution of K2HPO4, Ca(NO3)2, or NaF. Six different polyurethane-based microcapsule shells were prepared and characterized based on ethylene glycol, butanediol, hexanediol, octanediol, triethylene glycol, and bisphenol A structural units. Ion release profiles were measured as a function of initial ion concentration within the microcapsule, ion type, and microcapsule chemical structure. The rate of ion release increased with initial concentration of ion stored in the microcapsule over a range of 0.5-3.0M. The monomer used in the synthesis of the membrane had a significant effect on ion release rates at 3.0 M salt concentration. At 1.0 M, the ethylene glycol released ions significantly faster than the hexanediol-, octanediol-, and butanediol-based microcapsules. Ion release was fastest for fluoride and slowest for phosphate for the salts used in this study. It was concluded that the microcapsules are capable of releasing calcium, phosphate, and fluoride ions in their biologically available form.


Asunto(s)
Calcificación Fisiológica/efectos de los fármacos , Cápsulas/química , Iones/química , Iones/farmacología , Materiales Biocompatibles/síntesis química , Materiales Biocompatibles/química , Materiales Biocompatibles/metabolismo , Disponibilidad Biológica , Calcificación Fisiológica/fisiología , Calcio/química , Calcio/metabolismo , Cápsulas/síntesis química , Preparaciones de Acción Retardada/síntesis química , Preparaciones de Acción Retardada/química , Preparaciones de Acción Retardada/metabolismo , Restauración Dental Permanente/métodos , Fluoruros/química , Fluoruros/metabolismo , Humanos , Iones/metabolismo , Ensayo de Materiales , Estructura Molecular , Tamaño de la Partícula , Permeabilidad , Polímeros/química
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda