Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Bioorg Med Chem Lett ; 41: 127974, 2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33771585

RESUMEN

Lactate dehydrogenase (LDH) is a critical enzyme in the glycolytic metabolism pathway that is used by many tumor cells. Inhibitors of LDH may be expected to inhibit the metabolic processes in cancer cells and thus selectively delay or inhibit growth in transformed versus normal cells. We have previously disclosed a pyrazole-based series of potent LDH inhibitors with long residence times on the enzyme. Here, we report the elaboration of a new subseries of LDH inhibitors based on those leads. These new compounds potently inhibit both LDHA and LDHB enzymes, and inhibit lactate production in cancer cell lines.


Asunto(s)
Compuestos de Anilina/farmacología , Antineoplásicos/farmacología , Diseño de Fármacos , Éteres/farmacología , L-Lactato Deshidrogenasa/antagonistas & inhibidores , L-Lactato Deshidrogenasa/metabolismo , Compuestos de Anilina/química , Antineoplásicos/química , Línea Celular Tumoral , Éteres/química , Humanos , L-Lactato Deshidrogenasa/química
2.
J Biol Chem ; 289(12): 8720-34, 2014 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-24415767

RESUMEN

IL-6 is a secreted cytokine that functions through binding two cell surface receptors, IL-6Rα and gp130. Because of its involvement in the progression of several chronic inflammatory diseases, IL-6 is a target of pharmacologic interest. We have recently identified a novel class of ligands called SOMAmers (S low Off-rate Modified Aptamers) that bind IL-6 and inhibit its biologic activity. SOMAmers exploit the chemical diversity of protein-like side chains assembled on flexible nucleic acid scaffolds, resulting in an expanded repertoire of intra- and intermolecular interactions not achievable with conventional aptamers. Here, we report the co-crystal structure of a high affinity SOMAmer (Kd = 0.20 nm) modified at the 5-position of deoxyuridine in a complex with IL-6. The SOMAmer, comprised of a G-quartet domain and a stem-loop domain, engages IL-6 in a clamp-like manner over an extended surface exhibiting close shape complementarity with the protein. The interface is characterized by substantial hydrophobic interactions overlapping the binding surfaces of the IL-6Rα and gp130 receptors. The G-quartet domain retains considerable binding activity as a disconnected autonomous fragment (Kd = 270 nm). A single substitution from our diversely modified nucleotide library leads to a 37-fold enhancement in binding affinity of the G-quartet fragment (Kd = 7.4 nm). The ability to probe ligand surfaces in this manner is a powerful tool in the development of new therapeutic reagents with improved pharmacologic properties. The SOMAmer·IL-6 structure also expands our understanding of the diverse structural motifs achievable with modified nucleic acid libraries and elucidates the nature with which these unique ligands interact with their protein targets.


Asunto(s)
Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/farmacología , Interleucina-6/química , Interleucina-6/metabolismo , Cristalografía por Rayos X , Descubrimiento de Drogas , Humanos , Ligandos , Modelos Moleculares , Conformación Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Técnica SELEX de Producción de Aptámeros
3.
Proc Natl Acad Sci U S A ; 109(49): 19971-6, 2012 Dec 04.
Artículo en Inglés | MEDLINE | ID: mdl-23139410

RESUMEN

Selection of aptamers from nucleic acid libraries by in vitro evolution represents a powerful method of identifying high-affinity ligands for a broad range of molecular targets. Nevertheless, a sizeable fraction of proteins remain difficult targets due to inherently limited chemical diversity of nucleic acids. We have exploited synthetic nucleotide modifications that confer protein-like diversity on a nucleic acid scaffold, resulting in a new generation of binding reagents called SOMAmers (Slow Off-rate Modified Aptamers). Here we report a unique crystal structure of a SOMAmer bound to its target, platelet-derived growth factor B (PDGF-BB). The SOMAmer folds into a compact structure and exhibits a hydrophobic binding surface that mimics the interface between PDGF-BB and its receptor, contrasting sharply with mainly polar interactions seen in traditional protein-binding aptamers. The modified nucleotides circumvent the intrinsic diversity constraints of natural nucleic acids, thereby greatly expanding the structural vocabulary of nucleic acid ligands and considerably broadening the range of accessible protein targets.


Asunto(s)
Aptámeros de Nucleótidos/química , Aptámeros de Nucleótidos/metabolismo , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Proteínas Proto-Oncogénicas c-sis/metabolismo , Técnica SELEX de Producción de Aptámeros/métodos , Secuencias de Aminoácidos/genética , Becaplermina , Cristalografía por Rayos X , Cartilla de ADN/genética , Datos de Secuencia Molecular , Estructura Molecular , Fosforilación , Unión Proteica , Proteínas Proto-Oncogénicas c-sis/química , Análisis de Secuencia de ADN , Temperatura de Transición
4.
Nat Chem Biol ; 7(1): 41-50, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21113169

RESUMEN

Bruton's tyrosine kinase (Btk) is a therapeutic target for rheumatoid arthritis, but the cellular and molecular mechanisms by which Btk mediates inflammation are poorly understood. Here we describe the discovery of CGI1746, a small-molecule Btk inhibitor chemotype with a new binding mode that stabilizes an inactive nonphosphorylated enzyme conformation. CGI1746 has exquisite selectivity for Btk and inhibits both auto- and transphosphorylation steps necessary for enzyme activation. Using CGI1746, we demonstrate that Btk regulates inflammatory arthritis by two distinct mechanisms. CGI1746 blocks B cell receptor-dependent B cell proliferation and in prophylactic regimens reduces autoantibody levels in collagen-induced arthritis. In macrophages, Btk inhibition abolishes FcγRIII-induced TNFα, IL-1ß and IL-6 production. Accordingly, in myeloid- and FcγR-dependent autoantibody-induced arthritis, CGI1746 decreases cytokine levels within joints and ameliorates disease. These results provide new understanding of the function of Btk in both B cell- or myeloid cell-driven disease processes and provide a compelling rationale for targeting Btk in rheumatoid arthritis.


Asunto(s)
Artritis Experimental/tratamiento farmacológico , Artritis Reumatoide/tratamiento farmacológico , Linfocitos B/efectos de los fármacos , Benzamidas/uso terapéutico , Compuestos Bicíclicos Heterocíclicos con Puentes/uso terapéutico , Células Mieloides/efectos de los fármacos , Inhibidores de Proteínas Quinasas/uso terapéutico , Agammaglobulinemia Tirosina Quinasa , Animales , Artritis Experimental/inmunología , Artritis Experimental/metabolismo , Artritis Reumatoide/inmunología , Artritis Reumatoide/metabolismo , Autoanticuerpos/inmunología , Autoanticuerpos/metabolismo , Linfocitos B/inmunología , Linfocitos B/metabolismo , Benzamidas/química , Benzamidas/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/química , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Proliferación Celular/efectos de los fármacos , Activación Enzimática/efectos de los fármacos , Interleucina-1beta/inmunología , Interleucina-1beta/metabolismo , Interleucina-6/inmunología , Interleucina-6/metabolismo , Ratones , Células Mieloides/inmunología , Células Mieloides/metabolismo , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Tirosina Quinasas/química , Proteínas Tirosina Quinasas/farmacología , Proteínas Tirosina Quinasas/uso terapéutico , Factor de Necrosis Tumoral alfa/inmunología , Factor de Necrosis Tumoral alfa/metabolismo
5.
J Struct Funct Genomics ; 12(2): 63-76, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21359640

RESUMEN

As part of the Seattle Structural Genomics Center for Infectious Disease, we seek to enhance structural genomics with ligand-bound structure data which can serve as a blueprint for structure-based drug design. We have adapted fragment-based screening methods to our structural genomics pipeline to generate multiple ligand-bound structures of high priority drug targets from pathogenic organisms. In this study, we report fragment screening methods and structure determination results for 2C-methyl-D-erythritol-2,4-cyclo-diphosphate (MECP) synthase from Burkholderia pseudomallei, the gram-negative bacterium which causes melioidosis. Screening by nuclear magnetic resonance spectroscopy as well as crystal soaking followed by X-ray diffraction led to the identification of several small molecules which bind this enzyme in a critical metabolic pathway. A series of complex structures obtained with screening hits reveal distinct binding pockets and a range of small molecules which form complexes with the target. Additional soaks with these compounds further demonstrate a subset of fragments to only bind the protein when present in specific combinations. This ensemble of fragment-bound complexes illuminates several characteristics of MECP synthase, including a previously unknown binding surface external to the catalytic active site. These ligand-bound structures now serve to guide medicinal chemists and structural biologists in rational design of novel inhibitors for this enzyme.


Asunto(s)
Proteínas Bacterianas/química , Burkholderia pseudomallei/enzimología , Liasas de Fósforo-Oxígeno/química , Sitios de Unión , Dominio Catalítico , Cristalografía por Rayos X , Diseño de Fármacos , Ligandos , Espectroscopía de Resonancia Magnética
6.
Acta Crystallogr Sect F Struct Biol Cryst Commun ; 67(Pt 9): 1044-50, 2011 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-21904048

RESUMEN

Burkholderia pseudomallei is a soil-dwelling bacterium endemic to Southeast Asia and Northern Australia. Burkholderia is responsible for melioidosis, a serious infection of the skin. The enzyme 2,3-bisphosphoglycerate-dependent phosphoglycerate mutase (PGAM) catalyzes the interconversion of 3-phosphoglycerate and 2-phosphoglycerate, a key step in the glycolytic pathway. As such it is an extensively studied enzyme and X-ray crystal structures of PGAM enzymes from multiple species have been elucidated. Vanadate is a phosphate mimic that is a powerful tool for studying enzymatic mechanisms in phosphoryl-transfer enzymes such as phosphoglycerate mutase. However, to date no X-ray crystal structures of phosphoglycerate mutase have been solved with vanadate acting as a substrate mimic. Here, two vanadate complexes together with an ensemble of substrate and fragment-bound structures that provide a comprehensive picture of the function of the Burkholderia enzyme are reported.


Asunto(s)
Burkholderia pseudomallei/enzimología , Fosfoglicerato Mutasa/química , Cristalografía por Rayos X , Modelos Moleculares , Fosfoglicerato Mutasa/metabolismo , Estructura Terciaria de Proteína , Especificidad por Sustrato
7.
Artículo en Inglés | MEDLINE | ID: mdl-21904051

RESUMEN

Glutaric acidemia type 1 is an inherited metabolic disorder which can cause macrocephaly, muscular rigidity, spastic paralysis and other progressive movement disorders in humans. The defects in glutaryl-CoA dehydrogenase (GCDH) associated with this disease are thought to increase holoenzyme instability and reduce cofactor binding. Here, the first structural analysis of a GCDH enzyme in the absence of the cofactor flavin adenine dinucleotide (FAD) is reported. The apo structure of GCDH from Burkholderia pseudomallei reveals a loss of secondary structure and increased disorder in the FAD-binding pocket relative to the ternary complex of the highly homologous human GCDH. After conducting a fragment-based screen, four small molecules were identified which bind to GCDH from B. pseudomallei. Complex structures were determined for these fragments, which cause backbone and side-chain perturbations to key active-site residues. Structural insights from this investigation highlight differences from apo GCDH and the utility of small-molecular fragments as chemical probes for capturing alternative conformational states of preformed protein crystals.


Asunto(s)
Burkholderia pseudomallei/enzimología , Glutaril-CoA Deshidrogenasa/química , Apoenzimas/química , Dominio Catalítico , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Filogenia , Estructura Cuaternaria de Proteína , Homología Estructural de Proteína
8.
Proc Natl Acad Sci U S A ; 105(52): 20695-700, 2008 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-19106298

RESUMEN

PolC is the polymerase responsible for genome duplication in many Gram-positive bacteria and represents an attractive target for antibacterial development. We have determined the 2.4-A resolution crystal structure of Geobacillus kaustophilus PolC in a ternary complex with DNA and dGTP. The structure reveals nascent base pair interactions that lead to highly accurate nucleotide incorporation. A unique beta-strand motif in the PolC thumb domain contacts the minor groove, allowing replication errors to be sensed up to 8 nt upstream of the active site. PolC exhibits the potential for large-scale conformational flexibility, which could encompass the catalytic residues. The structure suggests a mechanism by which the active site can communicate with the rest of the replisome to trigger proofreading after nucleotide misincorporation, leading to an integrated model for controlling the dynamic switch between replicative and repair polymerases. This ternary complex of a cellular replicative polymerase affords insights into polymerase fidelity, evolution, and structural diversity.


Asunto(s)
Bacillaceae/enzimología , Proteínas Bacterianas/química , ADN Polimerasa Dirigida por ADN/química , Secuencias de Aminoácidos/fisiología , Proteínas Bacterianas/metabolismo , Dominio Catalítico/fisiología , Cristalografía por Rayos X , ADN Polimerasa Dirigida por ADN/metabolismo , Genoma Bacteriano/fisiología , Estructura Cuaternaria de Proteína/fisiología , Estructura Terciaria de Proteína/fisiología , Relación Estructura-Actividad
9.
PLoS One ; 16(3): e0241738, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33760815

RESUMEN

Naegleria fowleri is a pathogenic, thermophilic, free-living amoeba which causes primary amebic meningoencephalitis (PAM). Penetrating the olfactory mucosa, the brain-eating amoeba travels along the olfactory nerves, burrowing through the cribriform plate to its destination: the brain's frontal lobes. The amoeba thrives in warm, freshwater environments, with peak infection rates in the summer months and has a mortality rate of approximately 97%. A major contributor to the pathogen's high mortality is the lack of sensitivity of N. fowleri to current drug therapies, even in the face of combination-drug therapy. To enable rational drug discovery and design efforts we have pursued protein production and crystallography-based structure determination efforts for likely drug targets from N. fowleri. The genes were selected if they had homology to drug targets listed in Drug Bank or were nominated by primary investigators engaged in N. fowleri research. In 2017, 178 N. fowleri protein targets were queued to the Seattle Structural Genomics Center of Infectious Disease (SSGCID) pipeline, and to date 89 soluble recombinant proteins and 19 unique target structures have been produced. Many of the new protein structures are potential drug targets and contain structural differences compared to their human homologs, which could allow for the development of pathogen-specific inhibitors. Five of the structures were analyzed in more detail, and four of five show promise that selective inhibitors of the active site could be found. The 19 solved crystal structures build a foundation for future work in combating this devastating disease by encouraging further investigation to stimulate drug discovery for this neglected pathogen.


Asunto(s)
Descubrimiento de Drogas , Naegleria fowleri/metabolismo , Proteínas Protozoarias/antagonistas & inhibidores , Adenosilhomocisteinasa/antagonistas & inhibidores , Adenosilhomocisteinasa/química , Adenosilhomocisteinasa/metabolismo , Sitios de Unión , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Simulación de Dinámica Molecular , Naegleria fowleri/genética , Fosfoglicerato Mutasa/antagonistas & inhibidores , Fosfoglicerato Mutasa/química , Fosfoglicerato Mutasa/metabolismo , Estructura Cuaternaria de Proteína , Proteína-Arginina N-Metiltransferasas/antagonistas & inhibidores , Proteína-Arginina N-Metiltransferasas/química , Proteína-Arginina N-Metiltransferasas/metabolismo , Proteoma , Proteínas Protozoarias/química , Proteínas Protozoarias/metabolismo
10.
J Med Chem ; 63(19): 10984-11011, 2020 10 08.
Artículo en Inglés | MEDLINE | ID: mdl-32902275

RESUMEN

Lactate dehydrogenase (LDH) catalyzes the conversion of pyruvate to lactate, with concomitant oxidation of reduced nicotinamide adenine dinucleotide as the final step in the glycolytic pathway. Glycolysis plays an important role in the metabolic plasticity of cancer cells and has long been recognized as a potential therapeutic target. Thus, potent, selective inhibitors of LDH represent an attractive therapeutic approach. However, to date, pharmacological agents have failed to achieve significant target engagement in vivo, possibly because the protein is present in cells at very high concentrations. We report herein a lead optimization campaign focused on a pyrazole-based series of compounds, using structure-based design concepts, coupled with optimization of cellular potency, in vitro drug-target residence times, and in vivo PK properties, to identify first-in-class inhibitors that demonstrate LDH inhibition in vivo. The lead compounds, named NCATS-SM1440 (43) and NCATS-SM1441 (52), possess desirable attributes for further studying the effect of in vivo LDH inhibition.


Asunto(s)
Inhibidores Enzimáticos/farmacología , L-Lactato Deshidrogenasa/antagonistas & inhibidores , Pirazoles/farmacología , Animales , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacocinética , Semivida , Humanos , Ratones , Relación Estructura-Actividad , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Acta Crystallogr D Biol Crystallogr ; 65(Pt 10): 1062-73, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19770503

RESUMEN

When starting a protein-crystallization project, scientists are faced with several unknowns. Amongst them are these questions: (i) is the purity of the starting material sufficient? and (ii) which type of crystallization experiment is the most promising to conduct? The difficulty in purifying active membrane-protein samples for crystallization trials and the high costs associated with producing such samples require an extremely pragmatic approach. Additionally, practical guidelines are needed to increase the efficiency of membrane-protein crystallization. In order to address these conundrums, the effects of commonly encountered impurities on various membrane-protein crystallization regimes have been investigated and it was found that the lipidic cubic phase (LCP) based crystallization methodology is more robust than crystallization in detergent environments using vapor diffusion or microbatch approaches in its ability to tolerate contamination in the forms of protein, lipid or other general membrane components. LCP-based crystallizations produced crystals of the photosynthetic reaction center (RC) of Rhodobacter sphaeroides from samples with substantial levels of residual impurities. Crystals were obtained with protein contamination levels of up to 50% and the addition of lipid material and membrane fragments to pure samples of RC had little effect on the number or on the quality of crystals obtained in LCP-based crystallization screens. If generally applicable, this tolerance for impurities may avoid the need for samples of ultrahigh purity when undertaking initial crystallization screening trials to determine preliminary crystallization conditions that can be optimized for a given target protein.


Asunto(s)
Cristalización/métodos , Proteínas de la Membrana/química , Proteínas Bacterianas/química , Proteínas Bacterianas/aislamiento & purificación , Lípidos/química , Proteínas de la Membrana/aislamiento & purificación , Rhodobacter sphaeroides/química
12.
Acta Crystallogr F Struct Biol Commun ; 74(Pt 6): 373-384, 2018 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-29870023

RESUMEN

Nucleoside diphosphate kinases (NDKs) are implicated in a wide variety of cellular functions owing to their enzymatic conversion of NDP to NTP. NDK from Borrelia burgdorferi (BbNDK) was selected for functional and structural analysis to determine whether its activity is required for infection and to assess its potential for therapeutic inhibition. The Seattle Structural Genomics Center for Infectious Diseases (SSGCID) expressed recombinant BbNDK protein. The protein was crystallized and structures were solved of both the apoenzyme and a liganded form with ADP and vanadate ligands. This provided two structures and allowed the elucidation of changes between the apo and ligand-bound enzymes. Infectivity studies with ndk transposon mutants demonstrated that NDK function was important for establishing a robust infection in mice, and provided a rationale for therapeutic targeting of BbNDK. The protein structure was compared with other NDK structures found in the Protein Data Bank and was found to have similar primary, secondary, tertiary and quaternary structures, with conserved residues acting as the catalytic pocket, primarily using His132 as the phosphohistidine-transfer residue. Vanadate and ADP complexes model the transition state of this phosphoryl-transfer reaction, demonstrating that the pocket closes when bound to ADP, while allowing the addition or removal of a γ-phosphate. This analysis provides a framework for the design of potential therapeutics targeting BbNDK inhibition.


Asunto(s)
Adenosina Difosfato/química , Borrelia burgdorferi/enzimología , Nucleósido-Difosfato Quinasa/química , Vanadatos/química , Adenosina Difosfato/genética , Adenosina Difosfato/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Borrelia burgdorferi/genética , Femenino , Ratones , Ratones Endogámicos C3H , Nucleósido-Difosfato Quinasa/genética , Nucleósido-Difosfato Quinasa/metabolismo , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Vanadatos/metabolismo
13.
J Mol Biol ; 357(4): 1202-10, 2006 Apr 07.
Artículo en Inglés | MEDLINE | ID: mdl-16487540

RESUMEN

Type IB topoisomerases are essential enzymes that are responsible for relaxing superhelical tension in DNA by forming a transient covalent nick in one strand of the DNA duplex. Topoisomerase I is a target for anti-cancer drugs such as camptothecin, and these drugs also target the topoisomerases I in pathogenic trypanosomes including Leishmania species and Trypanosoma brucei. Most eukaryotic enzymes, including human topoisomerase I, are monomeric. However, for Leishmania donovani, the DNA-binding activity and the majority of residues involved in catalysis are located in a large subunit, designated TOP1L, whereas the catalytic tyrosine residue responsible for covalent attachment to DNA is located in a smaller subunit, called TOP1S. Here, we present the 2.27A crystal structure of an active truncated L.donovani TOP1L/TOP1S heterodimer bound to nicked double-stranded DNA captured as a vanadate complex. The vanadate forms covalent linkages between the catalytic tyrosine residue of the small subunit and the nicked ends of the scissile DNA strand, mimicking the previously unseen transition state of the topoisomerase I catalytic cycle. This structure fills a critical gap in the existing ensemble of topoisomerase I structures and provides crucial insights into the catalytic mechanism.


Asunto(s)
ADN-Topoisomerasas de Tipo I/química , ADN/química , Leishmania donovani/enzimología , Estructura Cuaternaria de Proteína , Proteínas Protozoarias/química , Vanadatos/química , Animales , Arginina/química , Dominio Catalítico , Cristalografía por Rayos X , ADN/metabolismo , ADN-Topoisomerasas de Tipo I/genética , ADN-Topoisomerasas de Tipo I/metabolismo , Dimerización , Histidina/química , Humanos , Sustancias Macromoleculares , Modelos Moleculares , Estructura Molecular , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo , Inhibidores de Topoisomerasa I , Tirosina/química , Agua/química
14.
J Med Chem ; 60(22): 9184-9204, 2017 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-29120638

RESUMEN

We report the discovery and medicinal chemistry optimization of a novel series of pyrazole-based inhibitors of human lactate dehydrogenase (LDH). Utilization of a quantitative high-throughput screening paradigm facilitated hit identification, while structure-based design and multiparameter optimization enabled the development of compounds with potent enzymatic and cell-based inhibition of LDH enzymatic activity. Lead compounds such as 63 exhibit low nM inhibition of both LDHA and LDHB, submicromolar inhibition of lactate production, and inhibition of glycolysis in MiaPaCa2 pancreatic cancer and A673 sarcoma cells. Moreover, robust target engagement of LDHA by lead compounds was demonstrated using the cellular thermal shift assay (CETSA), and drug-target residence time was determined via SPR. Analysis of these data suggests that drug-target residence time (off-rate) may be an important attribute to consider for obtaining potent cell-based inhibition of this cancer metabolism target.


Asunto(s)
Inhibidores Enzimáticos/farmacología , L-Lactato Deshidrogenasa/antagonistas & inhibidores , Pirazoles/farmacología , Tiazoles/farmacología , Animales , Antineoplásicos/síntesis química , Antineoplásicos/química , Antineoplásicos/farmacocinética , Antineoplásicos/farmacología , Línea Celular Tumoral , Cristalografía por Rayos X , Descubrimiento de Drogas , Ensayos de Selección de Medicamentos Antitumorales , Inhibidores Enzimáticos/síntesis química , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacocinética , Ensayos Analíticos de Alto Rendimiento , Humanos , Masculino , Membranas Artificiales , Ratones , Microsomas Hepáticos/efectos de los fármacos , Permeabilidad , Pirazoles/síntesis química , Pirazoles/química , Pirazoles/farmacocinética , Ratas , Solubilidad , Relación Estructura-Actividad , Tiazoles/síntesis química , Tiazoles/química , Tiazoles/farmacocinética
15.
Structure ; 10(2): 237-48, 2002 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-11839309

RESUMEN

Tyrosyl-DNA phosphodiesterase (Tdp1) catalyzes the hydrolysis of a phosphodiester bond between a tyrosine residue and a DNA 3' phosphate. The enzyme appears to be responsible for repairing the unique protein-DNA linkage that occurs when eukaryotic topoisomerase I becomes stalled on the DNA in the cell. The 1.69 A crystal structure reveals that human Tdp1 is a monomer composed of two similar domains that are related by a pseudo-2-fold axis of symmetry. Each domain contributes conserved histidine, lysine, and asparagine residues to form a single active site. The structure of Tdp1 confirms that the protein has many similarities to the members of the phospholipase D (PLD) superfamily and indicates a similar catalytic mechanism. The structure also suggests how the unusual protein-DNA substrate binds and provides insights about the nature of the substrate in vivo.


Asunto(s)
Hidrolasas Diéster Fosfóricas/química , Secuencia de Aminoácidos , Proteínas Bacterianas/química , Sitios de Unión , Catálisis , Cristalografía por Rayos X , Humanos , Enlace de Hidrógeno , Modelos Moleculares , Datos de Secuencia Molecular , Fosfolipasa D/química , Hidrolasas Diéster Fosfóricas/metabolismo , Conformación Proteica , Homología de Secuencia de Aminoácido , Electricidad Estática , Relación Estructura-Actividad , Especificidad por Sustrato
16.
Curr Opin Struct Biol ; 36: 122-32, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26919170

RESUMEN

Understanding the structural rules that govern specific, high-affinity binding characteristic of aptamer-protein interactions is important in view of the increasing use of aptamers across many applications. From the modest number of 16 aptamer-protein structures currently available, trends are emerging. The flexible phosphodiester backbone allows folding into precise three-dimensional structures using known nucleic acid motifs as scaffolds that orient specific functional groups for target recognition. Still, completely novel motifs essential for structure and function are found in modified aptamers with diversity-enhancing side chains. Aptamers and antibodies, two classes of macromolecules used as affinity reagents with entirely different backbones and composition, recognize protein epitopes of similar size and with comparably high shape complementarity.


Asunto(s)
Aptámeros de Nucleótidos/química , Modelos Moleculares , Proteínas/química , Aptámeros de Nucleótidos/metabolismo , Sitios de Unión , Interacciones Hidrofóbicas e Hidrofílicas , Ligandos , Conformación de Ácido Nucleico , Motivos de Nucleótidos , Unión Proteica , Conformación Proteica , Proteínas/metabolismo , Relación Estructura-Actividad
17.
PLoS One ; 11(8): e0160350, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27500735

RESUMEN

We investigated Brucella melitensis methionyl-tRNA-synthetase (BmMetRS) with molecular, structural and phenotypic methods to learn if BmMetRS is a promising target for brucellosis drug development. Recombinant BmMetRS was expressed, purified from wild type Brucella melitensis biovar Abortus 2308 strain ATCC/CRP #DD-156 and screened by a thermal melt assay against a focused library of one hundred previously classified methionyl-tRNA-synthetase inhibitors of the blood stage form of Trypanosoma brucei. Three compounds showed appreciable shift of denaturation temperature and were selected for further studies on inhibition of the recombinant enzyme activity and cell viability against wild type B. melitensis strain 16M. BmMetRS protein complexed with these three inhibitors resolved into three-dimensional crystal structures and was analyzed. All three selected methionyl-tRNA-synthetase compounds inhibit recombinant BmMetRS enzymatic functions in an aminoacylation assay at varying concentrations. Furthermore, growth inhibition of B. melitensis strain 16M by the compounds was shown. Inhibitor-BmMetRS crystal structure models were used to illustrate the molecular basis of the enzyme inhibition. Our current data suggests that BmMetRS is a promising target for brucellosis drug development. However, further studies are needed to optimize lead compound potency, efficacy and safety as well as determine the pharmacokinetics, optimal dosage, and duration for effective treatment.


Asunto(s)
Brucella melitensis/efectos de los fármacos , Brucella melitensis/enzimología , Brucelosis/tratamiento farmacológico , Inhibidores Enzimáticos/farmacología , Ensayos Analíticos de Alto Rendimiento/métodos , Metionina-ARNt Ligasa/antagonistas & inhibidores , Secuencia de Aminoácidos , Brucella melitensis/crecimiento & desarrollo , Brucelosis/microbiología , Descubrimiento de Drogas , Concentración 50 Inhibidora , Metionina-ARNt Ligasa/metabolismo , Conformación Proteica , Homología de Secuencia de Aminoácido
19.
J Mol Biol ; 324(5): 917-32, 2002 Dec 13.
Artículo en Inglés | MEDLINE | ID: mdl-12470949

RESUMEN

Tyrosyl-DNA phosphodiesterase (Tdp1) is a DNA repair enzyme that catalyzes the hydrolysis of a phosphodiester bond between a tyrosine residue and a DNA 3'-phosphate. The only known example of such a linkage in eukaryotic cells occurs normally as a transient link between a type IB topoisomerase and DNA. Thus human Tdp1 is thought to be responsible for repairing lesions that occur when topoisomerase I becomes stalled on the DNA in the cell. Tdp1 has also been shown to remove glycolate from single-stranded DNA containing a 3'-phosphoglycolate, suggesting a role for Tdp1 in repair of free-radical mediated DNA double-strand breaks. We report the three-dimensional structures of human Tdp1 bound to the phosphate transition state analogs vanadate and tungstate. Each structure shows the inhibitor covalently bound to His263, confirming that this residue is the nucleophile in the first step of the catalytic reaction. Vanadate in the Tdp1-vanadate structure has a trigonal bipyramidal geometry that mimics the transition state for hydrolysis of a phosphodiester bond, while Tdp1-tungstate displays unusual octahedral coordination. The presence of low-occupancy tungstate molecules along the narrow groove of the substrate binding cleft is suggestive evidence that this groove binds ssDNA. In both cases, glycerol from the cryoprotectant solution became liganded to the vanadate or tungstate inhibitor molecules in a bidentate 1,2-diol fashion. These structural models allow predictions to be made regarding the specific binding mode of the substrate and the mechanism of catalysis.


Asunto(s)
Hidrolasas Diéster Fosfóricas/química , Hidrolasas Diéster Fosfóricas/metabolismo , Compuestos de Tungsteno/metabolismo , Compuestos de Tungsteno/farmacología , Vanadatos/metabolismo , Vanadatos/farmacología , Apoenzimas/antagonistas & inhibidores , Apoenzimas/química , Apoenzimas/metabolismo , Sitios de Unión , Catálisis/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Enlace de Hidrógeno , Modelos Químicos , Modelos Moleculares , Inhibidores de Fosfodiesterasa/química , Inhibidores de Fosfodiesterasa/metabolismo , Inhibidores de Fosfodiesterasa/farmacología , Conformación Proteica , Especificidad por Sustrato , Compuestos de Tungsteno/química , Vanadatos/química
20.
Chem Biol ; 10(2): 139-47, 2003 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-12618186

RESUMEN

Tyrosyl-DNA phosphodiesterase (Tdp1) is a member of the phospholipase D superfamily and acts as a DNA repair enzyme that removes stalled topoisomerase I- DNA complexes by hydrolyzing the bond between a tyrosine side chain and a DNA 3' phosphate. Despite the complexity of the substrate of this phosphodiesterase, vanadate succeeded in linking human Tdp1, a tyrosine-containing peptide, and a single-stranded DNA oligonucleotide into a quaternary complex that mimics the transition state for the first step of the catalytic reaction. The conformation of the bound substrate mimic gives compelling evidence that the topoisomerase I-DNA complex must undergo extensive modification prior to cleavage by Tdp1. The structure also illustrates that the use of vanadate as the central moiety in high-order complexes has the potential to be a general method for capturing protein-substrate interactions for phosphoryl transfer enzymes, even when the substrates are large, complicated, and unusual.


Asunto(s)
ADN-Topoisomerasas de Tipo I/química , ADN/metabolismo , Hidrolasas Diéster Fosfóricas/química , Vanadatos/química , Cristalización , Cristalografía por Rayos X , Humanos , Enlace de Hidrógeno , Modelos Moleculares , Imitación Molecular , Oligonucleótidos/química , Conformación Proteica
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda