Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Nature ; 614(7949): 732-741, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36792830

RESUMEN

Neuronal activity is crucial for adaptive circuit remodelling but poses an inherent risk to the stability of the genome across the long lifespan of postmitotic neurons1-5. Whether neurons have acquired specialized genome protection mechanisms that enable them to withstand decades of potentially damaging stimuli during periods of heightened activity is unknown. Here we identify an activity-dependent DNA repair mechanism in which a new form of the NuA4-TIP60 chromatin modifier assembles in activated neurons around the inducible, neuronal-specific transcription factor NPAS4. We purify this complex from the brain and demonstrate its functions in eliciting activity-dependent changes to neuronal transcriptomes and circuitry. By characterizing the landscape of activity-induced DNA double-strand breaks in the brain, we show that NPAS4-NuA4 binds to recurrently damaged regulatory elements and recruits additional DNA repair machinery to stimulate their repair. Gene regulatory elements bound by NPAS4-NuA4 are partially protected against age-dependent accumulation of somatic mutations. Impaired NPAS4-NuA4 signalling leads to a cascade of cellular defects, including dysregulated activity-dependent transcriptional responses, loss of control over neuronal inhibition and genome instability, which all culminate to reduce organismal lifespan. In addition, mutations in several components of the NuA4 complex are reported to lead to neurodevelopmental and autism spectrum disorders. Together, these findings identify a neuronal-specific complex that couples neuronal activity directly to genome preservation, the disruption of which may contribute to developmental disorders, neurodegeneration and ageing.


Asunto(s)
Encéfalo , Reparación del ADN , Complejos Multiproteicos , Neuronas , Sinapsis , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Encéfalo/metabolismo , Roturas del ADN de Doble Cadena , Regulación de la Expresión Génica , Lisina Acetiltransferasa 5/metabolismo , Complejos Multiproteicos/metabolismo , Neuronas/metabolismo , Sinapsis/metabolismo , Mutación , Longevidad/genética , Genoma , Envejecimiento/genética , Enfermedades Neurodegenerativas
2.
Nature ; 590(7844): 115-121, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33299180

RESUMEN

Behavioural experiences activate the FOS transcription factor in sparse populations of neurons that are critical for encoding and recalling specific events1-3. However, there is limited understanding of the mechanisms by which experience drives circuit reorganization to establish a network of Fos-activated cells. It is also not known whether FOS is required in this process beyond serving as a marker of recent neural activity and, if so, which of its many gene targets underlie circuit reorganization. Here we demonstrate that when mice engage in spatial exploration of novel environments, perisomatic inhibition of Fos-activated hippocampal CA1 pyramidal neurons by parvalbumin-expressing interneurons is enhanced, whereas perisomatic inhibition by cholecystokinin-expressing interneurons is weakened. This bidirectional modulation of inhibition is abolished when the function of the FOS transcription factor complex is disrupted. Single-cell RNA-sequencing, ribosome-associated mRNA profiling and chromatin analyses, combined with electrophysiology, reveal that FOS activates the transcription of Scg2, a gene that encodes multiple distinct neuropeptides, to coordinate these changes in inhibition. As parvalbumin- and cholecystokinin-expressing interneurons mediate distinct features of pyramidal cell activity4-6, the SCG2-dependent reorganization of inhibitory synaptic input might be predicted to affect network function in vivo. Consistent with this prediction, hippocampal gamma rhythms and pyramidal cell coupling to theta phase are significantly altered in the absence of Scg2. These findings reveal an instructive role for FOS and SCG2 in establishing a network of Fos-activated neurons via the rewiring of local inhibition to form a selectively modulated state. The opposing plasticity mechanisms acting on distinct inhibitory pathways may support the consolidation of memories over time.


Asunto(s)
Red Nerviosa/citología , Red Nerviosa/fisiología , Inhibición Neural , Plasticidad Neuronal/fisiología , Proteínas Proto-Oncogénicas c-fos/metabolismo , Animales , Región CA1 Hipocampal/metabolismo , Colecistoquinina/metabolismo , Conducta Exploratoria/fisiología , Femenino , Ritmo Gamma , Interneuronas/metabolismo , Masculino , Consolidación de la Memoria , Ratones , Parvalbúminas/metabolismo , Células Piramidales/metabolismo , Secretogranina II/genética , Secretogranina II/metabolismo , Navegación Espacial/fisiología , Ritmo Teta
3.
Genes Dev ; 33(13-14): 799-813, 2019 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-31171700

RESUMEN

Mammalian development requires effective mechanisms to repress genes whose expression would generate inappropriately specified cells. The Polycomb-repressive complex 1 (PRC1) family complexes are central to maintaining this repression. These include a set of canonical PRC1 complexes, each of which contains four core proteins, including one from the CBX family. These complexes have been shown previously to reside in membraneless organelles called Polycomb bodies, leading to speculation that canonical PRC1 might be found in a separate phase from the rest of the nucleus. We show here that reconstituted PRC1 readily phase-separates into droplets in vitro at low concentrations and physiological salt conditions. This behavior is driven by the CBX2 subunit. Point mutations in an internal domain of Cbx2 eliminate phase separation. These same point mutations eliminate the formation of puncta in cells and have been shown previously to eliminate nucleosome compaction in vitro and generate axial patterning defects in mice. Thus, the domain of CBX2 that is important for phase separation is the same domain shown previously to be important for chromatin compaction and proper development, raising the possibility of a mechanistic or evolutionary link between these activities.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/genética , Complejo Represivo Polycomb 1/química , Animales , Línea Celular , Escherichia coli/genética , Ratones , Ratones Endogámicos C57BL , Células 3T3 NIH , Orgánulos/metabolismo , Mutación Puntual , Complejo Represivo Polycomb 1/genética , Complejo Represivo Polycomb 1/metabolismo , Dominios Proteicos , Células Sf9
4.
Mol Cell ; 55(5): 791-802, 2014 Sep 04.
Artículo en Inglés | MEDLINE | ID: mdl-25155612

RESUMEN

Mechanistic roles for many lncRNAs are poorly understood, in part because their direct interactions with genomic loci and proteins are difficult to assess. Using a method to purify endogenous RNAs and their associated factors, we mapped the genomic binding sites for two highly expressed human lncRNAs, NEAT1 and MALAT1. We show that NEAT1 and MALAT1 localize to hundreds of genomic sites in human cells, primarily over active genes. NEAT1 and MALAT1 exhibit colocalization to many of these loci, but display distinct gene body binding patterns at these sites, suggesting independent but complementary functions for these RNAs. We also identified numerous proteins enriched by both lncRNAs, supporting complementary binding and function, in addition to unique associated proteins. Transcriptional inhibition or stimulation alters localization of NEAT1 on active chromatin sites, implying that underlying DNA sequence does not target NEAT1 to chromatin, and that localization responds to cues involved in the transcription process.


Asunto(s)
Cromatina/metabolismo , ARN Largo no Codificante/metabolismo , Sitios de Unión , Humanos , Modelos Genéticos , Hibridación de Ácido Nucleico , ARN Largo no Codificante/análisis , ARN Largo no Codificante/química , Transcripción Genética
5.
J Biol Chem ; 291(37): 19558-72, 2016 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-27405765

RESUMEN

The essential functions of polycomb repressive complex 1 (PRC1) in development and gene silencing are thought to involve long non-coding RNAs (lncRNAs), but few specific lncRNAs that guide PRC1 activity are known. We screened for lncRNAs, which co-precipitate with PRC1 from chromatin and found candidates that impact polycomb group protein (PcG)-regulated gene expression in vivo A novel lncRNA from this screen, CAT7, regulates expression and polycomb group binding at the MNX1 locus during early neuronal differentiation. CAT7 contains a unique tandem repeat domain that shares high sequence similarity to a non-syntenic zebrafish analog, cat7l Defects caused by interference of cat7l RNA during zebrafish embryogenesis were rescued by human CAT7 RNA, enhanced by interference of a PRC1 component, and suppressed by interference of a known PRC1 target gene, demonstrating cat7l genetically interacts with a PRC1. We propose a model whereby PRC1 acts in concert with specific lncRNAs and that CAT7/cat7l represents convergent lncRNAs that independently evolved to tune PRC1 repression at individual loci.


Asunto(s)
Diferenciación Celular/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Modelos Biológicos , Neuronas/metabolismo , Complejo Represivo Polycomb 1/metabolismo , ARN Largo no Codificante/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Células HeLa , Humanos , Ratones , Complejo Represivo Polycomb 1/genética , ARN Largo no Codificante/genética , Pez Cebra/genética , Proteínas de Pez Cebra/genética
6.
Proc Natl Acad Sci U S A ; 109(27): 10837-42, 2012 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-22699496

RESUMEN

Histone modifications regulate transcription by RNA polymerase II and maintain a balance between active and repressed chromatin states. The conserved Paf1 complex (Paf1C) promotes specific histone modifications during transcription elongation, but the mechanisms by which it facilitates these marks are undefined. We previously identified a 90-amino acid region within the Rtf1 subunit of Paf1C that is necessary for Paf1C-dependent histone modifications in Saccharomyces cerevisiae. Here we show that this histone modification domain (HMD), when expressed as the only source of Rtf1, can promote H3 K4 and K79 methylation and H2B K123 ubiquitylation in yeast. The HMD can restore histone modifications in rtf1Δ cells whether or not it is directed to DNA by a fusion to a DNA binding domain. The HMD can facilitate histone modifications independently of other Paf1C subunits and does not bypass the requirement for Rad6-Bre1. The isolated HMD localizes to chromatin, and this interaction requires residues important for histone modification. When expressed outside the context of full-length Rtf1, the HMD associates with and causes Paf1C-dependent histone modifications to appear at transcriptionally inactive loci, suggesting that its function has become deregulated. Finally, the Rtf1 HMDs from other species can function in yeast. Our findings suggest a direct and conserved role for Paf1C in coupling histone modifications to transcription elongation.


Asunto(s)
Histonas/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteína de Unión a TATA-Box/química , Proteína de Unión a TATA-Box/metabolismo , Cromatina/genética , Cromatina/metabolismo , Secuencia Conservada , Evolución Molecular , Regulación Fúngica de la Expresión Génica/fisiología , Histonas/genética , Proteínas Nucleares/genética , Nucleosomas/genética , Nucleosomas/metabolismo , ARN Polimerasa II/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteína de Unión a TATA-Box/genética , Transcripción Genética/fisiología , Ubiquitinación/fisiología
7.
J Biol Chem ; 287(14): 10863-75, 2012 Mar 30.
Artículo en Inglés | MEDLINE | ID: mdl-22318720

RESUMEN

The conserved Paf1 complex localizes to the coding regions of genes and facilitates multiple processes during transcription elongation, including the regulation of histone modifications. However, the mechanisms that govern Paf1 complex recruitment to active genes are undefined. Here we describe a previously unrecognized domain within the Cdc73 subunit of the Paf1 complex, the Cdc73 C-domain, and demonstrate its importance for Paf1 complex occupancy on transcribed chromatin. Deletion of the C-domain causes phenotypes associated with elongation defects without an apparent loss of complex integrity. Simultaneous mutation of the C-domain and another subunit of the Paf1 complex, Rtf1, causes enhanced mutant phenotypes and loss of histone H3 lysine 36 trimethylation. The crystal structure of the C-domain reveals unexpected similarity to the Ras family of small GTPases. Instead of a deep nucleotide-binding pocket, the C-domain contains a large but comparatively flat surface of highly conserved residues, devoid of ligand. Deletion of the C-domain results in reduced chromatin association for multiple Paf1 complex subunits. We conclude that the Cdc73 C-domain probably constitutes a protein interaction surface that functions with Rtf1 in coupling the Paf1 complex to the RNA polymerase II elongation machinery.


Asunto(s)
Cromatina/metabolismo , Proteínas Nucleares/química , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas ras/química , Secuencia de Aminoácidos , Secuencia Conservada , Histonas/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/metabolismo , Transporte de Proteínas , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Proteína de Unión a TATA-Box/metabolismo , Transcripción Genética
8.
bioRxiv ; 2023 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-37397991

RESUMEN

Post-translational modifications of histone tails alter chromatin accessibility to regulate gene expression. Some viruses exploit the importance of histone modifications by expressing histone mimetic proteins that contain histone-like sequences to sequester complexes that recognize modified histones. Here we identify an evolutionarily conserved and ubiquitously expressed, endogenous mammalian protein Nucleolar protein 16 (NOP16) that functions as a H3K27 mimic. NOP16 binds to EED in the H3K27 trimethylation PRC2 complex and to the H3K27 demethylase JMJD3. NOP16 knockout selectively globally increases H3K27me3, a heterochromatin mark, without altering methylation of H3K4, H3K9, or H3K36 or acetylation of H3K27. NOP16 is overexpressed and linked to poor prognosis in breast cancer. Depletion of NOP16 in breast cancer cell lines causes cell cycle arrest, decreases cell proliferation and selectively decreases expression of E2F target genes and of genes involved in cell cycle, growth and apoptosis. Conversely, ectopic NOP16 expression in triple negative breast cancer cell lines increases cell proliferation, cell migration and invasivity in vitro and tumor growth in vivo , while NOP16 knockout or knockdown has the opposite effect. Thus, NOP16 is a histone mimic that competes with Histone H3 for H3K27 methylation and demethylation. When it is overexpressed in cancer, it derepresses genes that promote cell cycle progression to augment breast cancer growth.

9.
Neuron ; 107(5): 874-890.e8, 2020 09 09.
Artículo en Inglés | MEDLINE | ID: mdl-32589877

RESUMEN

The maturation of the mammalian brain occurs after birth, and this stage of neuronal development is frequently impaired in neurological disorders, such as autism and schizophrenia. However, the mechanisms that regulate postnatal brain maturation are poorly defined. By purifying neuronal subpopulations across brain development in mice, we identify a postnatal switch in the transcriptional regulatory circuits that operates in the maturing mammalian brain. We show that this developmental transition includes the formation of hundreds of cell-type-specific neuronal enhancers that appear to be modulated by neuronal activity. Once selected, these enhancers are active throughout adulthood, suggesting that their formation in early life shapes neuronal identity and regulates mature brain function.


Asunto(s)
Encéfalo/crecimiento & desarrollo , Regulación de la Expresión Génica/fisiología , Neurogénesis/fisiología , Neuronas/fisiología , Animales , Metilación de ADN/fisiología , Ratones , Transcripción Genética/fisiología
10.
Methods Mol Biol ; 1262: 167-82, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25555581

RESUMEN

Identification of genomic binding sites and proteins associated with noncoding RNAs will lead to more complete mechanistic characterization of the regulatory activities of noncoding RNAs. Capture hybridization analysis of RNA targets (CHART) is a powerful technique wherein specific RNA molecules are isolated from cross-linked nuclear extracts using complementary, biotinylated capture oligonucleotides, allowing subsequent identification of genomic DNA and proteins cross-linked to the RNA of interest. Here, we describe the procedure for CHART and list strategies to optimize nuclear extract preparation, capture oligonucleotide design, and isolation of nucleic acids and proteins enriched through CHART.


Asunto(s)
Proteínas de Drosophila/aislamiento & purificación , Drosophila melanogaster/metabolismo , Hibridación de Ácido Nucleico/métodos , ARN Largo no Codificante/aislamiento & purificación , Proteínas de Unión al ARN/aislamiento & purificación , Animales , Sitios de Unión , Biotinilación , Cromatina/química , Cromatina/genética , Reactivos de Enlaces Cruzados , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Humanos , Oligonucleótidos/genética , Oligonucleótidos/aislamiento & purificación , ARN Largo no Codificante/genética , Proteínas de Unión al ARN/genética
11.
Mol Cell Biol ; 33(24): 4779-92, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24100010

RESUMEN

Spt6 is a highly conserved histone chaperone that interacts directly with both RNA polymerase II and histones to regulate gene expression. To gain a comprehensive understanding of the roles of Spt6, we performed genome-wide analyses of transcription, chromatin structure, and histone modifications in a Schizosaccharomyces pombe spt6 mutant. Our results demonstrate dramatic changes to transcription and chromatin structure in the mutant, including elevated antisense transcripts at >70% of all genes and general loss of the +1 nucleosome. Furthermore, Spt6 is required for marks associated with active transcription, including trimethylation of histone H3 on lysine 4, previously observed in humans but not Saccharomyces cerevisiae, and lysine 36. Taken together, our results indicate that Spt6 is critical for the accuracy of transcription and the integrity of chromatin, likely via its direct interactions with RNA polymerase II and histones.


Asunto(s)
Chaperonas de Histonas/fisiología , Histonas/metabolismo , Nucleosomas/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas de Schizosaccharomyces pombe/fisiología , Schizosaccharomyces/genética , Transcriptoma , Secuencia de Bases , Secuencia de Consenso , Regulación Fúngica de la Expresión Génica , Genoma Fúngico , N-Metiltransferasa de Histona-Lisina/metabolismo , Metilación , Multimerización de Proteína , Empalme del ARN , ARN sin Sentido/genética , ARN sin Sentido/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Análisis de Secuencia de ADN
12.
Genetics ; 188(2): 273-89, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21441211

RESUMEN

The conserved eukaryotic Paf1 complex regulates RNA synthesis by RNA polymerase II at multiple levels, including transcript elongation, transcript termination, and chromatin modifications. To better understand the contributions of the Paf1 complex to transcriptional regulation, we generated mutations that alter conserved residues within the Rtf1 subunit of the Saccharomyces cerevisiae Paf1 complex. Importantly, single amino acid substitutions within a region of Rtf1 that is conserved from yeast to humans, which we termed the histone modification domain, resulted in the loss of histone H2B ubiquitylation and impaired histone H3 methylation. Phenotypic analysis of these mutations revealed additional defects in telomeric silencing, transcription elongation, and prevention of cryptic initiation. We also demonstrated that amino acid substitutions within the Rtf1 histone modification domain disrupt 3'-end formation of snoRNA transcripts and identify a previously uncharacterized regulatory role for the histone H2B K123 ubiquitylation mark in this process. Cumulatively, our results reveal functionally important residues in Rtf1, better define the roles of Rtf1 in transcription and histone modification, and provide strong genetic support for the participation of histone modification marks in the termination of noncoding RNAs.


Asunto(s)
Histonas/genética , Mutación , ARN no Traducido/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Proteína de Unión a TATA-Box/genética , Secuencia de Aminoácidos , Northern Blotting , Western Blotting , Regulación Fúngica de la Expresión Génica , Histonas/metabolismo , Humanos , Lisina/genética , Lisina/metabolismo , Metilación , Datos de Secuencia Molecular , ARN Nucleolar Pequeño/genética , ARN Nucleolar Pequeño/metabolismo , ARN no Traducido/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido , Proteína de Unión a TATA-Box/metabolismo , Ubiquitinación
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda