Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Physiol ; 593(1): 97-110, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25556791

RESUMEN

Ionotropic glutamate receptors (iGluRs) are the major excitatory neurotransmitter receptor in the vertebrate CNS and, as a result, their activation properties lie at the heart of much of the neuronal network activity observed in the developing and adult brain. iGluRs have also been implicated in many nervous system disorders associated with postnatal development (e.g. autism, schizophrenia), cerebral insult (e.g. stroke, epilepsy), and disorders of the ageing brain (e.g. Alzheimer's disease, Parkinsonism). In view of this, an emphasis has been placed on understanding how iGluRs activate and desensitize in functional and structural terms. Early structural models of iGluRs suggested that the strength of the agonist response was primarily governed by the degree of closure induced in the ligand-binding domain (LBD). However, recent studies have suggested a more nuanced role for the LBD with current evidence identifying the iGluR LBD interface as a "hotspot" regulating agonist behaviour. Such ideas remain to be consolidated with recently solved structures of full-length iGluRs to account for the global changes that underlie channel activation and desensitization.


Asunto(s)
Receptores de Glutamato/química , Receptores de Glutamato/metabolismo , Animales , Sitios de Unión , Agonistas de Aminoácidos Excitadores/farmacología , Modelos Moleculares , Conformación Proteica , Multimerización de Proteína
2.
Bioorg Med Chem Lett ; 25(11): 2416-20, 2015 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-25913117

RESUMEN

KA receptors have shown to be potential therapeutic targets in CNS diseases such as schizophrenia, depression, neuropathic pain and epilepsy. Through the use of our docking tool Fitted, we investigated the relationship between ligand activity towards GluK2 and the conformational state induced at the receptor level. By focusing our rational design on the interaction between the ligand and a tyrosine residue in the binding site, we synthesized a series of molecules based on a glutamate scaffold, and carried out electrophysiological recordings. The observed ability of some of these molecules to inhibit receptor activation shows the potential of our design for the development of effective antagonists with a molecular size comparable to that of the endogenous neurotransmitter L-glutamate.


Asunto(s)
Fármacos del Sistema Nervioso Central/química , Fármacos del Sistema Nervioso Central/farmacología , Receptores de Ácido Kaínico/antagonistas & inhibidores , Dominio Catalítico , Descubrimiento de Drogas , Ligandos , Modelos Químicos , Modelos Moleculares , Estructura Molecular , Conformación Proteica , Programas Informáticos , Receptor de Ácido Kaínico GluK2
3.
J Clin Invest ; 130(11): 6158-6170, 2020 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-33074244

RESUMEN

The α6ß4 nicotinic acetylcholine receptor (nAChR) is enriched in dorsal root ganglia neurons and is an attractive non-opioid therapeutic target for pain. However, difficulty expressing human α6ß4 receptors in recombinant systems has precluded drug discovery. Here, genome-wide screening identified accessory proteins that enable reconstitution of human α6ß4 nAChRs. BARP, an auxiliary subunit of voltage-dependent calcium channels, promoted α6ß4 surface expression while IRE1α, an unfolded protein response sensor, enhanced α6ß4 receptor assembly. Effects on α6ß4 involve BARP's N-terminal region and IRE1α's splicing of XBP1 mRNA. Furthermore, clinical efficacy of nicotinic agents in relieving neuropathic pain best correlated with their activity on α6ß4. Finally, BARP-knockout, but not NACHO-knockout mice lacked nicotine-induced antiallodynia, highlighting the functional importance of α6ß4 in pain. These results identify roles for IRE1α and BARP in neurotransmitter receptor assembly and unlock drug discovery for the previously elusive α6ß4 receptor.


Asunto(s)
Agonistas Colinérgicos/farmacología , Endorribonucleasas/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/metabolismo , Receptores Colinérgicos/biosíntesis , Animales , Endorribonucleasas/genética , Células HEK293 , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Noqueados , Proteínas Serina-Treonina Quinasas/genética , Empalme del ARN/efectos de los fármacos , Ratas , Receptores Colinérgicos/genética , Proteína 1 de Unión a la X-Box/genética
4.
Cell Rep ; 26(4): 866-874.e3, 2019 01 22.
Artículo en Inglés | MEDLINE | ID: mdl-30673609

RESUMEN

Acetylcholine gates a large family of nicotinic receptor cation channels that control neuronal excitation and neurotransmitter release. These receptors are key targets for neuropsychiatric disorders; however, difficulties in expressing nicotinic acetylcholine (nACh) receptors hamper elaboration of their pharmacology and obscure elucidation of their biological functions. Particularly intriguing are α6-containing nACh receptors, which mediate nicotine-induced dopamine release in striatum-nucleus accumbens. Using genome-wide cDNA screening, we identify three accessory proteins, ß-anchoring and -regulatory protein (BARP), lysosomal-associated membrane protein 5 (LAMP5), and SULT2B1, that complement the nACh receptor chaperone NACHO to reconstitute α6ß2ß3 channel function. Whereas NACHO mediates α6ß2ß3 assembly, BARP primarily enhances channel gating and LAMP5 and SULT2B1 promote receptor surface trafficking. BARP knockout mice show perturbations in presynaptic striatal nACh receptors that are consistent with BARP modulation of receptor desensitization. These studies unravel the molecular complexity of α6ß2ß3 biogenesis and enable physiological studies of this crucial neuropharmacological target.


Asunto(s)
Cuerpo Estriado , Núcleo Accumbens/metabolismo , Multimerización de Proteína , Receptores Nicotínicos/metabolismo , Transmisión Sináptica , Acetilcolina/genética , Acetilcolina/metabolismo , Animales , Cuerpo Estriado/metabolismo , Proteínas de Membrana de los Lisosomas/genética , Proteínas de Membrana de los Lisosomas/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Noqueados , Compuestos Orgánicos , Ratas , Receptores Nicotínicos/genética
5.
Nat Commun ; 10(1): 2746, 2019 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-31227712

RESUMEN

Nicotinic acetylcholine receptors (nAChRs) mediate and modulate synaptic transmission throughout the brain, and contribute to learning, memory, and behavior. Dysregulation of α7-type nAChRs in neuropsychiatric as well as immunological and oncological diseases makes them attractive targets for pharmaceutical development. Recently, we identified NACHO as an essential chaperone for α7 nAChRs. Leveraging the robust recombinant expression of α7 nAChRs with NACHO, we utilized genome-wide cDNA library screening and discovered that several anti-apoptotic Bcl-2 family proteins further upregulate receptor assembly and cell surface expression. These effects are mediated by an intracellular motif on α7 that resembles the BH3 binding domain of pro-apoptotic Bcl-2 proteins, and can be blocked by BH3 mimetic Bcl-2 inhibitors. Overexpression of Bcl-2 member Mcl-1 in neurons enhanced surface expression of endogenous α7 nAChRs, while a combination of chemotherapeutic Bcl2-inhibitors suppressed neuronal α7 receptor assembly. These results demonstrate that Bcl-2 proteins link α7 nAChR assembly to cell survival pathways.


Asunto(s)
Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Neuronas/metabolismo , Receptor Nicotínico de Acetilcolina alfa 7/metabolismo , Secuencias de Aminoácidos/genética , Animales , Benzotiazoles/farmacología , Compuestos Bicíclicos Heterocíclicos con Puentes/farmacología , Células HEK293 , Humanos , Isoquinolinas/farmacología , Chaperonas Moleculares/metabolismo , Mutación , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/antagonistas & inhibidores , Neuronas/efectos de los fármacos , Agonistas Nicotínicos/farmacología , Cultivo Primario de Células , Unión Proteica/efectos de los fármacos , Piridinas/farmacología , Pirimidinas/farmacología , Ratas , Transmisión Sináptica/efectos de los fármacos , Tiofenos/farmacología , Regulación hacia Arriba , Receptor Nicotínico de Acetilcolina alfa 7/genética
6.
Neuron ; 102(5): 976-992.e5, 2019 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-31053408

RESUMEN

Neurotransmitter-gated ion channels are allosteric proteins that switch on and off in response to agonist binding. Most studies have focused on the agonist-bound, activated channel while assigning a lesser role to the apo or resting state. Here, we show that nanoscale mobility of resting α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type ionotropic glutamate receptors (AMPA receptors) predetermines responsiveness to neurotransmitter, allosteric anions and TARP auxiliary subunits. Mobility at rest is regulated by alternative splicing of the flip/flop cassette of the ligand-binding domain, which controls motions in the distant AMPA receptor N-terminal domain (NTD). Flip variants promote moderate NTD movement, which establishes slower channel desensitization and robust regulation by anions and auxiliary subunits. In contrast, greater NTD mobility imparted by the flop cassette acts as a master switch to override allosteric regulation. In AMPA receptor heteromers, TARP stoichiometry further modifies these actions of the flip/flop cassette generating two functionally distinct classes of partially and fully TARPed receptors typical of cerebellar stellate and Purkinje cells.


Asunto(s)
Células de Purkinje/metabolismo , Receptores AMPA/metabolismo , Regulación Alostérica , Sitio Alostérico , Empalme Alternativo , Animales , Cerebelo/citología , Cerebelo/metabolismo , Microscopía por Crioelectrón , Cristalografía por Rayos X , Células HEK293 , Humanos , Activación del Canal Iónico , Proteínas de la Membrana/metabolismo , Proteínas de la Membrana/ultraestructura , Ratones , Microscopía de Fuerza Atómica , Técnicas de Placa-Clamp , Dominios Proteicos , Isoformas de Proteínas/genética , Estructura Cuaternaria de Proteína , Estructura Terciaria de Proteína , Receptores AMPA/genética , Receptores AMPA/ultraestructura
7.
Neuron ; 89(6): 1264-1276, 2016 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-26924438

RESUMEN

Neurotransmitter-gated ion channels adopt different gating modes to fine-tune signaling at central synapses. At glutamatergic synapses, high and low activity of AMPA receptors (AMPARs) is observed when pore-forming subunits coassemble with or without auxiliary subunits, respectively. Whether a common structural pathway accounts for these different gating modes is unclear. Here, we identify two structural motifs that determine the time course of AMPAR channel activation. A network of electrostatic interactions at the apex of the AMPAR ligand-binding domain (LBD) is essential for gating by pore-forming subunits, whereas a conserved motif on the lower, D2 lobe of the LBD prolongs channel activity when auxiliary subunits are present. Accordingly, channel activity is almost entirely abolished by elimination of the electrostatic network but restored via auxiliary protein interactions at the D2 lobe. In summary, we propose that activation of native AMPAR complexes is coordinated by distinct structural pathways, favored by the association/dissociation of auxiliary subunits.


Asunto(s)
Activación del Canal Iónico/fisiología , Potenciales de la Membrana/fisiología , Mutación/fisiología , Receptores AMPA/química , Receptores AMPA/metabolismo , Sitios de Unión/efectos de los fármacos , Sitios de Unión/genética , Cristalografía por Rayos X , Estimulación Eléctrica , Ácido Glutámico/farmacología , Células HEK293 , Humanos , Activación del Canal Iónico/genética , Litio/farmacología , Potenciales de la Membrana/efectos de los fármacos , Modelos Moleculares , Mutación/genética , Técnicas de Placa-Clamp , Estructura Terciaria de Proteína/genética , Estructura Terciaria de Proteína/fisiología , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Receptores AMPA/genética , Electricidad Estática , Transfección
8.
Nat Struct Mol Biol ; 20(9): 1054-61, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23955023

RESUMEN

Desensitization is an important mechanism curtailing the activity of ligand-gated ion channels (LGICs). Although the structural basis of desensitization is not fully resolved, it is thought to be governed by physicochemical properties of bound ligands. Here, we show the importance of an allosteric cation-binding pocket in controlling transitions between activated and desensitized states of rat kainate-type (KAR) ionotropic glutamate receptors (iGluRs). Tethering a positive charge to this pocket sustains KAR activation, preventing desensitization, whereas mutations that disrupt cation binding eliminate channel gating. These different outcomes explain the structural distinction between deactivation and desensitization. Deactivation occurs when the ligand unbinds before the cation, whereas desensitization proceeds if a ligand is bound without cation pocket occupancy. This sequence of events is absent from AMPA-type iGluRs; thus, cations are identified as gatekeepers of KAR gating, a role unique among even closely related LGICs.


Asunto(s)
Receptores de Ácido Kaínico/química , Receptores de Ácido Kaínico/metabolismo , Animales , Sitios de Unión/genética , Células HEK293 , Humanos , Activación del Canal Iónico , Ligandos , Modelos Moleculares , Simulación de Dinámica Molecular , Mutagénesis Sitio-Dirigida , Multimerización de Proteína , Subunidades de Proteína , Ratas , Receptores AMPA/química , Receptores AMPA/genética , Receptores AMPA/metabolismo , Receptores de Ácido Kaínico/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Receptor de Ácido Kaínico GluK2
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda