Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Artículo en Inglés | MEDLINE | ID: mdl-31351148

RESUMEN

Thermal flight performance curves (TFPCs) may be a useful proxy for determining dispersal on daily timescales in winged insect species. Few studies have assessed TFPCs across a range of species under standard conditions despite that they may be useful in predicting variation in performance, abundance or geographic range shifts with forecast climate variability. Indeed, the factors determining realized dispersal within and among flying insect species are generally poorly understood. To better understand how flight performance may be correlated with geographic range extent and potential latitudinal climate variability, we estimated the thermal performance curves of flight ability in 11 Drosophilidae species (in 4 °C increments across 16-28 °C) after standard laboratory rearing for two generations. We tested if key morphological, evolutionary or ecological factors (e.g. species identity, sex, body mass, wing loading, geographic range size) predicted traits of TFPCs (including optimum temperature, maximum performance, thermal breadth of performance) or flight ability (success/failure to fly). Although several parameters of TFPCs varied among species these were typically not statistically significant probably owing to the relatively small pool of species assessed and the limited trait variation detected. The best explanatory model of these flight responses across species included significant positive effects of test temperature and wing area. However, the rank of geographic distribution breadth and phylogeny failed to explain significant variation in most of the traits, except for thermal performance breadth, of thermal flight performance curves among these 11 species. Future studies that employ a wider range of Drosophilidae species, especially if coupled with fine-scale estimates of species' environmental niches, would be useful.


Asunto(s)
Drosophila/fisiología , Vuelo Animal/fisiología , Geografía , Temperatura , Animales , Femenino , Masculino , Filogenia , Estadísticas no Paramétricas
2.
Curr Res Insect Sci ; 3: 100060, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37292492

RESUMEN

Flight-reproduction trade-offs, such that more mobile individuals sacrifice reproductive output (e.g., fecundity) or incur fitness costs, are well-studied in a handful of wing-dimorphic model systems. However, these trade-offs have not been systematically assessed across reproduction-related traits and taxa in wing monomorphic species despite having broad implications for the ecology and evolution of pterygote insect species. Here we therefore determined the prevalence, magnitude and direction of flight-reproduction trade-offs on several fitness-related traits in a semi-field setting by comparing disperser and resident flies from repeated releases of five wild-caught, laboratory-reared Drosophila species, and explicitly controlling for a suite of potential confounding effects (maternal effects, recent thermal history) and potential morphological covariates (wing-loading, body mass). We found almost no systematic differences in reproductive output (egg production), reproductive fitness (offspring survival), or longevity between flying (disperser) and resident flies in our replicated releases, even if adjusting for potential morphological variation. After correction for false discovery rates, none of the five species showed evidence of a significant fitness trade-off associated with increased flight (sustained, simulated voluntary field dispersal). Our results therefore suggest that flight-reproduction trade-offs are not as common as might have been expected when assessed systematically across species and under the relatively standardized conditions and field setting employed here, at least not in the genus Drosophila. The magnitude and direction of potential dispersal- or flight-induced trade-offs, and the conditions that promote them, clearly require closer scrutiny. We argue that flight or dispersal is either genuinely cheaper than expected, or the costs manifest differently than those assessed here. Lost opportunities (i.e., time spent on mate-finding, mating or foraging) or nutrient-poor conditions could promote fitness costs to dispersal in our study system and that could be explored in future.

SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda