Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 77
Filtrar
1.
Nat Rev Neurosci ; 24(5): 271-298, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36941369

RESUMEN

The CNS critically relies on the formation and proper function of its vasculature during development, adult homeostasis and disease. Angiogenesis - the formation of new blood vessels - is highly active during brain development, enters almost complete quiescence in the healthy adult brain and is reactivated in vascular-dependent brain pathologies such as brain vascular malformations and brain tumours. Despite major advances in the understanding of the cellular and molecular mechanisms driving angiogenesis in peripheral tissues, developmental signalling pathways orchestrating angiogenic processes in the healthy and the diseased CNS remain incompletely understood. Molecular signalling pathways of the 'neurovascular link' defining common mechanisms of nerve and vessel wiring have emerged as crucial regulators of peripheral vascular growth, but their relevance for angiogenesis in brain development and disease remains largely unexplored. Here we review the current knowledge of general and CNS-specific mechanisms of angiogenesis during brain development and in brain vascular malformations and brain tumours, including how key molecular signalling pathways are reactivated in vascular-dependent diseases. We also discuss how these topics can be studied in the single-cell multi-omics era.


Asunto(s)
Neoplasias Encefálicas , Malformaciones Vasculares del Sistema Nervioso Central , Humanos , Neovascularización Fisiológica/fisiología , Encéfalo , Transducción de Señal
2.
Cell ; 154(3): 651-63, 2013 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-23911327

RESUMEN

Vessel sprouting by migrating tip and proliferating stalk endothelial cells (ECs) is controlled by genetic signals (such as Notch), but it is unknown whether metabolism also regulates this process. Here, we show that ECs relied on glycolysis rather than on oxidative phosphorylation for ATP production and that loss of the glycolytic activator PFKFB3 in ECs impaired vessel formation. Mechanistically, PFKFB3 not only regulated EC proliferation but also controlled the formation of filopodia/lamellipodia and directional migration, in part by compartmentalizing with F-actin in motile protrusions. Mosaic in vitro and in vivo sprouting assays further revealed that PFKFB3 overexpression overruled the pro-stalk activity of Notch, whereas PFKFB3 deficiency impaired tip cell formation upon Notch blockade, implying that glycolysis regulates vessel branching.


Asunto(s)
Células Endoteliales/metabolismo , Glucólisis , Neovascularización Fisiológica , Fosfofructoquinasa-2/metabolismo , Animales , Línea Celular Tumoral , Células Cultivadas , Células Endoteliales/citología , Femenino , Eliminación de Gen , Silenciador del Gen , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Fosfofructoquinasa-2/genética , Seudópodos/metabolismo , Pez Cebra
3.
Annu Rev Physiol ; 86: 149-173, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38345907

RESUMEN

Glucose is the universal fuel of most mammalian cells, and it is largely replenished through dietary intake. Glucose availability to tissues is paramount for the maintenance of homeostatic energetics and, hence, supply should match demand by the consuming organs. In its journey through the body, glucose encounters cellular barriers for transit at the levels of the absorbing intestinal epithelial wall, the renal epithelium mediating glucose reabsorption, and the tight capillary endothelia (especially in the brain). Glucose transiting through these cellular barriers must escape degradation to ensure optimal glucose delivery to the bloodstream or tissues. The liver, which stores glycogen and generates glucose de novo, must similarly be able to release it intact to the circulation. We present the most up-to-date knowledge on glucose handling by the gut, liver, brain endothelium, and kidney, and discuss underlying molecular mechanisms and open questions. Diseases associated with defects in glucose delivery and homeostasis are also briefly addressed. We propose that the universal problem of sparing glucose from catabolism in favor of translocation across the barriers posed by epithelia and endothelia is resolved through common mechanisms involving glucose transfer to the endoplasmic reticulum, from where glucose exits the cells via unconventional cellular mechanisms.


Asunto(s)
Encéfalo , Glucosa , Animales , Humanos , Glucosa/metabolismo , Epitelio/metabolismo , Encéfalo/metabolismo , Transporte Biológico , Intestinos , Mamíferos/metabolismo
4.
Nature ; 587(7835): 626-631, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-33116312

RESUMEN

Muscle regeneration is sustained by infiltrating macrophages and the consequent activation of satellite cells1-4. Macrophages and satellite cells communicate in different ways1-5, but their metabolic interplay has not been investigated. Here we show, in a mouse model, that muscle injuries and ageing are characterized by intra-tissue restrictions of glutamine. Low levels of glutamine endow macrophages with the metabolic ability to secrete glutamine via enhanced glutamine synthetase (GS) activity, at the expense of glutamine oxidation mediated by glutamate dehydrogenase 1 (GLUD1). Glud1-knockout macrophages display constitutively high GS activity, which prevents glutamine shortages. The uptake of macrophage-derived glutamine by satellite cells through the glutamine transporter SLC1A5 activates mTOR and promotes the proliferation and differentiation of satellite cells. Consequently, macrophage-specific deletion or pharmacological inhibition of GLUD1 improves muscle regeneration and functional recovery in response to acute injury, ischaemia or ageing. Conversely, SLC1A5 blockade in satellite cells or GS inactivation in macrophages negatively affects satellite cell functions and muscle regeneration. These results highlight the metabolic crosstalk between satellite cells and macrophages, in which macrophage-derived glutamine sustains the functions of satellite cells. Thus, the targeting of GLUD1 may offer therapeutic opportunities for the regeneration of injured or aged muscles.


Asunto(s)
Glutamina/metabolismo , Macrófagos/metabolismo , Músculo Esquelético/metabolismo , Regeneración , Células Satélite del Músculo Esquelético/metabolismo , Envejecimiento/metabolismo , Sistema de Transporte de Aminoácidos ASC/antagonistas & inhibidores , Sistema de Transporte de Aminoácidos ASC/metabolismo , Animales , Diferenciación Celular , Proliferación Celular , Femenino , Glutamato Deshidrogenasa/deficiencia , Glutamato Deshidrogenasa/genética , Glutamato Deshidrogenasa/metabolismo , Glutamato-Amoníaco Ligasa/antagonistas & inhibidores , Glutamato-Amoníaco Ligasa/metabolismo , Macrófagos/enzimología , Masculino , Ratones , Antígenos de Histocompatibilidad Menor/metabolismo , Músculo Esquelético/citología , Músculo Esquelético/lesiones , Músculo Esquelético/patología , Oxidación-Reducción , Células Satélite del Músculo Esquelético/citología , Serina-Treonina Quinasas TOR
5.
EMBO Rep ; 24(6): e56156, 2023 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-36987917

RESUMEN

Natural killer (NK) cells are forced to cope with different oxygen environments even under resting conditions. The adaptation to low oxygen is regulated by oxygen-sensitive transcription factors, the hypoxia-inducible factors (HIFs). The function of HIFs for NK cell activation and metabolic rewiring remains controversial. Activated NK cells are predominantly glycolytic, but the metabolic programs that ensure the maintenance of resting NK cells are enigmatic. By combining in situ metabolomic and transcriptomic analyses in resting murine NK cells, our study defines HIF-1α as a regulator of tryptophan metabolism and cellular nicotinamide adenine dinucleotide (NAD+ ) levels. The HIF-1α/NAD+ axis prevents ROS production during oxidative phosphorylation (OxPhos) and thereby blocks DNA damage and NK cell apoptosis under steady-state conditions. In contrast, in activated NK cells under hypoxia, HIF-1α is required for glycolysis, and forced HIF-1α expression boosts glycolysis and NK cell performance in vitro and in vivo. Our data highlight two distinct pathways by which HIF-1α interferes with NK cell metabolism. While HIF-1α-driven glycolysis is essential for NK cell activation, resting NK cell homeostasis relies on HIF-1α-dependent tryptophan/NAD+ metabolism.


Asunto(s)
NAD , Triptófano , Ratones , Animales , Triptófano/metabolismo , Células Asesinas Naturales , Glucólisis/genética , Hipoxia/metabolismo , Hipoxia de la Célula , Oxígeno/metabolismo , Homeostasis , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo
6.
Angiogenesis ; 26(3): 385-407, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36933174

RESUMEN

The molecular mechanisms of angiogenesis have been intensely studied, but many genes that control endothelial behavior and fate still need to be described. Here, we characterize the role of Apold1 (Apolipoprotein L domain containing 1) in angiogenesis in vivo and in vitro. Single-cell analyses reveal that - across tissues - the expression of Apold1 is restricted to the vasculature and that Apold1 expression in endothelial cells (ECs) is highly sensitive to environmental factors. Using Apold1-/- mice, we find that Apold1 is dispensable for development and does not affect postnatal retinal angiogenesis nor alters the vascular network in adult brain and muscle. However, when exposed to ischemic conditions following photothrombotic stroke as well as femoral artery ligation, Apold1-/- mice display dramatic impairments in recovery and revascularization. We also find that human tumor endothelial cells express strikingly higher levels of Apold1 and that Apold1 deletion in mice stunts the growth of subcutaneous B16 melanoma tumors, which have smaller and poorly perfused vessels. Mechanistically, Apold1 is activated in ECs upon growth factor stimulation as well as in hypoxia, and Apold1 intrinsically controls EC proliferation but not migration. Our data demonstrate that Apold1 is a key regulator of angiogenesis in pathological settings, whereas it does not affect developmental angiogenesis, thus making it a promising candidate for clinical investigation.


Asunto(s)
Células Endoteliales , Neovascularización Fisiológica , Animales , Humanos , Ratones , Células Endoteliales/metabolismo , Miembro Posterior/irrigación sanguínea , Hipoxia/metabolismo , Isquemia/patología , Ratones Endogámicos C57BL , Ratones Noqueados , Neovascularización Fisiológica/genética , Proteínas Inmediatas-Precoces/metabolismo
8.
Circ Res ; 127(4): 466-482, 2020 07 31.
Artículo en Inglés | MEDLINE | ID: mdl-32404031

RESUMEN

RATIONALE: Endothelial cells (ECs) are highly glycolytic and generate the majority of their energy via the breakdown of glucose to lactate. At the same time, a main role of ECs is to allow the transport of glucose to the surrounding tissues. GLUT1 (glucose transporter isoform 1/Slc2a1) is highly expressed in ECs of the central nervous system (CNS) and is often implicated in blood-brain barrier (BBB) dysfunction, but whether and how GLUT1 controls EC metabolism and function is poorly understood. OBJECTIVE: We evaluated the role of GLUT1 in endothelial metabolism and function during postnatal CNS development as well as at the adult BBB. METHODS AND RESULTS: Inhibition of GLUT1 decreases EC glucose uptake and glycolysis, leading to energy depletion and the activation of the cellular energy sensor AMPK (AMP-activated protein kinase), and decreases EC proliferation without affecting migration. Deletion of GLUT1 from the developing postnatal retinal endothelium reduces retinal EC proliferation and lowers vascular outgrowth, without affecting the number of tip cells. In contrast, in the brain, we observed a lower number of tip cells in addition to reduced brain EC proliferation, indicating that within the CNS, organotypic differences in EC metabolism exist. Interestingly, when ECs become quiescent, endothelial glycolysis is repressed, and GLUT1 expression increases in a Notch-dependent fashion. GLUT1 deletion from quiescent adult ECs leads to severe seizures, accompanied by neuronal loss and CNS inflammation. Strikingly, this does not coincide with BBB leakiness, altered expression of genes crucial for BBB barrier functioning nor reduced vascular function. Instead, we found a selective activation of inflammatory and extracellular matrix related gene sets. CONCLUSIONS: GLUT1 is the main glucose transporter in ECs and becomes uncoupled from glycolysis during quiescence in a Notch-dependent manner. It is crucial for developmental CNS angiogenesis and adult CNS homeostasis but does not affect BBB barrier function.


Asunto(s)
Barrera Hematoencefálica/fisiología , Encéfalo/irrigación sanguínea , Células Endoteliales/metabolismo , Transportador de Glucosa de Tipo 1/fisiología , Neovascularización Fisiológica , Vasos Retinianos , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Encéfalo/citología , Movimiento Celular , Proliferación Celular , Células Endoteliales/fisiología , Endotelio , Endotelio Vascular/fisiología , Metabolismo Energético , Glucosa/metabolismo , Transportador de Glucosa de Tipo 1/antagonistas & inhibidores , Glucólisis , Humanos , Ratones , Retina/citología
9.
J Inherit Metab Dis ; 45(2): 278-291, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34936099

RESUMEN

Creatine (Cr) is a nitrogenous organic acid and plays roles such as fast phosphate energy buffer to replenish ATP, osmolyte, antioxidant, neuromodulator, and as a compound with anabolic and ergogenic properties in muscle. Cr is taken from the diet or endogenously synthetized by the enzymes arginine:glycine amidinotransferase and guanidinoacetate methyltransferase, and specifically taken up by the transporter SLC6A8. Loss-of-function mutations in the genes encoding for the enzymes or the transporter cause creatine deficiency syndromes (CDS). CDS are characterized by brain Cr deficiency, intellectual disability with severe speech delay, behavioral troubles, epilepsy, and motor dysfunction. Among CDS, the X-linked Cr transporter deficiency (CTD) is the most prevalent with no efficient treatment so far. Different animal models of CTD show reduced brain Cr levels, cognitive deficiencies, and together they cover other traits similar to those of patients. However, motor function was poorly explored in CTD models, and some controversies in the phenotype exist in comparison with CTD patients. Our recently described Slc6a8Y389C knock-in rat model of CTD showed mild impaired motor function, morphological alterations in cerebellum, reduced muscular mass, Cr deficiency, and increased guanidinoacetate content in muscle, although no consistent signs of muscle atrophy. Our results indicate that such motor dysfunction co-occurred with both nervous and muscle dysfunctions, suggesting that muscle strength and performance as well as neuronal connectivity might be affected by this Cr deficiency in muscle and brain.


Asunto(s)
Enfermedades Cerebelosas , Creatina , Animales , Cerebelo/metabolismo , Guanidinoacetato N-Metiltransferasa/genética , Humanos , Proteínas de Transporte de Membrana , Músculos/metabolismo , Atrofia Muscular , Ratas , Síndrome
10.
Nature ; 520(7546): 192-197, 2015 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-25830893

RESUMEN

The metabolism of endothelial cells during vessel sprouting remains poorly studied. Here we report that endothelial loss of CPT1A, a rate-limiting enzyme of fatty acid oxidation (FAO), causes vascular sprouting defects due to impaired proliferation, not migration, of human and murine endothelial cells. Reduction of FAO in endothelial cells did not cause energy depletion or disturb redox homeostasis, but impaired de novo nucleotide synthesis for DNA replication. Isotope labelling studies in control endothelial cells showed that fatty acid carbons substantially replenished the Krebs cycle, and were incorporated into aspartate (a nucleotide precursor), uridine monophosphate (a precursor of pyrimidine nucleoside triphosphates) and DNA. CPT1A silencing reduced these processes and depleted endothelial cell stores of aspartate and deoxyribonucleoside triphosphates. Acetate (metabolized to acetyl-CoA, thereby substituting for the depleted FAO-derived acetyl-CoA) or a nucleoside mix rescued the phenotype of CPT1A-silenced endothelial cells. Finally, CPT1 blockade inhibited pathological ocular angiogenesis in mice, suggesting a novel strategy for blocking angiogenesis.


Asunto(s)
Carbono/metabolismo , Células Endoteliales/metabolismo , Ácidos Grasos/química , Ácidos Grasos/metabolismo , Nucleótidos/biosíntesis , Ácido Acético/farmacología , Adenosina Trifosfato/metabolismo , Animales , Vasos Sanguíneos/citología , Vasos Sanguíneos/efectos de los fármacos , Vasos Sanguíneos/metabolismo , Vasos Sanguíneos/patología , Carnitina O-Palmitoiltransferasa/antagonistas & inhibidores , Carnitina O-Palmitoiltransferasa/deficiencia , Carnitina O-Palmitoiltransferasa/genética , Carnitina O-Palmitoiltransferasa/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Ciclo del Ácido Cítrico , ADN/biosíntesis , Modelos Animales de Enfermedad , Células Endoteliales/citología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/enzimología , Silenciador del Gen , Glucosa/metabolismo , Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/patología , Humanos , Ratones , Neovascularización Patológica/tratamiento farmacológico , Neovascularización Patológica/metabolismo , Neovascularización Patológica/patología , Nucleótidos/química , Nucleótidos/farmacología , Oxidación-Reducción/efectos de los fármacos , Retinopatía de la Prematuridad/tratamiento farmacológico , Retinopatía de la Prematuridad/metabolismo , Retinopatía de la Prematuridad/patología
11.
Acta Neuropathol ; 135(4): 489-509, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29549424

RESUMEN

Amyotrophic lateral sclerosis (ALS) is a relentlessly progressive and fatal neurodegenerative disorder that primarily affects motor neurons. Despite our increased understanding of the genetic factors contributing to ALS, no effective treatment is available. A growing body of evidence shows disturbances in energy metabolism in ALS. Moreover, the remarkable vulnerability of motor neurons to ATP depletion has become increasingly clear. Here, we review metabolic alterations present in ALS patients and models, discuss the selective vulnerability of motor neurons to energetic stress, and provide an overview of tested and emerging metabolic approaches to treat ALS. We believe that a further understanding of the metabolic biology of ALS can lead to the identification of novel therapeutic targets.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Metabolismo Energético , Esclerosis Amiotrófica Lateral/terapia , Animales , Humanos
12.
Twin Res Hum Genet ; 21(2): 101-111, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29582722

RESUMEN

The aim of this exploratory study was to investigate how sedentary behavior (SB) and physical activity (PA) influence DNA methylation at a global, gene-specific, and health-related pathway level. SB, light PA (LPA), and moderate-to-vigorous PA (MVPA) were assessed objectively for 41 Flemish men using the SenseWear Pro 3 Armband. CpG site-specific methylation in leukocytes was determined using the Illumina HumanMethylation 450 BeadChip. Correlations were calculated between time spent on the three PA intensity levels and global DNA methylation, using a z-score-based method to determine global DNA methylation levels. To determine whether CpG site-specific methylation can be predicted by these three PA intensity levels, linear regression analyses were performed. Based on the significantly associated CpG sites at α = 0.005, lists were created including all genes with a promoter region overlapping these CpG sites. A biological pathway analysis determined to what extent these genes are overrepresented within several pathways. No significant associations were observed between global DNA methylation and SB (r = 0.084), LPA (r = -0.168), or MVPA (r = -0.125), although the direction of the correlation coefficients is opposite to what is generally reported in literature. SB has a different impact on global and gene-specific methylation than PA, but also LPA and MVPA affect separate genes and pathways. Furthermore, the function of a pathway seems to determine its association with SB, LPA, or MVPA. Multiple PA intensity levels, including SB, should be taken into account in future studies investigating the effect of physical (in)activity on human health through epigenetic mechanisms.


Asunto(s)
Islas de CpG , Metilación de ADN/fisiología , Epigénesis Genética/fisiología , Ejercicio Físico/fisiología , Leucocitos/metabolismo , Humanos , Masculino , Persona de Mediana Edad
13.
Biochim Biophys Acta ; 1853(2): 285-98, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25450972

RESUMEN

The tight interrelationship between peroxisomes and mitochondria is illustrated by their cooperation in lipid metabolism, antiviral innate immunity and shared use of proteins executing organellar fission. In addition, we previously reported that disruption of peroxisome biogenesis in hepatocytes severely impacts on mitochondrial integrity, primarily damaging the inner membrane. Here we investigated the molecular impairments of the dysfunctional mitochondria in hepatocyte selective Pex5 knockout mice. First, by using blue native electrophoresis and in-gel activity stainings we showed that the respiratory complexes were differentially affected with reduction of complexes I and III and incomplete assembly of complex V, whereas complexes II and IV were normally active. This resulted in impaired oxygen consumption in cultured Pex5(-/-) hepatocytes. Second, mitochondrial DNA was depleted causing an imbalance in the expression of mitochondrial- and nuclear-encoded subunits of the respiratory chain complexes. Third, mitochondrial membranes showed increased permeability and fluidity despite reduced content of the polyunsaturated fatty acid docosahexaenoic acid. Fourth, the affected mitochondria in peroxisome deficient hepatocytes displayed increased oxidative stress. Acute deletion of PEX5 in vivo using adeno-Cre virus phenocopied these effects, indicating that mitochondrial perturbations closely follow the loss of functional peroxisomes in time. Likely to compensate for the functional impairments, the volume of the mitochondrial compartment was increased several folds. This was not driven by PGC-1α but mediated by activation of PPARα, possibly through c-myc overexpression. In conclusion, loss of peroxisomal metabolism in hepatocytes perturbs the mitochondrial inner membrane, depletes mitochondrial DNA and causes mitochondrial biogenesis independent of PGC-1α.


Asunto(s)
ADN Mitocondrial/metabolismo , Hepatocitos/metabolismo , Mitocondrias/metabolismo , Peroxisomas/metabolismo , Factores de Transcripción/metabolismo , Animales , Compartimento Celular , Proliferación Celular , Respiración de la Célula , Transporte de Electrón , Eliminación de Gen , Hepatocitos/ultraestructura , Lípidos/química , Fluidez de la Membrana , Ratones Noqueados , Mitocondrias/ultraestructura , Oxidación-Reducción , Fosforilación Oxidativa , Estrés Oxidativo , PPAR alfa/metabolismo , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma , Receptor de la Señal 1 de Direccionamiento al Peroxisoma , Subunidades de Proteína/metabolismo , Receptores Citoplasmáticos y Nucleares/deficiencia , Receptores Citoplasmáticos y Nucleares/metabolismo
15.
Proc Natl Acad Sci U S A ; 109(47): E3231-40, 2012 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-23129614

RESUMEN

Skeletal muscle regeneration mainly depends on satellite cells, a population of resident muscle stem cells. However, our understanding of the molecular mechanisms underlying satellite cell activation is still largely undefined. Here, we show that Cripto, a regulator of early embryogenesis, is a novel regulator of muscle regeneration and satellite cell progression toward the myogenic lineage. Conditional inactivation of cripto in adult satellite cells compromises skeletal muscle regeneration, whereas gain of function of Cripto accelerates regeneration, leading to muscle hypertrophy. Moreover, we provide evidence that Cripto modulates myogenic cell determination and promotes proliferation by antagonizing the TGF-ß ligand myostatin. Our data provide unique insights into the molecular and cellular basis of Cripto activity in skeletal muscle regeneration and raise previously undescribed implications for stem cell biology and regenerative medicine.


Asunto(s)
Linaje de la Célula , Factor de Crecimiento Epidérmico/metabolismo , Glicoproteínas de Membrana/metabolismo , Músculo Esquelético/fisiología , Miostatina/antagonistas & inhibidores , Proteínas de Neoplasias/metabolismo , Regeneración , Células Satélite del Músculo Esquelético/metabolismo , Células Satélite del Músculo Esquelético/patología , Envejecimiento/metabolismo , Animales , Proliferación Celular , Eliminación de Gen , Marcación de Gen , Hipertrofia , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Desarrollo de Músculos , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Mioblastos/metabolismo , Mioblastos/patología , Miostatina/metabolismo , Transducción de Señal
16.
Mol Metab ; 83: 101923, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38521183

RESUMEN

OBJECTIVES: We have previously shown that lactate is an essential metabolite for macrophage polarisation during ischemia-induced muscle regeneration. Recent in vitro work has implicated histone lactylation, a direct derivative of lactate, in macrophage polarisation. Here, we explore the in vivo relevance of histone lactylation for macrophage polarisation after muscle injury. METHODS: To evaluate macrophage dynamics during muscle regeneration, we subjected mice to ischemia-induced muscle damage by ligating the femoral artery. Muscle samples were harvested at 1, 2, 4, and 7 days post injury (dpi). CD45+CD11b+F4/80+CD64+ macrophages were isolated and processed for RNA sequencing, Western Blotting, and CUT&Tag-sequencing to investigate gene expression, histone lactylation levels, and histone lactylation genomic localisation and enrichment, respectively. RESULTS: We show that, over time, macrophages in the injured muscle undergo extensive gene expression changes, which are similar in nature and in timing to those seen after other types of muscle-injuries. We find that the macrophage histone lactylome is modified between 2 and 4 dpi, which is a crucial window for macrophage polarisation. Absolute histone lactylation levels increase, and, although subtly, the genomic enrichment of H3K18la changes. Overall, we find that histone lactylation is important at both promoter and enhancer elements. Lastly, H3K18la genomic profile changes from 2 to 4 dpi were predictive for gene expression changes later in time, rather than being a reflection of prior gene expression changes. CONCLUSIONS: Our results suggest that histone lactylation dynamics are functionally important for the function of macrophages during muscle regeneration.


Asunto(s)
Histonas , Isquemia , Macrófagos , Ratones Endogámicos C57BL , Músculo Esquelético , Regeneración , Animales , Macrófagos/metabolismo , Ratones , Histonas/metabolismo , Músculo Esquelético/metabolismo , Isquemia/metabolismo , Masculino , Expresión Génica/genética
17.
J Clin Invest ; 2024 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-38713532

RESUMEN

Satellite cells, the stem cells of skeletal muscle tissue, hold a remarkable regeneration capacity and therapeutic potential in regenerative medicine. However, low satellite cell yield from autologous or donor-derived muscles hinders the adoption of satellite cell transplantation for the treatment of muscle diseases, including Duchenne muscular dystrophy (DMD). To address this limitation, here we investigated whether satellite cells can be derived in allogeneic or xenogeneic animal hosts. First, injection of CRISPR/Cas9-corrected mouse DMD-induced pluripotent stem cells (iPSCs) into mouse blastocysts carrying an ablation system of host satellite cells gave rise to intraspecies chimeras exclusively carrying iPSC-derived satellite cells. Furthermore, injection of genetically corrected DMD-iPSCs into rat blastocysts resulted in the formation of interspecies rat-mouse chimeras harboring mouse satellite cells. Remarkably, iPSC-derived satellite cells or derivative myoblasts produced in intraspecies or interspecies chimeras restored dystrophin expression in DMD mice following intramuscular transplantation, and contributed to the satellite cell pool. Collectively, this study demonstrates the feasibility of producing therapeutically competent stem cells across divergent animal species, raising the possibility of generating human muscle stem cells in large animals for regenerative medicine purposes.

18.
Cell Rep ; 43(4): 114103, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38607920

RESUMEN

Hypoxia-inducible factor-1α (HIF1α) attenuates mitochondrial activity while promoting glycolysis. However, lower glycolysis is compromised in human clear cell renal cell carcinomas, in which HIF1α acts as a tumor suppressor by inhibiting cell-autonomous proliferation. Here, we find that, unexpectedly, HIF1α suppresses lower glycolysis after the glyceraldehyde 3-phosphate dehydrogenase (GAPDH) step, leading to reduced lactate secretion in different tumor cell types when cells encounter a limited pyruvate supply such as that typically found in the tumor microenvironment in vivo. This is because HIF1α-dependent attenuation of mitochondrial oxygen consumption increases the NADH/NAD+ ratio that suppresses the activity of the NADH-sensitive GAPDH glycolytic enzyme. This is manifested when pyruvate supply is limited, since pyruvate acts as an electron acceptor that prevents the increment of the NADH/NAD+ ratio. Furthermore, this anti-glycolytic function provides a molecular basis to explain how HIF1α can suppress tumor cell proliferation by increasing the NADH/NAD+ ratio.


Asunto(s)
Proliferación Celular , Glucólisis , Subunidad alfa del Factor 1 Inducible por Hipoxia , NAD , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , NAD/metabolismo , Línea Celular Tumoral , Mitocondrias/metabolismo , Animales , Ácido Pirúvico/metabolismo , Ácido Láctico/metabolismo , Neoplasias/metabolismo , Neoplasias/patología , Ratones
19.
J Cereb Blood Flow Metab ; 43(1): 44-58, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-35929074

RESUMEN

A central response to insufficient cerebral oxygen delivery is a profound reprograming of metabolism, which is mainly regulated by the Hypoxia Inducible Factor (HIF). Among other responses, HIF induces the expression of the atypical mitochondrial subunit NDUFA4L2. Surprisingly, NDUFA4L2 is constitutively expressed in the brain in non-hypoxic conditions. Analysis of publicly available single cell transcriptomic (scRNA-seq) data sets coupled with high-resolution multiplexed fluorescence RNA in situ hybridization (RNA F.I.S.H.) revealed that in the murine and human brain NDUFA4L2 is exclusively expressed in mural cells with the highest levels found in pericytes and declining along the arteriole-arterial smooth muscle cell axis. This pattern was mirrored by COX4I2, another atypical mitochondrial subunit. High NDUFA4L2 expression was also observed in human brain pericytes in vitro, decreasing when pericytes are muscularized and further induced by HIF stabilization in a PHD2/PHD3 dependent manner. In vivo, Vhl conditional inactivation in pericyte targeting Ng2-cre transgenic mice dramatically induced NDUFA4L2 expression. Finally NDUFA4L2 inactivation in pericytes increased oxygen consumption and therefore the degree of HIF pathway induction in hypoxia. In conclusion our work reveals that NDUFA4L2 together with COX4I2 is a key hypoxic-induced metabolic marker constitutively expressed in pericytes coupling mitochondrial oxygen consumption and cellular hypoxia response.


Asunto(s)
Hipoxia , ARN , Animales , Humanos , Ratones , Hipoxia/genética
20.
Cell Metab ; 35(8): 1327-1340.e5, 2023 08 08.
Artículo en Inglés | MEDLINE | ID: mdl-37473755

RESUMEN

Growth differentiation factor 15 (GDF15) induces weight loss and increases insulin action in obese rodents. Whether and how GDF15 improves insulin action without weight loss is unknown. Obese rats were treated with GDF15 and displayed increased insulin tolerance 5 h later. Lean and obese female and male mice were treated with GDF15 on days 1, 3, and 5 without weight loss and displayed increased insulin sensitivity during a euglycemic hyperinsulinemic clamp on day 6 due to enhanced suppression of endogenous glucose production and increased glucose uptake in WAT and BAT. GDF15 also reduced glucagon levels during clamp independently of the GFRAL receptor. The insulin-sensitizing effect of GDF15 was completely abrogated in GFRAL KO mice and also by treatment with the ß-adrenergic antagonist propranolol and in ß1,ß2-adrenergic receptor KO mice. GDF15 activation of the GFRAL receptor increases ß-adrenergic signaling, in turn, improving insulin action in the liver and white and brown adipose tissue.


Asunto(s)
Resistencia a la Insulina , Receptores Adrenérgicos beta , Ratones , Ratas , Masculino , Femenino , Animales , Factor 15 de Diferenciación de Crecimiento/farmacología , Obesidad , Tejido Adiposo , Pérdida de Peso , Insulina , Tejido Adiposo Pardo , Hígado
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda