Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
Publication year range
1.
Nature ; 622(7984): 872-879, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37821701

RESUMEN

Transcription initiation is a key regulatory step in gene expression during which RNA polymerase (RNAP) initiates RNA synthesis de novo, and the synthesized RNA at a specific length triggers the transition to the elongation phase. Mitochondria recruit a single-subunit RNAP and one or two auxiliary factors to initiate transcription. Previous studies have revealed the molecular architectures of yeast1 and human2 mitochondrial RNAP initiation complexes (ICs). Here we provide a comprehensive, stepwise mechanism of transcription initiation by solving high-resolution cryogenic electron microscopy (cryo-EM) structures of yeast mitochondrial RNAP and the transcription factor Mtf1 catalysing two- to eight-nucleotide RNA synthesis at single-nucleotide addition steps. The growing RNA-DNA is accommodated in the polymerase cleft by template scrunching and non-template reorganization, creating stressed intermediates. During early initiation, non-template strand scrunching and unscrunching destabilize the short two- and three-nucleotide RNAs, triggering abortive synthesis. Subsequently, the non-template reorganizes into a base-stacked staircase-like structure supporting processive five- to eight-nucleotide RNA synthesis. The expanded non-template staircase and highly scrunched template in IC8 destabilize the promoter interactions with Mtf1 to facilitate initiation bubble collapse and promoter escape for the transition from initiation to the elongation complex (EC). The series of transcription initiation steps, each guided by the interplay of multiple structural components, reveal a finely tuned mechanism for potential regulatory control.


Asunto(s)
Mitocondrias , Saccharomyces cerevisiae , Iniciación de la Transcripción Genética , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/ultraestructura , Mitocondrias/enzimología , Mitocondrias/genética , Mitocondrias/ultraestructura , Nucleótidos/metabolismo , ARN/biosíntesis , ARN/ultraestructura , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Microscopía por Crioelectrón , ADN/metabolismo , ADN/ultraestructura
2.
Mol Cell ; 81(2): 268-280.e5, 2021 01 21.
Artículo en Inglés | MEDLINE | ID: mdl-33278362

RESUMEN

Mitochondrial RNA polymerase (mtRNAP) is crucial in cellular energy production, yet understanding of mitochondrial DNA transcription initiation lags that of bacterial and nuclear DNA transcription. We report structures of two transcription initiation intermediate states of yeast mtRNAP that explain promoter melting, template alignment, DNA scrunching, abortive synthesis, and transition into elongation. In the partially melted initiation complex (PmIC), transcription factor MTF1 makes base-specific interactions with flipped non-template (NT) nucleotides "AAGT" at -4 to -1 positions of the DNA promoter. In the initiation complex (IC), the template in the expanded 7-mer bubble positions the RNA and NTP analog UTPαS, while NT scrunches into an NT loop. The scrunched NT loop is stabilized by the centrally positioned MTF1 C-tail. The IC and PmIC states coexist in solution, revealing a dynamic equilibrium between two functional states. Frequent scrunching/unscruching transitions and the imminent steric clashes of the inflating NT loop and growing RNA:DNA with the C-tail explain abortive synthesis and transition into elongation.


Asunto(s)
ADN Mitocondrial/genética , ARN Polimerasas Dirigidas por ADN/genética , Mitocondrias/genética , Proteínas Mitocondriales/genética , ARN Mitocondrial/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Factores de Transcripción/genética , Sitios de Unión , Microscopía por Crioelectrón , ADN Mitocondrial/química , ADN Mitocondrial/metabolismo , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/metabolismo , Mitocondrias/metabolismo , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Modelos Moleculares , Motivos de Nucleótidos , Regiones Promotoras Genéticas , Unión Proteica , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Dominios y Motivos de Interacción de Proteínas , ARN Mitocondrial/química , ARN Mitocondrial/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Termodinámica , Elongación de la Transcripción Genética , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Iniciación de la Transcripción Genética
3.
Proc Natl Acad Sci U S A ; 119(30): e2203660119, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35858448

RESUMEN

Structures trapping a variety of functional and conformational states of HIV-1 reverse transcriptase (RT) have been determined by X-ray crystallography. These structures have played important roles in explaining the mechanisms of catalysis, inhibition, and drug resistance and in driving drug design. However, structures of several desired complexes of RT could not be obtained even after many crystallization or crystal soaking experiments. The ternary complexes of doravirine and rilpivirine with RT/DNA are such examples. Structural study of HIV-1 RT by single-particle cryo-electron microscopy (cryo-EM) has been challenging due to the enzyme's relatively smaller size and higher flexibility. We optimized a protocol for rapid structure determination of RT complexes by cryo-EM and determined six structures of wild-type and E138K/M184I mutant RT/DNA in complexes with the nonnucleoside inhibitors rilpivirine, doravirine, and nevirapine. RT/DNA/rilpivirine and RT/DNA/doravirine complexes have structural differences between them and differ from the typical conformation of nonnucleoside RT inhibitor (NNRTI)-bound RT/double-stranded DNA (dsDNA), RT/RNA-DNA, and RT/dsRNA complexes; the primer grip in RT/DNA/doravirine and the YMDD motif in RT/DNA/rilpivirine have large shifts. The DNA primer 3'-end in the doravirine-bound structure is positioned at the active site, but the complex is in a nonproductive state. In the mutant RT/DNA/rilpivirine structure, I184 is stacked with the DNA such that their relative positioning can influence rilpivirine in the pocket. Simultaneously, E138K mutation opens the NNRTI-binding pocket entrance, potentially contributing to a faster rate of rilpivirine dissociation by E138K/M184I mutant RT, as reported by an earlier kinetic study. These structural differences have implications for understanding molecular mechanisms of drug resistance and for drug design.


Asunto(s)
Fármacos Anti-VIH , Farmacorresistencia Viral , Transcriptasa Inversa del VIH , VIH-1 , Piridonas , Inhibidores de la Transcriptasa Inversa , Rilpivirina , Triazoles , Fármacos Anti-VIH/química , Fármacos Anti-VIH/farmacología , Microscopía por Crioelectrón , Farmacorresistencia Viral/genética , Transcriptasa Inversa del VIH/antagonistas & inhibidores , Transcriptasa Inversa del VIH/química , Transcriptasa Inversa del VIH/genética , VIH-1/enzimología , Mutación , Nitrilos/farmacología , Conformación Proteica , Piridonas/química , Piridonas/farmacología , Pirimidinas/química , Pirimidinas/farmacología , Inhibidores de la Transcriptasa Inversa/química , Inhibidores de la Transcriptasa Inversa/farmacología , Rilpivirina/química , Rilpivirina/farmacología , Triazoles/química , Triazoles/farmacología
4.
Sci Adv ; 9(9): eadf0797, 2023 03 03.
Artículo en Inglés | MEDLINE | ID: mdl-36867692

RESUMEN

During cotranslational translocation, the signal peptide of a nascent chain binds Sec61 translocon to initiate protein transport through the endoplasmic reticulum (ER) membrane. Our cryo-electron microscopy structure of ribosome-Sec61 shows binding of an ordered heterotetrameric translocon-associated protein (TRAP) complex, in which TRAP-γ is anchored at two adjacent positions of 28S ribosomal RNA and interacts with ribosomal protein L38 and Sec61α/γ. Four transmembrane helices (TMHs) of TRAP-γ cluster with one C-terminal helix of each α, ß, and δ subunits. The seven TMH bundle helps position a crescent-shaped trimeric TRAP-α/ß/δ core in the ER lumen, facing the Sec61 channel. Further, our in vitro assay establishes the cyclotriazadisulfonamide derivative CK147 as a translocon inhibitor. A structure of ribosome-Sec61-CK147 reveals CK147 binding the channel and interacting with the plug helix from the lumenal side. The CK147 resistance mutations surround the inhibitor. These structures help in understanding the TRAP functions and provide a new Sec61 site for designing translocon inhibitors.


Asunto(s)
Proteínas de Unión al Calcio , Ribosomas , Canales de Translocación SEC , Microscopía por Crioelectrón
5.
STAR Protoc ; 2(2): 100431, 2021 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-33870232

RESUMEN

In yeast mitochondria, transcription initiation requires assembly of mitochondrial RNA polymerase and transcription initiation factor MTF1 at the DNA promoter initiation site. This protocol describes the purification of the component proteins and assembly of partially melted and fully melted initiation complex states. Both states co-exist in equilibrium in the same sample as seen by cryoelectron microscopy (cryo-EM) and allow elucidation of MTF1's structural roles in controlling the transition into elongation. We further outline how analysis of the complex by light scattering, thermal shift assay, and ultrafiltration assay exhibits reproducible results. For complete details on the use and execution of this protocol, please refer to De Wijngaert et al. (2021).


Asunto(s)
Microscopía por Crioelectrón/métodos , ARN Polimerasas Dirigidas por ADN , Proteínas Mitocondriales , Proteínas de Saccharomyces cerevisiae , Factores de Transcripción , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/metabolismo , ARN Polimerasas Dirigidas por ADN/ultraestructura , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Proteínas Mitocondriales/ultraestructura , Ribosomas Mitocondriales , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/ultraestructura , Factores de Transcripción/química , Factores de Transcripción/metabolismo , Factores de Transcripción/ultraestructura
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda