Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
J Biol Chem ; 299(1): 102768, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36470426

RESUMEN

The KRAS gene is one of the most frequently mutated oncogenes in human cancer and gives rise to two isoforms, KRAS4A and KRAS4B. KRAS post-translational modifications (PTMs) have the potential to influence downstream signaling. However, the relationship between KRAS PTMs and oncogenic mutations remains unclear, and the extent of isoform-specific modification is unknown. Here, we present the first top-down proteomics study evaluating both KRAS4A and KRAS4B, resulting in 39 completely characterized proteoforms across colorectal cancer cell lines and primary tumor samples. We determined which KRAS PTMs are present, along with their relative abundance, and that proteoforms of KRAS4A versus KRAS4B are differentially modified. Moreover, we identified a subset of KRAS4B proteoforms lacking the C185 residue and associated C-terminal PTMs. By confocal microscopy, we confirmed that this truncated GFP-KRAS4BC185∗ proteoform is unable to associate with the plasma membrane, resulting in a decrease in mitogen-activated protein kinase signaling pathway activation. Collectively, our study provides a reference set of functionally distinct KRAS proteoforms and the colorectal cancer contexts in which they are present.


Asunto(s)
Neoplasias Colorrectales , Proteínas Quinasas Activadas por Mitógenos , Proteínas Proto-Oncogénicas p21(ras) , Transducción de Señal , Humanos , Neoplasias Colorrectales/genética , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Procesamiento Proteico-Postraduccional , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Línea Celular Tumoral , Proteómica , Proteínas Quinasas Activadas por Mitógenos/metabolismo
2.
Anal Chem ; 96(13): 5223-5231, 2024 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-38498381

RESUMEN

Development of new targeted inhibitors for oncogenic KRAS mutants may benefit from insight into how a given mutation influences the accessibility of protein residues and how compounds interact with mutant or wild-type KRAS proteins. Targeted proteomic analysis, a key validation step in the KRAS inhibitor development process, typically involves both intact mass- and peptide-based methods to confirm compound localization or quantify binding. However, these methods may not always provide a clear picture of the compound binding affinity for KRAS, how specific the compound is to the target KRAS residue, and how experimental conditions may impact these factors. To address this, we have developed a novel top-down proteomic assay to evaluate in vitro KRAS4B-compound engagement while assessing relative quantitation in parallel. We present two applications to demonstrate the capabilities of our assay: maleimide-biotin labeling of a KRAS4BG12D cysteine mutant panel and treatment of three KRAS4B proteins (WT, G12C, and G13C) with small molecule compounds. Our results show the time- or concentration-dependence of KRAS4B-compound engagement in context of the intact protein molecule while directly mapping the compound binding site.


Asunto(s)
Proteómica , Proteínas Proto-Oncogénicas p21(ras) , Proteínas Proto-Oncogénicas p21(ras)/genética , Mutación , Sitios de Unión
3.
Nat Methods ; 16(7): 587-594, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-31249407

RESUMEN

One gene can give rise to many functionally distinct proteoforms, each of which has a characteristic molecular mass. Top-down mass spectrometry enables the analysis of intact proteins and proteoforms. Here members of the Consortium for Top-Down Proteomics provide a decision tree that guides researchers to robust protocols for mass analysis of intact proteins (antibodies, membrane proteins and others) from mixtures of varying complexity. We also present cross-platform analytical benchmarks using a protein standard sample, to allow users to gauge their proficiency.


Asunto(s)
Benchmarking , Espectrometría de Masas/métodos , Proteínas/química , Desnaturalización Proteica , Procesamiento Proteico-Postraduccional , Proteómica
4.
Mol Cell Proteomics ; 19(2): 405-420, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31888965

RESUMEN

Top-down proteomics studies intact proteoform mixtures and offers important advantages over more common bottom-up proteomics technologies, as it avoids the protein inference problem. However, achieving complete molecular characterization of investigated proteoforms using existing technologies remains a fundamental challenge for top-down proteomics. Here, we benchmark the performance of ultraviolet photodissociation (UVPD) using 213 nm photons generated by a solid-state laser applied to the study of intact proteoforms from three organisms. Notably, the described UVPD setup applies multiple laser pulses to induce ion dissociation, and this feature can be used to optimize the fragmentation outcome based on the molecular weight of the analyzed biomolecule. When applied to complex proteoform mixtures in high-throughput top-down proteomics, 213 nm UVPD demonstrated a high degree of complementarity with the most employed fragmentation method in proteomics studies, higher-energy collisional dissociation (HCD). UVPD at 213 nm offered higher average proteoform sequence coverage and degree of proteoform characterization (including localization of post-translational modifications) than HCD. However, previous studies have shown limitations in applying database search strategies developed for HCD fragmentation to UVPD spectra which contains up to nine fragment ion types. We therefore performed an analysis of the different UVPD product ion type frequencies. From these data, we developed an ad hoc fragment matching strategy and determined the influence of each possible ion type on search outcomes. By paring down the number of ion types considered in high-throughput UVPD searches from all types down to the four most abundant, we were ultimately able to achieve deeper proteome characterization with UVPD. Lastly, our detailed product ion analysis also revealed UVPD cleavage propensities and determined the presence of a product ion produced specifically by 213 nm photons. All together, these observations could be used to better elucidate UVPD dissociation mechanisms and improve the utility of the technique for proteomic applications.


Asunto(s)
Proteómica/métodos , Rayos Ultravioleta , Animales , Anhidrasas Carbónicas , Células Cultivadas , Cromatografía Liquida , Fibroblastos , Proteínas Fúngicas , Humanos , Ratones , Miocitos Cardíacos , Mioglobina , Fotones , Pseudomonas aeruginosa , Espectrometría de Masas en Tándem , Ubiquitina
5.
J Proteome Res ; 20(9): 4427-4434, 2021 09 03.
Artículo en Inglés | MEDLINE | ID: mdl-34379411

RESUMEN

Previous work employing five SARS-CoV-2 spike protein receptor-binding domain (RBD) constructs, comprising versions originally developed by Mt. Sinai or the Ragon Institute and later optimized in-house, revealed potential heterogeneity which led to questions regarding variable seropositivity assay performance. Each construct was subjected to N-deglycosylation and subsequent intact mass analysis, revealing significant deviations from predicted theoretical mass for all five proteins. Complementary tandem MS/MS analysis revealed the presence of an additional pyroGlu residue on the N-termini of the two Mt. Sinai RBD constructs, as well as on the N-terminus of the full-length spike protein from which they were derived, thus explaining the observed mass shift and definitively establishing the spike protein N-terminal sequence. Moreover, the observed mass additions for the three Ragon Institute RBD constructs were identified as variable N-terminal cleavage points within the signal peptide sequence employed for recombinant expression. To resolve this issue and minimize heterogeneity for further seropositivity assay development, the best-performing RBD construct was further optimized to exhibit complete homogeneity, as determined by both intact mass and tandem MS/MS analysis. This new RBD construct has been validated for seropositivity assay performance, is available to the greater scientific community, and is recommended for use in future assay development.


Asunto(s)
COVID-19 , Glicoproteína de la Espiga del Coronavirus , Humanos , Unión Proteica , Dominios Proteicos , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/metabolismo , Espectrometría de Masas en Tándem
6.
Proc Natl Acad Sci U S A ; 115(16): 4140-4145, 2018 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-29610327

RESUMEN

Mutations of the KRAS gene are found in human cancers with high frequency and result in the constitutive activation of its protein products. This leads to aberrant regulation of downstream pathways, promoting cell survival, proliferation, and tumorigenesis that drive cancer progression and negatively affect treatment outcomes. Here, we describe a workflow that can detect and quantify mutation-specific consequences of KRAS biochemistry, namely linked changes in posttranslational modifications (PTMs). We combined immunoaffinity enrichment with detection by top-down mass spectrometry to discover and quantify proteoforms with or without the Gly13Asp mutation (G13D) specifically in the KRAS4b isoform. The workflow was applied first to isogenic KRAS colorectal cancer (CRC) cell lines and then to patient CRC tumors with matching KRAS genotypes. In two cellular models, a direct link between the knockout of the mutant G13D allele and the complete nitrosylation of cysteine 118 of the remaining WT KRAS4b was observed. Analysis of tumor samples quantified the percentage of mutant KRAS4b actually present in cancer tissue and identified major differences in the levels of C-terminal carboxymethylation, a modification critical for membrane association. These data from CRC cells and human tumors suggest mechanisms of posttranslational regulation that are highly context-dependent and which lead to preferential production of specific KRAS4b proteoforms.


Asunto(s)
Neoplasias Colorrectales/enzimología , Mutación Missense , Proteínas de Neoplasias/análisis , Mutación Puntual , Procesamiento Proteico-Postraduccional , Proteínas Proto-Oncogénicas p21(ras)/análisis , Secuencia de Aminoácidos , Línea Celular Tumoral , Membrana Celular/metabolismo , Cromatografía Liquida , Neoplasias Colorrectales/genética , Cisteína/química , Humanos , Metilación , Modelos Moleculares , Proteínas de Neoplasias/química , Proteínas de Neoplasias/aislamiento & purificación , Nitrosación , Prenilación , Conformación Proteica , Proteómica/métodos , Proteínas Proto-Oncogénicas p21(ras)/química , Proteínas Proto-Oncogénicas p21(ras)/aislamiento & purificación , Proteínas Recombinantes/química , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Espectrometría de Masas en Tándem
7.
Anal Chem ; 92(18): 12193-12200, 2020 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-32812743

RESUMEN

Fourier transform mass spectrometers routinely provide high mass resolution, mass measurement accuracy, and mass spectral dynamic range. In this work, we utilize 21 T Fourier transform ion cyclotron resonance (FT-ICR) to analyze product ions derived from the application of multiple dissociation techniques and/or multiple precursor ions within a single transient acquisition. This ion loading technique, which we call, "chimeric ion loading", saves valuable acquisition time, decreases sample consumption, and improves top-down protein sequence coverage. In the analysis of MCF7 cell lysate, we show collision-induced dissociation (CID) and electron-transfer dissociation (ETD) on each precursor on a liquid chromatography-mass spectrometry (LC-MS) timescale and improve mean sequence coverage dramatically (CID-only 15% vs chimeric 33%), even during discovery-based acquisition. This approach can also be utilized to multiplex the acquisition of product ion spectra of multiple charge states from a single protein precursor or multiple ETD/proton-transfer reactions (PTR) reaction periods. The analytical utility of chimeric ion loading is demonstrated for top-down proteomics, but it is also likely to be impactful for tandem mass spectrometry applications in other areas.


Asunto(s)
Proteínas de Neoplasias/análisis , Proteómica , Análisis de Fourier , Humanos , Células MCF-7 , Espectrometría de Masas en Tándem , Células Tumorales Cultivadas
8.
Connect Tissue Res ; 59(sup1): 20-29, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-29745816

RESUMEN

BACKGROUND: Matrix-regulated biomineralization involves the specific nucleation and growth of mineral phases within or upon preformed structured organic matrices. We hypothesized that there might be a general mechanism whereby anionic, phosphorylated mineral ion-binding proteins assist in specifically locating the mineral ions with respect to the mineralizing structural organic matrix. Here we extended these studies to invertebrate mineralization in Lytechinus variegatus (Lv) teeth. MATERIALS AND METHODS: The tooth proteins were extracted and the phosphoproteins occluded in the mineral were enriched by passage through a ProQ Diamond phosphoprotein enrichment column, and subjected to MS/MS analysis. A Lv RNA-seq derived transcriptome database was generated. The MS/MS data found 25 proteins previously classified as "Predicted uncharacterized proteins" and many of the spicule matrix proteins. As these 25 proteins were also identified with the transcriptome analysis, and were thus no longer "hypothetical" but real proteins in the Lv tooth. Each protein was analyzed for the presence of a signal peptide, an acidic pI≤4, and the ability to be phosphorylated. RESULTS: Four new Lv tooth specific Pro-Ala-rich proteins were found, representing a new class of proteins. CONCLUSION: The tooth is different from the spicules and other urchin skeletal elements in that only the tooth contains both "high" and "very high" magnesium calcite, [Ca(1-X) Mg(X) CO3], where X is the mole fraction of Mg. We speculate that our newly discovered proline-alanine rich proteins, also containing sequences of acidic amino acids, may be involved in the formation of high magnesium and very high magnesium calcite.


Asunto(s)
Biomineralización/fisiología , Lytechinus/metabolismo , Proteoma/metabolismo , Diente/metabolismo , Transcriptoma/fisiología , Animales
9.
J Proteome Res ; 16(2): 920-932, 2017 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-28111950

RESUMEN

Sequence data from biomolecules such as DNA and proteins, which provide critical information for evolutionary studies, have been assumed to be forever outside the reach of dinosaur paleontology. Proteins, which are predicted to have greater longevity than DNA, have been recovered from two nonavian dinosaurs, but these results remain controversial. For proteomic data derived from extinct Mesozoic organisms to reach their greatest potential for investigating questions of phylogeny and paleobiology, it must be shown that peptide sequences can be reliably and reproducibly obtained from fossils and that fragmentary sequences for ancient proteins can be increasingly expanded. To test the hypothesis that peptides can be repeatedly detected and validated from fossil tissues many millions of years old, we applied updated extraction methodology, high-resolution mass spectrometry, and bioinformatics analyses on a Brachylophosaurus canadensis specimen (MOR 2598) from which collagen I peptides were recovered in 2009. We recovered eight peptide sequences of collagen I: two identical to peptides recovered in 2009 and six new peptides. Phylogenetic analyses place the recovered sequences within basal archosauria. When only the new sequences are considered, B. canadensis is grouped more closely to crocodylians, but when all sequences (current and those reported in 2009) are analyzed, B. canadensis is placed more closely to basal birds. The data robustly support the hypothesis of an endogenous origin for these peptides, confirm the idea that peptides can survive in specimens tens of millions of years old, and bolster the validity of the 2009 study. Furthermore, the new data expand the coverage of B. canadensis collagen I (a 33.6% increase in collagen I alpha 1 and 116.7% in alpha 2). Finally, this study demonstrates the importance of reexamining previously studied specimens with updated methods and instrumentation, as we obtained roughly the same amount of sequence data as the previous study with substantially less sample material. Data are available via ProteomeXchange with identifier PXD005087.


Asunto(s)
Colágeno Tipo I/química , Dinosaurios/clasificación , Fósiles , Fragmentos de Péptidos/análisis , Filogenia , Proteómica/métodos , Secuencia de Aminoácidos , Animales , Evolución Biológica , Huesos/química , Extinción Biológica , Paleontología/instrumentación , Paleontología/métodos , Proteómica/instrumentación
10.
J Proteome Res ; 16(2): 1087-1096, 2017 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-27936753

RESUMEN

Successful high-throughput characterization of intact proteins from complex biological samples by mass spectrometry requires instrumentation capable of high mass resolving power, mass accuracy, sensitivity, and spectral acquisition rate. These limitations often necessitate the performance of hundreds of LC-MS/MS experiments to obtain reasonable coverage of the targeted proteome, which is still typically limited to molecular weights below 30 kDa. The National High Magnetic Field Laboratory (NHMFL) recently installed a 21 T FT-ICR mass spectrometer, which is part of the NHMFL FT-ICR User Facility and available to all qualified users. Here we demonstrate top-down LC-21 T FT-ICR MS/MS of intact proteins derived from human colorectal cancer cell lysate. We identified a combined total of 684 unique protein entries observed as 3238 unique proteoforms at a 1% false discovery rate, based on rapid, data-dependent acquisition of collision-induced and electron-transfer dissociation tandem mass spectra from just 40 LC-MS/MS experiments. Our identifications included 372 proteoforms with molecular weights over 30 kDa detected at isotopic resolution, which substantially extends the accessible mass range for high-throughput top-down LC-MS/MS.


Asunto(s)
Neoplasias Colorrectales/química , Espectrometría de Masas/métodos , Proteínas de Neoplasias/análisis , Proteoma/análisis , Proteómica/métodos , Secuencia de Aminoácidos , Neoplasias Colorrectales/patología , Mezclas Complejas/química , Ciclotrones/instrumentación , Análisis de Fourier , Humanos , Espectrometría de Masas/instrumentación , Proteómica/instrumentación
11.
J Proteome Res ; 16(5): 2072-2079, 2017 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-28412815

RESUMEN

The analysis of intact proteins (top-down strategy) by mass spectrometry has great potential to elucidate proteoform variation, including patterns of post-translational modifications (PTMs), which may not be discernible by analysis of peptides alone (bottom-up approach). To maximize sequence coverage and localization of PTMs, various fragmentation modes have been developed to produce fragment ions from deep within intact proteins. Ultraviolet photodissociation (UVPD) has recently been shown to produce high sequence coverage and PTM retention on a variety of proteins, with increasing evidence of efficacy on a chromatographic time scale. However, utilization of UVPD for high-throughput top-down analysis to date has been limited by bioinformatics. Here we detected 153 proteins and 489 proteoforms using UVPD and 271 proteins and 982 proteoforms using higher energy collisional dissociation (HCD) in a comparative analysis of HeLa whole-cell lysate by qualitative top-down proteomics. Of the total detected proteoforms, 286 overlapped between the UVPD and HCD data sets, with 68% of proteoforms having C scores greater than 40 for UVPD and 63% for HCD. The average sequence coverage (28 ± 20% for UVPD versus 17 ± 8% for HCD, p < 0.0001) was found to be higher for UVPD than HCD and with a trend toward improvement in q value for the UVPD data set. This study demonstrates the complementarity of UVPD and HCD for more extensive protein profiling and proteoform characterization.


Asunto(s)
Ensayos Analíticos de Alto Rendimiento/métodos , Proteínas/análisis , Proteómica/métodos , Células HeLa , Humanos , Procesamiento Proteico-Postraduccional , Espectrometría de Masas en Tándem , Rayos Ultravioleta
12.
J Am Chem Soc ; 138(35): 11124-7, 2016 09 07.
Artículo en Inglés | MEDLINE | ID: mdl-27527063

RESUMEN

Methanobactins (Mbns) are a growing family of ribosomally produced, post-translationally modified natural products. Characteristic nitrogen-containing heterocycles and neighboring thioamides allow these compounds to bind copper with high affinity. Genome mining has enabled the identification of Mbn operons in bacterial genomes and the prediction of diverse Mbn structures from operon content and precursor peptide sequence. Here we report the characterization of Mbn from Methylosinus (Ms.) species (sp.) LW4. The peptide backbone is distinct from all previously characterized Mbns, and the post-translational modifications correspond precisely to those predicted on the basis of the Ms. sp. LW4 Mbn operon. Thus, prediction based on genome analysis combined with isolation and structural characterization represents a phylogenetic approach to finding diverse Mbns and elucidating their biosynthetic pathways.


Asunto(s)
Imidazoles/química , Imidazoles/metabolismo , Methylosinus/metabolismo , Oligopéptidos/química , Oligopéptidos/metabolismo , Methylosinus/genética , Oligopéptidos/genética , Operón/genética , Procesamiento Proteico-Postraduccional
13.
J Virol ; 89(6): 3209-20, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25568206

RESUMEN

UNLABELLED: Our previous studies have established that the p53 populations that accumulate in normal human cells exposed to etoposide or infected by an E1B 55-kDa protein-null mutant of human adenovirus type 5 carry a large number of posttranslational modifications at numerous residues (C. J. DeHart, J. S. Chahal, S. J. Flint, and D. H. Perlman, Mol Cell Proteomics 13:1-17, 2014, http://dx.doi.org/10.1074/mcp.M113.030254). In the absence of this E1B protein, the p53 transcriptional program is not induced, and it has been reported that the viral E4 Orf3 protein inactivates p53 (C. Soria, F. E. Estermann, K. C. Espantman, and C. C. O'Shea, Nature 466:1076-1081, 2010, http://dx.doi.org/10.1038/nature09307). As the latter protein disrupts nuclear Pml bodies, sites at which p53 is modified, we used mass spectrometry to catalogue the posttranscriptional modifications of the p53 population that accumulates when neither the E1B 55-kDa nor the E4 Orf3 protein is made in infected cells. Eighty-five residues carrying 163 modifications were identified. The overall patterns of posttranslational modification of this population and p53 present in cells infected by an E1B 55-kDa-null mutant were similar. The efficiencies with which the two forms of p53 bound to a consensus DNA recognition sequence could not be distinguished and were lower than that of transcriptionally active p53. The absence of the E4 Orf3 protein increased expression of several p53-responsive genes when the E1B protein was also absent from infected cells. However, expression of these genes did not attain the levels observed when p53 was activated in response to etoposide treatment and remained lower than those measured in mock-infected cells. IMPORTANCE: The tumor suppressor p53, a master regulator of cellular responses to stress, is inactivated and destroyed in cells infected by species C human adenoviruses, such as type 5. It is targeted for proteasomal degradation by the action of a virus-specific E3 ubiquitin ligase that contains the viral E1B 55-kDa and E4 Orf6 proteins, while the E4 Orf3 protein has been reported to block its ability to stimulate expression of p53-dependent genes. The comparisons reported here of the posttranslational modifications and activities of p53 populations that accumulate in infected normal human cells in the absence of both mechanisms of inactivation or of only the E3 ligase revealed little impact of the E4 Orf3 protein. These observations indicate that E4 Orf3-dependent disruption of Pml bodies does not have a major effect on the pattern of p53 posttranslational modifications in adenovirus-infected cells. Furthermore, they suggest that one or more additional viral proteins contribute to blocking p53 activation and the consequences that are deleterious for viral reproduction, such as apoptosis or cell cycle arrest.


Asunto(s)
Infecciones por Adenoviridae/metabolismo , Adenoviridae/metabolismo , Proteínas E4 de Adenovirus/metabolismo , Sistemas de Lectura Abierta , Proteína p53 Supresora de Tumor/metabolismo , Adenoviridae/genética , Infecciones por Adenoviridae/genética , Infecciones por Adenoviridae/virología , Proteínas E4 de Adenovirus/genética , Línea Celular , Humanos , Procesamiento Proteico-Postraduccional , Proteína p53 Supresora de Tumor/genética
14.
Mol Cell Proteomics ; 13(1): 1-17, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24056736

RESUMEN

The p53 tumor suppressor protein accumulates to very high concentrations in normal human fibroblasts infected by adenovirus type 5 mutants that cannot direct assembly of the viral E1B 55-kDa protein-containing E3 ubiquitin ligase that targets p53 for degradation. Despite high concentrations of nuclear p53, the p53 transcriptional program is not induced in these infected cells. We exploited this system to examine select post-translational modifications (PTMs) present on a transcriptionally inert population of endogenous human p53, as well as on p53 activated in response to etoposide treatment of normal human fibroblasts. These forms of p53 were purified from whole cell lysates by means of immunoaffinity chromatography and SDS-PAGE, and peptides derived from them were subjected to nano-ultra-high-performance LC-MS and MS/MS analyses on a high-resolution accurate-mass MS platform (data available via ProteomeXchange, PXD000464). We identified an unexpectedly large number of PTMs, comprising phosphorylation of Ser and Thr residues, methylation of Arg residues, and acetylation, ubiquitinylation, and methylation of Lys residues-for example, some 150 previously undescribed modifications of p53 isolated from infected cells. These modifications were distributed across all functional domains of both forms of the endogenous human p53 protein, as well as those of an orthologous population of p53 isolated from COS-1 cells. Despite the differences in activity, including greater in vitro sequence-specific DNA binding activity exhibited by p53 isolated from etoposide-treated cells, few differences were observed in the location, nature, or relative frequencies of PTMs on the two populations of human p53. Indeed, the wealth of PTMs that we have identified is consistent with a far greater degree of complex, combinatorial regulation of p53 by PTM than previously anticipated.


Asunto(s)
Fibroblastos/metabolismo , Procesamiento Proteico-Postraduccional , Proteína p53 Supresora de Tumor/metabolismo , Acetilación , Proteínas E1B de Adenovirus/metabolismo , Animales , Células COS , Chlorocebus aethiops , Proteínas de Unión al ADN/metabolismo , Humanos , Metilación , Fosforilación/genética , Proteolisis , Proteína p53 Supresora de Tumor/genética , Ubiquitina-Proteína Ligasas/metabolismo
15.
J Virol ; 87(8): 4432-44, 2013 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-23388716

RESUMEN

To begin to investigate the mechanism by which the human adenovirus type 5 E1B 55-kDa protein protects against the antiviral effects of type 1 interferon (IFN) (J. S. Chahal, J. Qi, and S. J. Flint, PLoS Pathog. 8:e1002853, 2012 [doi:10.1371/journal.ppat.1002853]), we examined the effects of precise amino acid substitution in this protein on resistance of viral replication to the cytokine. Only substitution of residues 443 to 448 of E1B for alanine (E1B Sub19) specifically impaired production of progeny virus and resulted in a large defect in viral DNA synthesis in IFN-treated normal human fibroblasts. Untreated or IFN-treated cells infected by this mutant virus (AdEasyE1Sub19) contained much higher steady-state concentrations of IFN-inducible GBP1 and IFIT2 mRNAs than did wild-type-infected cells and of the corresponding newly transcribed pre-mRNAs, isolated exploiting 5'-ethynyluridine labeling and click chemistry. These results indicated that the mutations created by substitution of residues 443 to 448 for alanine (Sub19) impair repression of transcription of IFN-inducible genes, by the E1B, 55-kDa protein, consistent with their location in a segment required for repression of p53-dependent transcription. However, when synthesized alone, the E1B 55-kDa protein inhibited expression of the p53-regulated genes BAX and MDM2 but had no impact whatsoever on induction of IFIT2 and GBP1 expression by IFN. These observations correlate repression of transcription of IFN-inducible genes by the E1B 55-kDa protein with protection against inhibition of viral genome replication and indicate that the E1B 55-kDa protein is not sufficient to establish such transcriptional repression.


Asunto(s)
Proteínas E1B de Adenovirus/metabolismo , Adenovirus Humanos/patogenicidad , Interacciones Huésped-Patógeno , Evasión Inmune , Interferones/antagonistas & inhibidores , Factores de Virulencia/metabolismo , Replicación Viral , Proteínas E1B de Adenovirus/genética , Adenovirus Humanos/inmunología , Adenovirus Humanos/fisiología , Línea Celular , Análisis Mutacional de ADN , ADN Viral/biosíntesis , Fibroblastos/inmunología , Fibroblastos/virología , Humanos , Mutagénesis Sitio-Dirigida , Factores de Virulencia/genética
16.
Methods Mol Biol ; 2797: 299-322, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38570469

RESUMEN

Prior analysis of intact and modified protein forms (proteoforms) of KRAS4B isolated from cell lines and tumor samples by top-down mass spectrometry revealed the presence of novel posttranslational modifications (PTMs) and potential evidence of context-specific KRAS4B modifications. However, low endogenous proteoform signal resulted in ineffective characterization, making it difficult to visualize less abundant PTMs or perform follow-up PTM validation using standard proteomic workflows. The NCI RAS Initiative has developed a model system, whereby KRAS4B bearing an N-terminal FLAG tag can be stably expressed within a panel of cancer cell lines. Herein, we present a method for combining immunoprecipitation with complementary proteomic methods to directly analyze N-terminally FLAG-tagged KRAS4B proteoforms and PTMs. We provide detailed protocols for FLAG-KRAS4B purification, proteoform analysis by targeted top-down LC-MS/MS, and validation of abundant PTMs by bottom-up LC-MS/MS with example results.


Asunto(s)
Proteómica , Espectrometría de Masas en Tándem , Cromatografía Liquida , Espectrometría de Masas en Tándem/métodos , Proteómica/métodos , Procesamiento Proteico-Postraduccional , Cromatografía Líquida con Espectrometría de Masas
17.
Science ; 375(6579): 411-418, 2022 01 28.
Artículo en Inglés | MEDLINE | ID: mdl-35084980

RESUMEN

Human biology is tightly linked to proteins, yet most measurements do not precisely determine alternatively spliced sequences or posttranslational modifications. Here, we present the primary structures of ~30,000 unique proteoforms, nearly 10 times more than in previous studies, expressed from 1690 human genes across 21 cell types and plasma from human blood and bone marrow. The results, compiled in the Blood Proteoform Atlas (BPA), indicate that proteoforms better describe protein-level biology and are more specific indicators of differentiation than their corresponding proteins, which are more broadly expressed across cell types. We demonstrate the potential for clinical application, by interrogating the BPA in the context of liver transplantation and identifying cell and proteoform signatures that distinguish normal graft function from acute rejection and other causes of graft dysfunction.


Asunto(s)
Células Sanguíneas/química , Proteínas Sanguíneas/química , Células de la Médula Ósea/química , Bases de Datos de Proteínas , Isoformas de Proteínas/química , Proteoma/química , Empalme Alternativo , Linfocitos B/química , Proteínas Sanguíneas/genética , Linaje de la Célula , Humanos , Leucocitos Mononucleares/química , Trasplante de Hígado , Plasma/química , Isoformas de Proteínas/genética , Procesamiento Proteico-Postraduccional , Proteómica , Linfocitos T/química
18.
Methods Mol Biol ; 2262: 47-64, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33977470

RESUMEN

The characterization of biologically relevant post-translational modifications (PTMs) on KRAS4B has historically been carried out through methodologies such as immunoblotting with PTM-specific antibodies or peptide-based proteomic methods. While these methods have the potential to identify a given PTM on KRAS4B, they are incapable of characterizing or distinguishing the different molecular forms or proteoforms of KRAS4B from those of related RAS isoforms. We present a method that combines immunoprecipitation of KRAS4B with top-down mass spectrometry (IP-TDMS), thus enabling the precise characterization of intact KRAS4B proteoforms. We provide detailed protocols for the IP, LC-MS/MS, and data analysis comprising a successful IP-TDMS assay in the contexts of cancer cell lines and tissue samples.


Asunto(s)
Cromatografía Liquida/métodos , Inmunoprecipitación/métodos , Neoplasias/metabolismo , Proteoma/análisis , Proteínas Proto-Oncogénicas p21(ras)/análisis , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Espectrometría de Masas en Tándem/métodos , Humanos , Neoplasias/patología , Isoformas de Proteínas , Procesamiento Proteico-Postraduccional , Células Tumorales Cultivadas
19.
Methods Mol Biol ; 2262: 105-116, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33977473

RESUMEN

Recombinant mammalian proteins are routinely produced in E. coli and thus lack post-translational modifications. KRAS4b is processed at both the N- and C-terminus, resulting in an acetylation of the N-terminus (at Thr, after aminopeptidase removal of the original N-term Met) and farnesylation/carboxymethylation of the C-terminal Cys (after proteolytic cleavage of the original C-terminal three amino acids, Val-Iso-Met). Processing of KRAS enables it to associate with the plasma membrane and fulfill its function in cell signaling. We describe here the production of recombinant KRAS4b from our modified baculovirus/insect cell expression system that accurately incorporates these in vivo modifications to allow experiments that anchor KRAS4b to membrane mimetics (e.g., nanodiscs and liposomes).


Asunto(s)
Membrana Celular/metabolismo , Prenilación de Proteína , Procesamiento Proteico-Postraduccional , Proteínas Proto-Oncogénicas p21(ras)/química , Proteínas Proto-Oncogénicas p21(ras)/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Acetilación , Secuencia de Aminoácidos , Humanos , Metilación , Proteínas Proto-Oncogénicas p21(ras)/genética , Proteínas Proto-Oncogénicas p21(ras)/aislamiento & purificación , Proteínas Recombinantes/genética , Proteínas Recombinantes/aislamiento & purificación
20.
Nat Commun ; 11(1): 1067, 2020 02 26.
Artículo en Inglés | MEDLINE | ID: mdl-32103017

RESUMEN

Lysine fatty acylation in mammalian cells was discovered nearly three decades ago, yet the enzymes catalyzing it remain unknown. Unexpectedly, we find that human N-terminal glycine myristoyltransferases (NMT) 1 and 2 can efficiently myristoylate specific lysine residues. They modify ADP-ribosylation factor 6 (ARF6) on lysine 3 allowing it to remain on membranes during the GTPase cycle. We demonstrate that the NAD+-dependent deacylase SIRT2 removes the myristoyl group, and our evidence suggests that NMT prefers the GTP-bound while SIRT2 prefers the GDP-bound ARF6. This allows the lysine myrisotylation-demyristoylation cycle to couple to and promote the GTPase cycle of ARF6. Our study provides an explanation for the puzzling dissimilarity of ARF6 to other ARFs and suggests the existence of other substrates regulated by this previously unknown function of NMT. Furthermore, we identified a NMT/SIRT2-ARF6 regulatory axis, which may offer new ways to treat human diseases.


Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Aciltransferasas/metabolismo , Lisina/metabolismo , Sirtuina 2/metabolismo , Factor 6 de Ribosilación del ADP , Acilación/fisiología , Secuencia de Aminoácidos , Línea Celular , Cristalografía por Rayos X , Células HEK293 , Humanos , Ácido Mirístico/metabolismo
SELECCIÓN DE REFERENCIAS
Detalles de la búsqueda