RESUMEN
With continued advancements in portable eye-tracker technology liberating experimenters from the restraints of artificial laboratory designs, research can now collect gaze data from real-world, natural navigation. However, the field lacks a robust method for achieving this, as past approaches relied upon the time-consuming manual annotation of eye-tracking data, while previous attempts at automation lack the necessary versatility for in-the-wild navigation trials consisting of complex and dynamic scenes. Here, we propose a system capable of informing researchers of where and what a user's gaze is focused upon at any one time. The system achieves this by first running footage recorded on a head-mounted camera through a deep-learning-based object detection algorithm called Masked Region-based Convolutional Neural Network (Mask R-CNN). The algorithm's output is combined with frame-by-frame gaze coordinates measured by an eye-tracking device synchronized with the head-mounted camera to detect and annotate, without any manual intervention, what a user looked at for each frame of the provided footage. The effectiveness of the presented methodology was legitimized by a comparison between the system output and that of manual coders. High levels of agreement between the two validated the system as a preferable data collection technique as it was capable of processing data at a significantly faster rate than its human counterpart. Support for the system's practicality was then further demonstrated via a case study exploring the mediatory effects of gaze behaviors on an environment-driven attentional bias.
Asunto(s)
Aprendizaje Profundo , Movimientos Oculares , Humanos , Tecnología de Seguimiento Ocular , Redes Neurales de la Computación , AlgoritmosRESUMEN
It is well known that sterically stabilized diblock copolymer nanoparticles can be readily prepared using polymerization-induced self-assembly. Recently, we reported that such nanoparticles can be employed as a dispersant to prepare micron-sized particles of a widely used fungicide (azoxystrobin) via ball milling. In the present study, we examine the effect of varying the nature of the steric stabilizer block, the mean nanoparticle diameter, and the glass transition temperature (Tg) of the core-forming block on the particle size and colloidal stability of such azoxystrobin microparticles. In addition, the effect of crosslinking the nanoparticle cores is also investigated. Laser diffraction studies indicated the formation of azoxystrobin microparticles of approximately 2 µm diameter after milling for between 15 and 30 min at 6000 rpm. Diblock copolymer nanoparticles comprising a non-ionic steric stabilizer, rather than a cationic or anionic steric stabilizer, were determined to be more effective dispersants. Furthermore, nanoparticles of up to 51 nm diameter enabled efficient milling and ensured overall suspension concentrate stability. Moreover, crosslinking the nanoparticle cores and adjusting the Tg of the core-forming block had little effect on the milling of azoxystrobin. Finally, we show that this versatile approach is also applicable to five other organic crystalline agrochemicals, namely pinoxaden, cyproconazole, difenoconazole, isopyrazam and tebuconazole. TEM studies confirmed the adsorption of sterically stabilized nanoparticles at the surface of such agrochemical microparticles. The nanoparticles are characterized using TEM, DLS, aqueous electrophoresis and 1H NMR spectroscopy, while the final aqueous' suspension concentrates comprising microparticles of the above six agrochemical actives are characterized using optical microscopy, laser diffraction and electron microscopy.
Asunto(s)
Agroquímicos , Nanopartículas , Nanopartículas/química , Tamaño de la Partícula , Polimerizacion , Polímeros/química , SuspensionesRESUMEN
Polymerization-induced self-assembly (PISA) enables the scalable synthesis of functional block copolymer nanoparticles with various morphologies. Herein we exploit this versatile technique to produce so-called "high χ-low N" diblock copolymers that undergo nanoscale phase separation in the solid state to produce sub-10â nm surface features. By varying the degree of polymerization of the stabilizer and core-forming blocks, PISA provides rapid access to a wide range of diblock copolymers, and enables fundamental thermodynamic parameters to be determined. In addition, the pre-organization of copolymer chains within sterically-stabilized nanoparticles that occurs during PISA leads to enhanced phase separation relative to that achieved using solution-cast molecularly-dissolved copolymer chains.
RESUMEN
Reversible addition-fragmentation chain transfer (RAFT) aqueous emulsion polymerization is used to prepare well-defined ABCB tetrablock copolymer nanoparticles via sequential monomer addition at 30 °C. The A block comprises water-soluble poly(2-(N-acryloyloxy)ethyl pyrrolidone) (PNAEP), while the B and C blocks comprise poly(t-butyl acrylate) (PtBA) and poly(n-butyl acrylate) (PnBA), respectively. High conversions are achieved at each stage, and the final sterically stabilized spherical nanoparticles can be obtained at 20% w/w solids at pH 3 and at up to 40% w/w solids at pH 7. A relatively long PnBA block is targeted to ensure that the final tetrablock copolymer nanoparticles form highly transparent films on drying such aqueous dispersions at ambient temperature. The kinetics of polymerization and particle growth are studied using 1H nuclear magnetic resonance spectroscopy, dynamic light scattering, and transmission electron microscopy, while gel permeation chromatography analysis confirmed a high blocking efficiency for each stage of the polymerization. Differential scanning calorimetry and small-angle X-ray scattering studies confirm microphase separation between the hard PtBA and soft PnBA blocks, and preliminary mechanical property measurements indicate that such tetrablock copolymer films exhibit promising thermoplastic elastomeric behavior. Finally, it is emphasized that targeting an overall degree of polymerization of more than 1000 for such tetrablock copolymers mitigates the cost, color, and malodor conferred by the RAFT agent.
RESUMEN
The reversible addition-fragmentation chain transfer (RAFT) aqueous dispersion polymerization of 2-hydroxypropyl methacrylate (HPMA) using a poly(glycerol monomethacrylate) (PGMA) precursor is an important prototypical example of polymerization-induced self-assembly. 4-Hydroxybutyl acrylate (HBA) is a structural isomer of HPMA, but the former monomer exhibits appreciably higher aqueous solubility. For the two corresponding homopolymers, PHBA is more weakly hydrophobic than PHPMA. Moreover, PHBA has a significantly lower glass transition temperature (T g) so it exhibits much higher chain mobility than PHPMA at around ambient temperature. In view of these striking differences, we have examined the RAFT aqueous dispersion polymerization of HBA using a PGMA precursor with the aim of producing a series of PGMA57-300-PHBA100-1580 diblock copolymer nano-objects by systematic variation of the mean degree of polymerization of each block. A pseudo-phase diagram is constructed using transmission electron microscopy to assign the copolymer morphology after employing glutaraldehyde to cross-link the PHBA chains and hence prevent film formation during grid preparation. The thermoresponsive character of the as-synthesized linear nano-objects is explored using dynamic light scattering and temperature-dependent rheological measurements. Comparison with the analogous PGMA x -PHPMA y formulation is made where appropriate. In particular, we demonstrate that replacing the structure-directing PHPMA block with PHBA leads to significantly greater thermoresponsive behavior over a much wider range of diblock copolymer compositions. Given that PGMA-PHPMA worm gels can induce stasis in human stem cells (see Canton et al., ACS Central Science, 2016, 2, 65-74), our findings are likely to have implications for the design of next-generation PGMA-PHBA worm gels for cell biology applications.
RESUMEN
Well-defined block copolymers have been widely used as emulsifiers, stabilizers, and dispersants in the chemical industry for at least 50 years. In contrast, nature employs amphiphilic proteins as polymeric surfactants whereby the spatial distribution of hydrophilic and hydrophobic amino acids within the polypeptide chains is optimized for surface activity. Herein, we report that polydisperse statistical copolymers prepared by conventional free-radical copolymerization can provide superior foaming performance compared to the analogous diblock copolymers. A series of predominantly (meth)acrylic comonomers are screened to identify optimal surface activity for foam stabilization of aqueous ethanol solutions. In particular, all-acrylic statistical copolymers comprising trimethylhexyl acrylate and poly(ethylene glycol) acrylate, P(TMHA-stat-PEGA), confer strong foamability and also lower the surface tension of a range of ethanol-water mixtures to a greater extent than the analogous block copolymers. For ethanol-rich hand sanitizer formulations, foam stabilization is normally achieved using environmentally persistent silicone-based copolymers or fluorinated surfactants. Herein, the best-performing fully hydrocarbon-based copolymer surfactants effectively stabilize ethanol-rich foams by a mechanism that resembles that of naturally-occurring proteins. This ability to reduce the surface tension of low-surface-energy liquids suggests a wide range of potential commercial applications.
Asunto(s)
Etanol , Agua , Acrilatos/química , Hidrocarburos , Polímeros/química , Tensoactivos/química , Agua/químicaRESUMEN
2-Hydroxypropyl methacrylate (HPMA) is a useful model monomer for understanding aqueous dispersion polymerization. 4-Hydroxybutyl acrylate (HBA) is an isomer of HPMA: it has appreciably higher aqueous solubility so its homopolymer is more weakly hydrophobic. Moreover, PHBA possesses a significantly lower glass transition temperature than PHPMA, which ensures greater chain mobility. The reversible addition-fragmentation chain transfer (RAFT) aqueous dispersion polymerization of HBA using a poly(ethylene glycol) (PEG113) precursor at 30 °C produces PEG113-PHBA200-700 diblock copolymer nano-objects. Using glutaraldehyde to crosslink the PHBA chains allows TEM studies, which reveal the formation of spheres, worms or vesicles under appropriate conditions. Interestingly, the partially hydrated highly mobile PHBA block enabled linear PEG113-PHBA x spheres, worms or vesicles to be reconstituted from freeze-dried powders on addition of water at 20 °C. Moreover, variable temperature 1H NMR studies indicated that the apparent degree of hydration of the PHBA block increases from 5% to 80% on heating from 0 °C to 60 °C indicating uniform plasticization. In contrast, the PHPMA x chains within PEG113-PHPMA x nano-objects become dehydrated on raising the temperature: this qualitative difference is highly counter-intuitive given that PHBA and PHPMA are isomers. The greater (partial) hydration of the PHBA block at higher temperature drives the morphological evolution of PEG113-PHBA260 spheres to form worms or vesicles, as judged by oscillatory rheology, dynamic light scattering, small-angle X-ray scattering and TEM studies. Finally, a variable temperature phase diagram is constructed for 15% w/w aqueous dispersions of eight PEG113-PHBA200-700 diblock copolymers. Notably, PEG113-PHBA350 can switch reversibly from spheres to worms to vesicles to lamellae during a thermal cycle.